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2 Problem Statement
Goal: Develop efficient algorithms to solve the risk-averse optimization problem,

min
x∈X
R[f (x)] subject to g(x) = 0, Tx ∈ C := C1 ∩ . . . ∩ Cm.

– X and Y are Banach spaces and Z is a Hilbert space;

– T ∈ L(X ,Z ) with injective T ∗ and Ci ⊂ Z is closed, convex and boundedly regular;

– f : X → L2(Ω,F ,P) and g : X → Y are continuously differentiable;

– R : L2(Ω,F ,P)→ R is convex, monotonic and positively homogeneous.

Consequence: R is continuous, subdifferentiable and

R[F ] = sup
θ∈A

E[θF ] where A := ∂R[0] ⊆ {θ ∈ L2(Ω,F ,P) | θ ≥ 0 a.s.}

=⇒ min
x∈X
R[f (x)] = min sup

x∈X θ∈A
{`(x , θ) := E[θf (x)]}.
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3 Motivation
PDE-constrained optimization (optimal control):

min
uξ, z

R[f (uξ, z , ξ)] subject to g(uξ, z , ξ) = 0, T1uξ ∈ C1, T2z ∈ C2.

I Given a control z , the PDE g(uξ, z , ξ) = 0 is expensive to solve for the state uξ = uξ(z).

Solve PDE constraint gradually using, e.g., trust-region SQP (no nonlinear solves).

I Linear (KKT-like) systems in SQP take advantage of iterative solvers and good preconditioners.

Use matrix-free SQP to exploit inexact linear system solves; also mesh adaptivity, etc.†,††

I Catch: SQP with inexact linear system solves cannot directly handle general inequality constraints or
nonsmooth objective functions.

Penalize Tx ∈ C explicitly and smooth R using augmented Lagrangian.

I Control and state multipliers have different regularity, e.g., L2 for controls and measures for states,
resulting in vastly different scales, which can lead to strong mesh dependence for NLP methods.

Use separate penalties and multiplier estimates for control and state constraints.

†Heinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
††Ziems, Ulbrich (2011), Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIOPT.
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4 PDE-Constrained Optimization is Expensive
Full Space

min
T1un∈C1
T2z∈C2

N∑
n=1

wn f (un, z , ξn)

subject to g(un, z , ξn) = 0

I Numerical solution is severely limited
due to memory!

I PDE solution variables are treated as
optimization variables.

I Must store each PDE solution variable un.

I Often need to store one Lagrange
multiplier per ξn.

Reduced Space

min
T1Sn(z)∈C1

T2z∈C2

N∑
n=1

wn f (Sn(z), z , ξn)

where g(Sn(z), z , ξn) = 0

I Numerical solution is severely limited
due to computation!

I Objective evaluation requires the solution
to g(uξ, z , ξn) = 0 for each ξn.

I Gradient evaluation requires an additional
linearized solve per ξn.

I Hessian-times-a-vector requires two
additional linearized solves per ξn.

Requires O(MN) storage!

N is typically O(103)

M can be ≥ 109

O(N) nonlinear solves!

Additional O(N) linear solves

for derivative computations
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5 Modeling Risk Preference Choose Your Own Adventure

What is risk? Possibility of loss or injury (Merriam Webster)

. . . In our optimization problem, f (uξ, z , ξ) is a risk!

We cannot directly minimize f (uξ, z , ξ) ∈ Lp(Ω,F ,P)

. . . How should we quantify the risk?

Optimistic Formulations

I Risk-Neutral Approach:
Minimize on average

R[X ] = E[X ].

I Reliability Approach:
Minimize probability of loss

R[X ] = P(X > x).

Conservative Formulations

I Risk-Averse Approach:
Model risk preferences

R[X ] = E[X ] +D[X ].

