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Control Problems in Scientific Computing
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Control problems encapsulate a wide range of applications in
scientific computing relevant to large-scale issues such as:

Containment of wildfires, response to natural disasters

Reducing impact of oil spills and contamination events

High-level points:

Need for policy guidance/assistance with real-time decisions

Control problems often arise naturally in the form of a
sequence of “action-reaction” iterations:

Environment Observation Action



PDE Control Problem Setup
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Find an optimal control policy a∗(t) = P(u(t), t) that induces a trajectory u∗ of the system
∂u
∂t

(t) = G(u(t), a(t), t) which minimizes the cost function:

J(t) = I (u(T ),T ) +

∫ T

t
L(u(t), a(t), t) dt (1)

e.g. with a spatial loss defined by L =

∫
ΩT

|u+|2 dm for a given target region ΩT ⊂ Ω.

Given parameters θ, find a policy a(x , y , t) such that the solution u(x , y , t) to:
Lθ[u] = Fθ[a] in Ω× [0,T ]

u = gd on Ωd
∂u
∂n

= gn on Ωn

(2)

minimizes the cost function J =

∫ T

0

∫
ΩT

|u+|2 dm dt for a given target region ΩT ⊂ Ω.



Control Problems in Scientific Computing

Computational Time: fast evaluation of policy required for real-time applications.

Scale: states are governed by PDEs → infinite-dimensional

Uncertainty: precise source location and velocity field are unknown.

Local vs. Global solution method:

Local Method: optimal policy for fixed problem configuration, e.g. NLP methods, PMP.

Global Method: optimal policy for every problem configuration, e.g. Dynamic Programming
(HJB PDE), Reinforcemt Learning (RL) ; suitable for real-time applications

Curse-of-Dimensionality: HJB solvers suffer from CoD→ cost increases with dimension
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Prototype PDE Environment

PDE System

∂u

∂t
+ v · ∇u − D ·∆u = f (t) in Ω× [0,T ] with D = 0.5

u = 0 on {x = 0} ∪ {y = 0} ∪ {y = 1} and ∂u
∂n

= 0 on {x = 1}

Initial Source

f (0) = 5.0/σ · exp (−(|x − x0|+ |y − y0|)/σ) with σ = 0.01

x0 ∼ Uniform(0. 1, 0. 25) and y0 ∼ Uniform(0. 1, 0. 9)

Velocity Field

vδ(x , y) =

( √
η2 − δ2 · sin2(2π · [x − φ0]) , −η · sin(2π · [x − φ0])

)
where η = 12.5 , δ = 0.75 , and φ0 ∼ Uniform(0. 0, -0. 3)
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Environment



Prototype PDE Environment
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Sink Update

f (t+1) = f (t)(x , y) − α · exp (−(|x − 0.5|/σx + |y − At |/σy ))

with σx = 0.025 , σy = 0.05 , and α = 2.5

Update RHS every ∆t = 0.02 time-step (25 total updates)

Control Decision

“Select the y-coordinate At ∈ [0, 1] of the next sink location

based on the current system state Ut = {u(x , y , t)}(x,y)∈Ω”

Environment



Prototype PDE Environment: Time-step 0

Source Sink Target

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 9 / 28



Prototype PDE Environment: Time-step 1

Source Sink Target
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Prototype PDE Environment: Time-step 2

Source Sink Target
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Prototype PDE Environment: Time-step 3

Source Sink Target
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Prototype PDE Environment: Time-step 4

Source Sink Target
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PDE Control Problem: Local vs. Global Solutions
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Local Solutions

Fixed source location and velocity field

Solutions are computed w.r.t. a fixed problem instance

Global Solutions

Varying source location and velocity field

Offline calibration yields approximate solutions
for an entire family of problem instances

Minimal overhead for performing run-time inference
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Reinforcement Learning

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 16 / 28

Environment

The dynamics of a PDE control problem can be used to
define the transition map and reward function for a MDP.

Observations

Decisions are often made based off of incomplete
information regarding the underlying physical system.

Agent

The agent processes observation data in order to select an
appropriate action for achieving the best possible outcome.

The agent’s policy is parameterized by values θ
corresponding to a neural network architecture.

This leads to a differentiable policy assignment rule.

Observation data Ut may differ from
the internal system state St

Details regarding the calculation of the
reward Rt+1 are unknown to the agent

Environment

Agent

At

Ut+1 ,Rt+1

Ut



Reinforcement Learning: Objective
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Objective Function

Given a parameterized policy πθ and initial state distribution d0,
we define the episodic-return objective:

J(θ) = Eπθ

[
T∑
t=0

∆t · Rt+1

∣∣∣∣∣ S0 ∼ d0

]

Policy Gradient Theorem

The gradient of the objective function can be expressed as follows:

∇θJ(θ) = Eπθ

[
T∑
t=0

∆t · qπθ (St ,At) · ∇θ log πθ(At |Ut)

∣∣∣∣∣ S0 ∼ d0

]

where qπ(s, a) = Eπθ [Gt |St = s,At = a].

