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2l Problem Statement

Goal: Develop efficient algorithms to solve the risk-averse optimization problem,

mi)rg R[f(x)] subjectto g(x)=0, Txe C:=CGN...NGCy.
x€

X and Y are Banach spaces and Z is a Hilbert space;

f: X — L%2(Q,F,P)and g: X — Y are continuously differentiable;

R : L2(Q, F,P) — R is convex, monotonic and positively homogeneous.
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T € L(X, Z) with injective T* and C; C Z is closed, convex and boundedly regular;
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Problem Statement
Goal: Develop efficient algorithms to solve the risk-averse optimization problem,

mi)rg R[f(x)] subjectto g(x)=0, Txe C:=CGN...NGCy.
x€

X and Y are Banach spaces and Z is a Hilbert space;

T € L(X, Z) with injective T* and C; C Z is closed, convex and boundedly regular;
f: X — L%2(Q,F,P)and g: X — Y are continuously differentiable;

R : L%(Q, F,P) — R is convex, monotonic and positively homogeneous.

Consequence: R is continuous, subdifferentiable and

R[F] = supE[#F] where 21:=9R[0] C {# € L*(Q,F,P)|0>0as.}
oeA

= mi)r} R[f(x)] = minsup{¥(x,0) := E[0f(x)]}.
xe xEX He
\ J
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3l  Motivation

PDE-constrained optimization (optimal control):

min R[f(ue,z,&)] subject to glug,z,6) =0, Tiuee G, Tze G.

ug, z
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3l  Motivation

PDE-constrained optimization (optimal control):

min R[f(ue,z,&)] subject to glug,z,6) =0, Tiuee G, Tze G.

ug, z

> Given a control z, the PDE g(u¢,z,£) = 0 is expensive to solve for the state us = u¢(z).

Solve PDE constraint gradually using, e.g., trust-region SQP (no nonlinear solves).
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3l  Motivation

PDE-constrained optimization (optimal control):

min R[f(ue,z,&)] subject to glug,z,6) =0, Tiuee G, Tze G.
ug, z
> Given a control z, the PDE g(u¢,z,£) = 0 is expensive to solve for the state us = u¢(z).

Solve PDE constraint gradually using, e.g., trust-region SQP (no nonlinear solves).

» Linear (KKT-like) systems in SQP take advantage of iterative solvers and good preconditioners.

Use matrix-free SQP to exploit inexact linear system solves; also mesh adaptivity, etc.” "

THeinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
1 Ziems, Ulbrich (2011), Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIOPT.
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> Given a control z, the PDE g(u¢,z,£) = 0 is expensive to solve for the state us = u¢(z).

Solve PDE constraint gradually using, e.g., trust-region SQP (no nonlinear solves).

» Linear (KKT-like) systems in SQP take advantage of iterative solvers and good preconditioners.
Use matrix-free SQP to exploit inexact linear system solves; also mesh adaptivity, etc.” "

» Catch: SQP with inexact linear system solves cannot directly handle general inequality constraints or
nonsmooth objective functions.

Penalize Tx € C explicitly and smooth R using augmented Lagrangian.

THeinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
1 Ziems, Ulbrich (2011), Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIOPT.
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min R[f(ue,z,&)] subject to glug,z,6) =0, Tiuee G, Tze G.
ug, z
> Given a control z, the PDE g(u¢,z,£) = 0 is expensive to solve for the state us = u¢(z).

Solve PDE constraint gradually using, e.g., trust-region SQP (no nonlinear solves).

» Linear (KKT-like) systems in SQP take advantage of iterative solvers and good preconditioners.
Use matrix-free SQP to exploit inexact linear system solves; also mesh adaptivity, etc.” "

» Catch: SQP with inexact linear system solves cannot directly handle general inequality constraints or
nonsmooth objective functions.
Penalize Tx € C explicitly and smooth R using augmented Lagrangian.

» Control and state multipliers have different regularity, e.g., L? for controls and measures for states,
resulting in vastly different scales, which can lead to strong mesh dependence for NLP methods.
Use separate penalties and multiplier estimates for control and state constraints.

THeinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
1 Ziems, Ulbrich (2011), Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIOPT.
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PDE-Constrained Optimization is Expensive

Full Space

N
min w, f(un, z
min_ 3" wo F(un,2,0)
Trze G n=1

subject to  g(up,z,£,) =0

Reduced Space

Numerical solution is severely limited
due to memory!

PDE solution variables are treated as
optimization variables.

Must store each PDE solution variable u,.