I Buffered Approach:
Minimize buffered probability

R[X ] = bPOEx(X ).
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6 Coherent Measures of Risk Definition and Examples

R : Lp(Ω,F ,P)→ (−∞,∞] is a coherent measure of risk if it satisfies

(R1) Convexity: R[tX + (1− t)X ′] ≤ tR[X ] + (1− t)R[X ′], ∀t ∈ [0, 1]

(R2) Monotonicity: X ≥ X ′ a.s. =⇒ R[X ] ≥ R[X ′]

(R3) Translation Equivariance: R[X + t] = R[X ] + t, ∀t ∈ R

(R4) Positive Homogeneity: R[tX ] = tR[X ], ∀t > 0

Examples of risk measures that are not coherent:

I Mean-Deviation: R[X ] = E[X ] + E[|X − E[X ]|p]1/p Violates (R2)!

I Entropic Risk: R[X ] = logE[expX ] Violates (R4)!

Examples of risk measures that are coherent:

I Mean-Semideviation: R[X ] = E[X ] + cE[max{0,X − E[X ]}], c ∈ [0, 1]

I Conditional Value-at-Risk: R[X ] = inft{t + (1− β)−1E[max{X − t, 0}]}, β ∈ (0, 1)

Artzner, Delbaen, Eber, Heath (1999), Coherent measures of risk, Math Finance.
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7 Coherent Measures of Risk Some Good and Not So Good Properties?

Biconjugate Representation: Recall R∗[ϑ] = supX{E[ϑX ]−R[X ]}
I If R is proper, convex and lsc

⇐⇒ R[X ] = sup {E[ϑX ]−R∗[ϑ] | ϑ ∈ dom(R∗)}
I If R is translation equivariant and monotonic

⇐⇒ dom(R∗) ⊆ {ϑ ∈ X ∗ | E[ϑ] = 1, ϑ ≥ 0 a.s.}
I If R is positive homogeneous

⇐⇒ R[X ] = sup
ϑ∈dom(R∗)

E[ϑX ]

dom(R∗) is the risk envelope and optimal ϑ? ∈ dom(R∗) are risk identifiers

−0.1 0 0.1
−0.5

0

0.5

x1

x 2

Differentiability: The coherent risk measure R is Fréchet differentiable

⇐⇒ ∃ϑ ∈ X ∗ with ϑ ≥ 0 a.s., E[ϑ] = 1, and R[X ] = E[ϑX ] for all X ∈ X

Drew Kouri Sandia National Laboratories ALESQP-Risk



8 Risk-Averse Augmented Lagrangian
Motivated by the Primal-Dual Risk Minimization† and ALESQP †† algorithms, we define

L(x , λ, r) := max
µ0∈A
µi∈Z

{
E[µ0f (x)]− 1

2r0
E[(λ0 − µ0)2] +

m∑
i=1

(µi ,Tx)Z − I ∗Ci
(µi )−

1

2ri
‖λi − µi‖2

Z

}

= R̂(f (x), λ0, r0) +
m∑
i=1

1

2ri
‖Λi (x , λi , ri )‖2

Z −
1

2ri
‖λi‖2

Z

where Λi (x , λ, r) := r((r−1λ+ Tx)− PCi (r
−1λ+ Tx)).

Relation to Epi-Regularization: As a consequence of convex duality,

R̂(f (x), λ, r) = min
F∈L2(Ω,F,P)

{
R[f (x)− F ] + E[λF ] +

r

2
E[F 2]

}
= RΦ

1/r [f (x)]

where Φ(F ) = E[λF ] + 1
2E[F 2] =⇒ 0 ≤ R[F ]−RΦ

1/r [F ] ≤ K 2/r .

Differentiability: x 7→ L(x , λ, r) is Fréchet differentiable with Lipschitz continuous gradient.

