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// Variational Inference
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Variational inference (VI) is a method for approximating probability densities
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Motivation

* In sequential data assimilation, calculating the evidence term is tractable.

«  We optimize for the VI distribution parameter over sample estimates.

« Can we study the bias and variance of those sample estimates ?

- Low variance estimate can enable larger steps in the optimization problem, leading to

faster convergence.




P BIAS-VARIANCE

Let X € R? be a random variable with probability distribution F with finite mean u and
variance X.

We are interested in f(u) € R having access to samples from F. What can we say about the
confidence in our sample estimate of f(u)?

Sampling from F : X¢,X5, ..., X,
Estimatingu : i = 32}‘_1)(-
Estimating f(u) : f(R) = f ( n X, )

What can we say about the bias and variance (confidence) in the estimate f(j1)?




P ESTIMATION BIAS-I

Taylor series expansion of f(f):

f@=fw+@-w'Df() + g(u — W Hf (u)(@a — p) +H.O.T.

Assumption 1:

Second order approximation of f (1) yields:

1
E(f(@) - f(w) = EIE((ﬁ —wWHf W@ —w)
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If we assume that X is a 1-D Gaussian random variable, we analyze the exact nature of the
bias. The Taylor series expansion:

o 1 -
f@ =W+ ) @ -
i=1
o 1 »
E(f (@) - fW) =E (Z (- u)‘f‘(ﬂ))
i=1

If £ (x) = log(x) - f1(x) == > f2(x) = = = f3(x) = 42 >...> fi(x) = (—1)i-1 !

xl
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d Let us see how the co-coefficients of the term n‘f;;;[ look like. For i = {2,4,6,8,10,12} the values
look like
1 3 5 105 189 3465
2T T8 T s
For i = 2 we have,
E(f@ - f(w) = -

2nu?




P ESTIMATION VARIANCE-I

Assumption 3:

We approximate the estimate f(j1) using the first order term only and analyze the confidence
based upon this assumption.

Since E(1) = u, the expected value of the estimate f(f) is f(u)land the variance is:
E(@-w'fwf W'@-mw)=fwr’ ;Z‘f’(u)

We can only calculate it if we know the actual 4 and the variance X of F. Since fi = %Z?ﬂ X;,
using C.L.T. we have:

V(g —p) » N(0,2)
Using assumption 3 and C.L.T. we have:

Va(f (@ — fw) » N(0, f'(WTZf'(w)) | Delta Method




P ESTIMATION VARIANCE-II

Assumption 4:

If we do not have access to actual u and the variance ¥ of F we estimate the f'(W)"2f'(n) by fi
and & by:

5=

1;(& - X - )"

n_

Combining assumption 1 and 2 we can state different levels of confidence in our estimate of
f(u) and say that f(u) lies with in:

258 oo
F@) £ == (@)

with 99% confidence.




P DELTA METHOD ON VI

The KL divergence between the variational distribution and the posterior is:

6 | D|6)p6
J =1a@ 08T P ds — {401 p)ogp(D 1 0)d0 +10g] PP 49 1 g)ao
oy ([T p(D16@)P(0Q)

where r(8 | @) is an arbitrary importance distribution
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{ is the re-parameterized random variable.

We assume that the first term f(¢) can be exactly calculated and do not need to be a MC

estimate.

The remaining two terms are approximated as a MC estimate. Do we need re-parameterization

or should we sample directly from the importance distribution?

_[ [1e@ie)
r(6(Dlg)

~ _ 1yN
"*_EZi:l

logp(D | 8(3))p({)dS + logf r(0@)lg)

q(8(¢i)l¢)

r(@({)lep)

F(DW(OJP(B{O) P(Qdf

p(D16(¢))p(6(5)))

logp(D | 6(¢;)) + log (:_,E?il r(6(3))le)
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We assume that the ¢ (Variational parameters) and ¢ (Importance parameters) are coupled

by:
p=¢+n
First calculate th%variance and bias of the estimates: y ( ) ( )
o 1 q(0() | ¢) o 1r(D16(G))r(6(5)
X =——= | D e d = —
N L7 @G | §+m EPP10CD) and Y M,Zl r(6(@)16+1)
Now,

o 1
Var(X) = ﬁVa'r

( a6 1 ¢)

" g+ PP 9@)) = Zx/N




We assume that we know the Xy (How to calculate this?), then

VN(X = X)XX > N(0,Zx)
Now,

a1 p(D16()p(6())
Var(‘y) =HVar( r(@((j) e )zZ‘y/M

We assume that we know the Xy (How to calculate this?), then

VM(T - Y)XX - dV (0, Zy)

Use Delta-method to calculate the varlance and bias of

1 Z p(D e(c;))p(e(m))

r(6(5) 1 ¢ +n)




We have shown in the earlier step,

VM (G - Y)XX - dN (0, Zy)
Using Delta method,

VM (10g(9) — 10g(y)) XX — v (0 ;g )

Then calculate the variance and bias of

N M
1¢ 0@ | ¢) 1P (216(5)p (6(3))
TNLEG) ¢+ oW (P166)) and log (ﬁz (@) 16+1)

using delta method for multiple variables.




o If M and N samples are drawn independently then, (Shouldn't this be called MSE rather than Var?)

- - Iy 2y
Var (]C + log(’y)) =N + R
o If If M=N samples are the same samples then, using multivariate Delta method,
- . Iy 2y Zxy
Var (x + log(‘y)) =N +N’y2 + ZW
o Hence,
x| Zy o yEx%y < Var (X +1og(9)) D s Pl
N T NY? NY 8 N T NY? NY




