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Control Problems in Scientific Computing

Control problems encapsulate a wide range of applications in
scientific computing relevant to large-scale issues such as:

o Containment of wildfires, response to natural disasters

@ Reducing impact of oil spills and contamination events

High-level points:

o Need for policy guidance/assistance with real-time decisions

o Control problems often arise naturally in the form of a
sequence of “action-reaction” iterations:

( Environment )—>( Observation )—>( Action
ES T
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PDE Control Problem Setup

F|nd an optimal control policy a*(t) = P(u(t), t) that induces a trajectory u* of the system
(t) G(u(t), a(t), t) which minimizes the cost function:

J(t) = I(u(T), +/ L(u(t), a(t), t) dt (1)

e.g. with a spatial loss defined by L = / |ut|?dm  for a given target region Q7 C Q.
Qr

Given parameters 0, find a policy a(x, y, t) such that the solution u(x,y, t) to:

Lolu] = Fgla] in Qx [0, T]

u = gy on Qq (2)
% = gn on Q,

-
minimizes the cost function J = / / \uﬂ2 dmdt for a given target region Qr C Q.
Qr
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Control Problems in Scientific Computing

o Computational Time: fast evaluation of policy required for real-time applications.

Scale: states are governed by PDEs — infinite-dimensional

@ Uncertainty: precise source location and velocity field are unknown.

o Local vs. Global solution method:

o Local Method: optimal policy for fixed problem configuration, e.g. NLP methods, PMP.

o Global Method: optimal policy for every problem configuration, e.g. Dynamic Programming
(HJB PDE), Reinforcemt Learning (RL) ; suitable for real-time applications

o Curse-of-Dimensionality: HJB solvers suffer from CoD— cost increases with dimension
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Prototype PDE Environment

PDE System

Environment

%JFV-VU—D.Au:f(f) in  Qx[0,T] with D=05

u=0on {x=0tU{y=0u{y=1} and %:0 on {x =1}

Initial Source

fO = 50/0-exp(—(|x — x| + |y — yo|)/o) with o =0.01
xo ~ Uniform(0.1,0.25) and yg ~ Uniform(0.1,0.9)
Velocity Field

vily) = (=0 s @n =) . —n-sin(er - [x— du) )

where n =125, 6=0.75 , and ¢o ~ Uniform(0.0,-0.3)
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Prototype PDE Environment

Environment

Sink Update

FH) = fO(x,y) — a-exp(~(Ix — 0.5|/0x + |y — Ac|/0y))

with 0x=0.025 , 0, =005 , and =25

o Update RHS every At = 0.02 time-step (25 total updates)

Control Decision

R

“Select the y-coordinate A; € [0,1] of the next sink location

based on the current system state Uy = {u(x,y, )} )en”

e
]
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Prototype PDE Environment: Time-step 0
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Prototype PDE Environment: Time-step 1
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Prototype PDE Environment: Time-step 2
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Prototype PDE Environment: Time-step 3
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Prototype PDE Environment: Time-step 4
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PDE Control Problem: Local vs. Global Solutions

»\\\\\\*—1’

Local Solutions BN e
o Fixed source location and velocity field R

o Solutions are computed w.r.t. a fixed problem instance R\ ey

NN
RN\ e
e
L A2

ol

Global Solutions
@ Varying source location and velocity field

o Offline calibration yields approximate solutions
for an entire family of problem instances

o Minimal overhead for performing run-time inference
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Reinforcement Learning

B Actor-Critic Agent Models

B Proximal Policy Optimization

B Numerical Results
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Reinforcement Learning

Environment

Environment

The dynamics of a PDE control problem can be used to
define the transition map and reward function for a MDP.

— Upt1, Re1
Observations

Decisions are often made based off of incomplete A
information regarding the underlying physical system.

Agent e

The agent processes observation data in order to select an
appropriate action for achieving the best possible outcome. o Observation data Uy may differ from
the internal system state S;

o The agent's policy is parameterized by values 6
corresponding to a neural network architecture. o Details regarding the calculation of the
reward R:i1 are unknown to the agent
o This leads to a differentiable policy assignment rule.
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Reinforcement Learning: Objective

Objective Function

Given a parameterized policy my and initial state distribution dp,
we define the episodic-return objective:

o
J(O) = Enp | D At Rep1|So~do
t=0

Policy Gradient Theorem
The gradient of the objective function can be expressed as follows:

=
VoJ(0) = Enry ZAt “ Gy (St At) - Vo log ma(Ae|Ut) | So ~ do
t=0

where gr(s,a) = Er,[G:|S:t =s,A: = a].

o Optimal parameters are then approximated using gradient ascent.