Often need to store one Lagrange
multiplier per &,.
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min ZW ,Z
T1S,(2)eG n I‘l f )

Trze G, n=1

where  g(55(2),2,£) =0

Numerical solution is severely limited
due to computation!

Objective evaluation requires the solution
to g(ue, z,&,) = 0 for each &,.

Gradient evaluation requires an additional
linearized solve per &,,.

Hessian-times-a-vector requires two
additional linearized solves per &,,.
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sl PDE-Constrained Optimization is Expensive

Full Space

N
min w, f(un, z
min_ 3" wo F(un,2,0)
TozeC, n=l

subject to  g(up,z,&,) =

Requires O(MN) storage!

N is typically O(10%)
M can be > 10°
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Reduced Space

min ZW 4
T1S,(2)eG " n 5 )

Tze G, n=1
where  g(S,(2),2,£,) =0

» Numerical solution is severely limited
due to computation!

» Objective evaluation requires the solution
to g(ue, z,&,) = 0 for each &,.

» Gradient evaluation requires an additional
linearized solve per &,,.

» Hessian-times-a-vector requires two
additional linearized solves per &,,.
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sl PDE-Constrained Optimization is Expensive

Full Space

N
min E Wy f(Un,2,&p)
Tiu,eCy
Trze G n=1

(U,,, afn) =

subject to

Requires O(MN) storage!

N is typically O(10%)
M can be > 10°
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Reduced Space

min Z W, 4 |
TiSi(z)ec = " 3n(2),2:&n)
Taze G I

where  g(5,(2),2,£0) =0

O(N) nonlinear solves! |

Additional O(N) linear solves I

for derivative computations |
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5 MOdeling RiSk Preference Choose Your Own Adventure
What is risk? Possibility of loss or injury (Merriam Webster)

... In our optimization problem, f(u¢,z,&) is a risk!

We cannot directly minimize f(ug, z,&) € LP(Q, F,P)

... How should we quantify the risk?

Optimistic Formulations Conservative Formulations
» Risk-Neutral Approach: » Risk-Averse Approach:
Minimize on average Model risk preferences
R[X] = E[X]. R[X] = E[X] + D[X].
» Reliability Approach: » Buffered Approach:
Minimize probability of loss Minimize buffered probability
R[X] =P(X > x). R[X] = bPOE,(X).
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... In our optimization problem, f(u¢,z,&) is a risk!

We cannot directly minimize f(ug, z,&) € LP(Q, F,P)

... How should we quantify the risk?

Optimistic Formulations

» Risk-Neutral Approach:
Minimize on average

R[X] = E[X].

» Reliability Approach:
Minimize probability of loss

R[X] = P(X > x).
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Vs

Conservative Formulations

» Risk-Averse Approach:
Model risk preferences

R[X] = E[X] + DIX].

» Buffered Approach:

Minimize buffered probability

R[X] = bPOE,(X).

J
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6 COherent Measures Of RiSk Definition and Examples

( )
R : LP(Q, F,P) = (—o0, 0] is a coherent measure of risk if it satisfies
(R1) Convexity: R[tX + (1 — )X < tR[X]+ (1 — t)R[X'], Vte]0,1]
(R2) Monotonicity: X>X as. = R[X]>R[X]

(R3) Translation Equivariance:  R[X +t]=R[X]+t, VteR

(R4) Positive Homogeneity: R[tX] = tR[X], Vt>0
. J
Examples of risk measures that are not coherent:

» Mean-Deviation: R[X] = E[X] + E[| X — E[X]|"]/? Violates (R2)!

» Entropic Risk: R[X] = log E[exp X] Violates (R4)!
Examples of risk measures that are coherent:

» Mean-Semideviation: RI[X] = E[X] + cE[max{0, X — E[X]}], c € [0, 1]

» Conditional Value-at-Risk: R[X] = inf{t + (1 — B)'E[max{X — t,0}]}, 8 € (0,1)

Artzner, Delbaen, Eber, Heath (1999), Coherent measures of risk, Math Finance.
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71 Coherent Measures of Risk Some Good and Not So Good Properties?
Biconjugate Representation: Recall R*[¢] = supx {E[¢X] — R[X]}
> If R is proper, convex and Isc
— R[X]=sup{E[0X] - R*[I] | ¢ € dom(R*)}
» If R is translation equivariant and monotonic
— dom(R*)C{Wex” | EW]=1 9>0as.}
» If R is positive homogeneous

— R[X]= sup E[¥X]
Yedom(R*)

dom(R*) is the risk envelope and optimal ¥* € dom(R*) are risk identifiers

Differentiability: The coherent risk measure R is Fréchet differentiable

< JY¥ e X* withd >0 as., E[J] =1, and R[X] =E[JX] for all X € X
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8l Risk-Averse Augmented Lagrangian
Motivated by the Primal-Dual Risk Minimization®™ and ALESQP 1t algorithms, we define

L(x.A,r) = max {E[Mof( ) Bl — ol + 3 Tz — () — o A mz}

M:GZ i=1
— R(F(x Ao,ro)+z i A )3 = e I

where A;(x, A, r) == r((r A+ Tx) — Pc,(r A + Tx)).