†Kouri, Surowiec (2021), A primal-dual algorithm for risk minimization, Math Prog.
††Antil, Kouri, Ridzal (2021), ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization
with general constraints, Submitted.
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9 Risk-Averse Augmented Lagrangian The Algorithm

Require: λ(0)
0 ∈ A, λ

(0)
i ∈ Z , r

(0)
0 > 0, r

(0)
i > 0, νi > 0, and γi ∈ (0, 1

2
)

1: while “Not Converged” do
2: Find x (k) ∈ X that approximately solves

min
x∈X

L(x , λ(k), r (k)) subject to g(x) = 0

3: Update penalty parameters r
(k+1)
0 and r

(k+1)
i

4: Update risk identifier estimates

λ
(k+1)
0 =

{
PA(r

(k)
0 f (x (k)) + λ

(k)
0 ) if ‖PA(r

(k)
0 f (x (k)) + λ

(k)
0 )− λ(k)

0 ‖2 ≤ r
(k)
0 τ

(k)
0

λ
(k)
0 otherwise

5: Update Lagrange multiplier estimates

λ
(k+1)
i =

{
Λi (x

(k), λ
(k)
i , r

(k)
i ) if ‖Λi (x

(k), λ
(k)
i , r

(k)
i )− λ(k)

i ‖ ≤ νi (r
(k+1)
i )γi

λ
(k)
i otherwise

6: end while
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10 Risk-Averse Augmented Lagrangian Subproblem Solve

Use composite-step SQP to produce x (k) and Lagrange multiplier ζ(k) that satisfy

‖L′x(x (k), λ(k), r (k)) + g ′(x (k))∗ζ(k)‖X∗ ≤ ε(k) and ‖g(x (k))‖Y ≤ δ(k).

I Composite-step SQP is matrix-free to handle extreme-scale problems.

I Main computational work is the repeated solution of the augmented system(
IX ,X∗ g ′(xj)

∗

g ′(xj) 0

)(
y1

y2

)
=

(
b1

b2

)
+

(
e1

e2

)
.

I Handles inexact linear system solves†, mesh adaptivity††, etc. to improve efficiency.

I Use linearized PDE solvers to precondition iterative augmented system solves†††.

†Heinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
††Ziems, Ulbrich (2011), Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIOPT.
†††Kouri, Ridzal (2018), Inexact trust-region methods for PDE-constrained optimization, IMA.
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11 Risk-Averse Augmented Lagrangian Penalty Parameter Update

Risk Penalty Parameter:

if ‖PA(f (x(k)), λ
(k)
0 , r

(k)
0 ) − λ

(k)
0 ‖2 > r

(k)
0 τ

(k)
0

then
r

(k+1)
0 = η0r

(k)
0

θ
(k+1)
0 = min{1/r (k+1)

0 , θ0}
τ

(k+1)
0 = τ

(0)
0 (θ

(k+1)
0 )α0

else
r

(k+1)
0 = r

(k)
0

θ
(k+1)
0 = min{1/r (k+1)

0 , θ0}
τ

(k+1)
0 = τ

(k)
0 (θ

(k+1)
0 )β0

end if

Constraint Penalty Parameters:

if ‖Λi (x
(k), λ

(k)
i , r

(k)
i ) − λ

(k)
i ‖ > r

(k)
i τ

(k)
i

then
r

(k+1)
i = ηi r

(k)
i

θ
(k+1)
i = min{1/r (k+1)

i , θi}
τ

(k+1)
i = τ

(0)
i (θ

(k+1)
i )αi

else
r

(k+1)
i = r

(k)
i

θ
(k+1)
i = min{1/r (k+1)

i , θi}
τ

(k+1)
i = τ

(k)
i (θ

(k+1)
i )βi

end if

I These penalty parameter updates are used in LANCELOT†.

I Constraint penalties are updated in unison after L iterations (L large) to ensure feasibility.

I Updates based on infeasibility: dCi (Tx) ≤ 1
r
‖Λi (x , λ, r)− λ‖Z ≤ dCi (Tx) + 1

r
‖λ‖Z .