Reference: https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021 [Lecture 9]
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Reinforcement Learning: Actor-Critic Agents

Variance Reduction )
Environment

Er, [B(Ut) - Vg logmg(At|Ur)] = O

for any baseline B(U:) independent of the choice of action A;.

For a value estimate Vi, dependent only on the current state, we have:

i
VeJ(0) = Er, [ZAt' [Gro (Sts At) = Vg (Ur)] - Vg |0g7Te(At|Ut)}

t=0

Q

=
T35 [Zm. [Ge — Vg (Ur)] - Vg |og7rg(At|Ut):|
t=0

@ Variance in the gradient approximation can be significantly reduced
by providing an accurate value estimate.

o The action-value can be approximated by the observed return G;.

Reference: https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021 [Lecture 9]
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Critic Neural Networks

Actor Critic

ﬂtl B —— Position

B —> Value
B ——— Variance ﬂﬂ

o Both the actor and critic network architectures begin with convolutional layers to efficiently
parse the spatially-structured observation data retrieved from the PDE environment.

@ The actor provides predictions for the parameters of a probability distribution characterizing
the desired action, while the critic network estimates the value of the current state.
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Critic Loss Definition

Loss
T c

VoJ(0) = Ery | D At-[Gt — Virg (Ur)]- Vo log mo (At | Ur)
=0
i T— critic prediction

observed return

Lossc = | Gt — Vg (Ur) |2

L N
“advantage”

@ The critic is trained to provide an accurate baseline for variance reduction.

o Huber Loss can be used to improve robustness of estimate with respect to outliers.
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ctor Loss: Proximal Policy Optimization

ADV = Ggps — V9

Told pred
( positive ~ improved action )
Tnew negative ~ worse action

0 1 1+e
——— —p- ADV
—  Tnew \
P = o / MAX Loss A<0
L —clip(p,1£¢€) - ADV l=c1

o PPO is designed to avoid over-tuning parameters so that the updated :
actor distributions remain relatively close to the previous distributions. ;

o Simplified version of previous work on trust region policy optimization.

Reference: Proximal Policy Optimization Algorithms [https://arxiv.org/pdf/1707.06347.pdf]
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Parallel Environment Workflow

.
|
Env. () _E: N Env.
\Env2) At Manager
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Manager
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Parallel Environment Workflow

Memory
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Parallel Environment Algorithm

Algorithm 1 Actor-Critic Agent: Proximal Policy Optimization

for nin {1,...,num_episodes} do
environment_manager.reset () > Run simulations
states, actions, values, rewards <— run_parallel_envs()

returns <— memory_manager.compute_returns (rewards) > Process results
memory_manager .shuffle_and_batch()

for k in {1,...,num batches} do
ADV < (returns[k] — values[k]) > Evaluate actions
ratio < mya(actions[k] | states[k]) / probs [k]
clipped <~ —ADV - clip(ratio,1 —¢€,1+¢€)
unclipped <~ —ADV - ratio

La <+ max[clipped, unclipped] > Compute losses
Le + %ADV2 or huber_loss(values[k], returns[k])
minimize(La, 64) > Update parameters
minimize(Lc, )
end for

end for
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Initial Predictions for Control Policies

Rewards

-70.70 | -36.21 | -20.66

-87.85 | -47.75 | -28.22
-66.77 | -54.20 | -53.73
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Network Predictions for Control Policies

Rewards

-66.09 | -32.51 | -14.10

-61.22 | -36.60 | -25.22

-31.11 | -38.41 | -47.21
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Concluding Remarks

Summary

o RL provides a potential framework for solving PDE control problems semi-globally.
o Run-time inference requires minimal overhead after offline calibration.

o Parallel implementations can be leveraged to reduce training time.

Future Work

o How well does this approach extend to more complex systems?
o How does this compare with local methods and semi-global dynamic programming?

o Can knowledge of the physical system be incorporated to improve model calibration?

o HJB equations, FEM formulation
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Thank you for your time.

Questions?
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