TKouri, Surowiec (2021), A primal-dual algorithm for risk minimization, Math Prog.
T Antil, Kouri, Ridzal (2021), ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization
with general constraints, Submitted.
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8l Risk-Averse Augmented Lagrangian
Motivated by the Primal-Dual Risk Minimization®™ and ALESQP 1t algorithms, we define

Lix, A r) = max {]E[uof( )] - *E[(Ao — o) ]+Z(un Tx)z = le,(pi) — 21,, ([ #:|z}

M:GZ i=1
_R(f >\07r0)+z ||/\ X, )‘Hrl)HZ r_H)‘i||2Z

where A;(x, A, r) == r((r A+ Tx) — Pc,(r A + Tx)).

Relation to Epi-Regularization: As a consequence of convex duality,

R(FGA ) =, _min {RIF(x) ~ F1 +ENF] + SE[F] | = RY), [F(x)]
where ®(F) = E\F] + 3E[F?]  — 0 <R[F]- R}, [F] <K?/r.

TKouri, Surowiec (2021), A primal-dual algorithm for risk minimization, Math Prog.
T Antil, Kouri, Ridzal (2021), ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization
with general constraints, Submitted.
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_R(f >\07r0)+z ||/\ X, )‘Hrl)HZ r_H)‘i||2Z

where A;(x, A, r) == r((r A+ Tx) — Pc,(r A + Tx)).

Relation to Epi-Regularization: As a consequence of convex duality,

R(FGA ) =, _min {RIF(x) ~ F1 +ENF] + SE[F] | = RY), [F(x)]

where ®(F) = E[AF] + 1E[F?] = 0 <R[F]-R®, [F] < K/r.

l/r
Differentiability: x — L(x, A, r) is Fréchet differentiable with Lipschitz continuous gradient.

TKouri, Surowiec (2021), A primal-dual algorithm for risk minimization, Math Prog.

T Antil, Kouri, Ridzal (2021), ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization

with general constraints, Submitted.
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9

Risk-Averse Augmented Lagrangian  the aigorithm

4 )

Require: A € 2, A9 e Z, (>0, r” >0, v >0, and v € (0, 1)

1: while “Not Converged” do
2: Find x*¥ € X that approximately solves
rxnei)rg L(x, A%, r¥)  subject to  g(x) =0
3: Update penalty parameters rékﬂ) and ri(kﬂ)
4:  Update risk identifier estimates
) _ ) Pa(r? F )+ 009) i [P (g F(x®) +267) = 2672 < 7Y
0 )\gk) otherwise
b: Update Lagrange multiplier estimates
sy _ J AR, ) i A0, 0, ) = X < wi(r Py
' Ak otherwise

6: end while

. J
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10l Risk-Averse Augmented Lagrangian  subproblem Solve

Use composite-step SQP to produce x(¥) and Lagrange multiplier ((¥) that satisfy

L AB, ) 4 g/ () (B < and lg(x®)y < 60,

» Composite-step SQP is matrix-free to handle extreme-scale problems.

» Main computational work is the repeated solution of the augmented system

(™) (2) - ()

» Handles inexact linear system solves’, mesh adaptivity'’, etc. to improve efficiency.

» Use linearized PDE solvers to precondition iterative augmented system solves' .
THeinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
1 Ziems, Ulbrich (2011), Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIOPT.
1T Kouri, Ridzal (2018), Inexact trust-region methods for PDE-constrained optimization, IMA.
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11 RiSk-Averse Augmented Lagrangian Penalty Parameter Update
Risk Penalty Parameter: Constraint Penalty Parameters:
e N\ [
it [Pa(F(x), 29, Ry — Ay, > ({070 if AR, AW, Ry 3R s 70
then then
rék+1) _ nor(k) r’_(k+1) _ mr’_(k)
o = min{1/i* 65} 0% = min{1/r*V) 6,3
A0 _ 1 (0) gkt Dyag Ti(k+1) _ Ti(o)(el(kJrl))al.
else else
(k1) _ rék) ri(k+1) _ r_(k)
Gékﬂ) = min{l/r0k+1),00} 0§k+1) mi n{l/r(kJrl) 0;}
ékﬂ) (9 (k+1) )Bo 7_i(l<+1) T (9 (k+1) )3
end if end if
\ J

> These penalty parameter updates are used in LANCELOT.