†Conn, Gould, Toint (1991), A globally convergent augmented Lagrangian algorithm for optimization with general
constraints and simple bounds, SINUM.
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12 Numerical Examples Problem Description

We consider the PDE-constrained optimal control problem

min
z∈L2(D)

uξ∈H1
0 (D)∩C0(D)

R
(

1

2

∫
D

(uξ + 1)2 dx

)
+
α

2

∫
D

z2 dx

subject to −10 ≤ z ≤ 10, uξ ≥ ψ

−∆uξ + u3
ξ = fξ + z in D a.s.

uξ = 0 on ∂D a.s.
ψ multiplier za multiplier zb multiplier

where D = (0, 1)2, α = 10−3, ξi ∼ N (0, 1) for i = 1, . . . , 200,

fξ(x) =
√

2
100∑
i=1

sin((i − 1
2
)πx1)

(i − 1
2
)π

ξ2i +
sin((i − 1

2
)πx2)

(i − 1
2
)π

ξ2i−1

ψ(x) = − 2
3

+ 1
2

min{x1 + x2,min{1 + x1 − x2,min{1− x1 + x2, 2− x1 − x2}}}

Risk Measures:

Mean-Plus-Semideviation R[F ] = E[F ] + cE[max{0,F − E[F ]}]
Conditional Value-at-Risk R[F ] = (1− λ)E[F ] + λCVaRβ(F )
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13 Numerical Results 100 Monte Carlo Samples, Tolerances: ε∗ = δ∗ = τ∗ = σ∗ = 10−6

MPSD (c = 0.8)

mesh AL SQP CG normg grad-lag feas dual-risk

32x32 17 52 113 2.50e-15 3.67e-07 1.75e-07 0.00e+00

64x64 18 65 141 1.68e-15 9.09e-11 5.32e-08 0.00e+00

128x128 20 60 126 5.90e-15 1.64e-11 1.42e-08 0.00e+00

CVaR (β = 0.8, λ = 0.75)

mesh AL SQP CG normg grad-lag feas dual-risk

32x32 18 63 158 4.62e-16 4.73e-08 1.70e-08 0.00e+00

64x64 20 65 168 1.49e-15 2.07e-08 3.70e-08 0.00e+00

128x128 20 67 177 5.92e-15 1.23e-07 6.29e-09 0.00e+00

normg = ‖g(x (k))‖Y grad-lag = ‖L′x(x (k), λ(k), r (k)) + g ′(x (k))∗ζ(k)‖X∗

feas = maxi dCi (Tx
(k)) dual-risk = E[(λ

(k)
0 − PA(r

(k)
0 f (x (k)) + λ

(k)
0 ))2]1/2/r

(k)
0

We observe that the AL, SQP, and CG iterations are nearly mesh independent!
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14 Numerical Results 64× 64 Mesh, Tolerances: ε∗ = δ∗ = τ∗ = σ∗ = 10−6

MPSD (c = 0.8)

nsamp AL SQP CG normg grad-lag feas dual-risk

100 18 65 141 1.68e-15 9.10e-11 5.32e-08 0.00e+00

200 17 101 226 6.35e-16 1.26e-10 7.90e-07 0.00e+00

400 18 81 174 5.64e-16 1.45e-09 1.46e-08 3.36e-07

CVaR (β = 0.8, λ = 0.75)

nsamp AL SQP CG normg grad-lag feas dual-risk

100 20 65 168 1.49e-15 2.07e-08 3.70e-07 0.00e+00

200 17 91 221 2.43e-15 8.64e-08 8.76e-07 0.00e+00

400 20 96 236 3.34e-16 4.08e-08 5.94e-09 0.00e+00

normg = ‖g(x (k))‖Y grad-lag = ‖L′x(x (k), λ(k), r (k)) + g ′(x (k))∗ζ(k)‖X∗

feas = maxi dCi (Tx
(k)) dual-risk = E[(λ

(k)
0 − PA(r

(k)
0 f (x (k)) + λ

(k)
0 ))2]1/2/r

(k)
0

We observe that the AL, SQP, and CG iterations are nearly sample-size independent!

Drew Kouri Sandia National Laboratories ALESQP-Risk



15

Conclusions:

I Numerical solution of stochastic PDE-constrained optimization is expensive.
I Numerical solution is complicated by nonsmooth risk measures and state constraints.
I Augmented Lagrangian penalizes the state/control constraints and smooths the risk measures.
I PDE is solved gradually using trust-region SQP, avoiding complications with nonlinear solvers, etc.
I Numerical examples suggest nearly mesh/sample-size independent performance for nonsmooth

state-constrained problems!
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