Optimal parameters are then approximated using gradient ascent.

Reference: https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021 [Lecture 9]

AgentU0 , R0

AgentU1 , R1

A0

AgentU2 , R2

A1



Reinforcement Learning: Actor-Critic Agents
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Variance Reduction

Eπθ [B(Ut) · ∇θ log πθ(At |Ut) ] = 0

for any baseline B(Ut) independent of the choice of action At .

For a value estimate Vπθ dependent only on the current state, we have:

∇θJ(θ) = Eπθ

[
T∑
t=0

∆t ·
[
qπθ (St ,At)− Vπθ (Ut)

]
· ∇θ log πθ(At |Ut)

]

≈ Eπθ

[
T∑
t=0

∆t ·
[
Gt − Vπθ (Ut)

]
· ∇θ log πθ(At |Ut)

]

Variance in the gradient approximation can be significantly reduced
by providing an accurate value estimate.

The action-value can be approximated by the observed return Gt .

Reference: https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021 [Lecture 9]

Environment

Actor

Critic

Agent

At

Vt

Ut+1 ,Rt+1

Ut



Actor-Critic Neural Networks

Position

Variance

Actor

Value

Critic
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Both the actor and critic network architectures begin with convolutional layers to efficiently
parse the spatially-structured observation data retrieved from the PDE environment.

The actor provides predictions for the parameters of a probability distribution characterizing
the desired action, while the critic network estimates the value of the current state.



Critic Loss Definition
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LossC

Vπθ (Ut) Gt

∇θJ(θ) ≈ Eπθ

[
T∑
t=0

∆t·
[
Gt − Vπθ (Ut)

]
·∇θ log πθ(At |Ut)

]

observed return

critic prediction

LossC =
∣∣Gt − Vπθ (Ut)

∣∣2
“advantage”

The critic is trained to provide an accurate baseline for variance reduction.

Huber Loss can be used to improve robustness of estimate with respect to outliers.



Actor Loss: Proximal Policy Optimization

πnew

πold

Action µ

σ

ρ = πnew
πold

−ρ · ADV

− clip(ρ, 1± ε) · ADV

MAX LossA

ADV = Gobs − V
(old)
pred

positive ∼ improved action

negative ∼ worse action
( )
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PPO is designed to avoid over-tuning parameters so that the updated
actor distributions remain relatively close to the previous distributions.

Simplified version of previous work on trust region policy optimization.

Reference: Proximal Policy Optimization Algorithms [https://arxiv.org/pdf/1707.06347.pdf]



Parallel Environment Workflow

Env.
Manager

Env 1

Env 2

Env 3

Ut

Rt

Dt
Actor

Critic

At

Vt

Env.
Manager

Memory
Manager

Mem 1 Mem 2 Mem 3
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Parallel Environment Workflow
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Parallel Environment Algorithm

Algorithm 1 Actor-Critic Agent: Proximal Policy Optimization

for n in {1, . . . , num episodes} do
environment manager.reset() . Run simulations
states, actions, values, rewards← run parallel envs()

returns← memory manager.compute returns(rewards) . Process results
memory manager.shuffle and batch()

for k in {1, . . . , num batches} do
ADV← (returns[k]− values[k]) . Evaluate actions
ratio← πθA (actions[k] | states[k]) / probs[k]
clipped← −ADV · clip(ratio, 1− ε, 1 + ε)
unclipped← −ADV · ratio

LA ← max[clipped, unclipped] . Compute losses
LC ← 1

2
ADV2 or huber loss(values[k], returns[k])

minimize(LA, θ
A) . Update parameters

minimize(LC , θ
C )

end for
end for
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Initial Predictions for Control Policies
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Rewards

-70.70 -36.21 -20.66

-87.85 -47.75 -28.22

-66.77 -54.20 -53.73



Network Predictions for Control Policies
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Rewards

-66.09 -32.51 -14.10

-61.22 -36.60 -25.22

-31.11 -38.41 -47.21



Concluding Remarks
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Summary

RL provides a potential framework for solving PDE control problems semi-globally.

Run-time inference requires minimal overhead after offline calibration.

Parallel implementations can be leveraged to reduce training time.

Future Work

How well does this approach extend to more complex systems?

How does this compare with local methods and semi-global dynamic programming?

Can knowledge of the physical system be incorporated to improve model calibration?

HJB equations, FEM formulation



Questions

Thank you for your time.

Questions?
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