> Constraint penalties are updated in unison after L iterations (L large) to ensure feasibility.

» Updates based on infeasibility:

dcl.(TX) <

%HA"(X7>‘7 r) -

Mz < de,(Tx) + LA 2.

fConn, Gould, Toint (1991), A globally convergent augmented Lagrangian algorithm for optimization with general

constraints and simple bounds, SINUM.
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12| Numerical Examp|es Problem Description

We consider the PDE-constrained optimal control problem

min ( /(Ug+1 dx) /z dx ” K 02
ZEL2 avsl 2 ‘ 015

UEGHOI(D)mCO( -1
-5
subject to -10<2z<10, w >4 Al P ! %
08— % 05 N\ os 05 05
—AU&+U2=fg+z in D a.s. 0’0 ) oo
us =0 on 9D a.s % multiplier z, multiplier 2z, multiplier
e = s.

where D = (0,1)?, « = 1073, £; ~ N(0,1) for i = 1,...,200,

100

\[21: sm( 22))77:)(1)521' N sm(((/ 2))7rx2)

Y(x)=—-2+1 m|n{x1 + x, min{l + x1 — x,min{l — x1 + x2,2 — x1 — x2} }}

&ai1

Risk Measures:
Mean-Plus-Semideviation  R[F] = E[F] + cE[max{0, F — E[F]}]
Conditional Value-at-Risk R[F] = (1 — A\)E[F] + A CVaRg(F)
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13 Numerical Results 100 Monte Carlo Samples, Tolerances: ¢, = 6. = 7 = 0 = 1070

MPSD (c = 0.8)
mesh AL SQP CG normg grad-lag feas dual-risk
32x32 17 52 113 2.50e-15 3.67e-07 1.75e-07  0.00e+00
64x64 18 65 141 1.68e-15 9.09e-11 5.32¢e-08  0.00e+00
128x128 | 20 60 126 5.90e-15 1.64e-11 1.42e-08 0.00e+00
CVaR (8 =0.8, A = 0.75)
mesh AL SQP CG normg grad-lag feas dual-risk
32x32 18 63 168 4.62e-16 4.73e-08 1.70e-08  0.00e+00
64x64 20 65 168 1.49e-15 2.07e-08 3.70e-08 0.00e+00
128x128 | 20 67 177 5.92e-15 1.23e-07 6.29e-09  0.00e+00

normg = [|g(x")||v grad-lag = [[LL(x"), X9, r9) 4 g/ (x1) "] -
feas = max; dCI.(Tx(k)) dual-risk = E[()\gk) — Pm(rék)f(x(k)) + /\ff)))2]1/2/r§k)

We observe that the AL, SQP, and CG iterations are nearly mesh independent!
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14 Numerical RESUItS 64 x 64 Mesh, Tolerances: ¢, = 6+ = 7% = 0s = 1070

MPSD (c = 0.8)

nsamp | AL SQP CG normg grad-lag feas dual-risk
100 18 65 141 1.68e-15 9.10e-11 5.32e-08 0.00e+00
200 17 101 226 6.35e-16 1.26e-10 7.90e-07  0.00e+00
400 18 81 174 5.64e-16 1.45e-09 1.46e-08 3.36e-07

CVaR (8 =0.8, A =0.75)

nsamp | AL SQP CG normg grad-lag feas dual-risk
100 20 65 168 1.49e-15 2.07e-08 3.70e-07  0.00e+00
200 17 91 221 2.43e-15 8.64e-08 8.76e-07 0.00e+00
400 20 96 236 3.34e-16 4.08e-08 5.94e-09 0.00e+00

normg = [|g(x*))||v grad-lag = ||L,(x*), A r) 4 g/ (x(K)* (1]
feas = max; dcl.(TX(k)) dual-risk = IE[()\(()H — Pgl(rék)f(x(k)) + )\E,k)))2]1/2/rék)

We observe that the AL, SQP, and CG iterations are nearly sample-size independent!
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Conclusions:

>

vVvyvy

Numerical solution of stochastic PDE-constrained optimization is expensive.

Numerical solution is complicated by nonsmooth risk measures and state constraints.
Augmented Lagrangian penalizes the state/control constraints and smooths the risk measures.
PDE is solved gradually using trust-region SQP, avoiding complications with nonlinear solvers, etc.
Numerical examples suggest nearly mesh/sample-size independent performance for nonsmooth
state-constrained problems!
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