
Reinforcement Learning for PDE Control Problems

Nick Winovich†, Bart van Bloemen Waanders†

Deepanshu Verma‡, Lars Ruthotto‡

†Sandia National Laboratories1

Center for Computing Research
Scientific Machine Learning Group

‡Emory University
Department of Mathematics

Department of Computer Science
Scientific Computing Group

SIAM-UQ 2022

1Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. SAND NUMBER.

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 1 / 28

SAND2022-4391CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

1 PDE Control Problems

Motivating Examples

Control Theory

Prototype PDE System

2 Reinforcement Learning

Actor-Critic Agent Models

Proximal Policy Optimization

Numerical Results

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 2 / 28

Overview

1 PDE Control Problems

Motivating Examples

Control Theory

Prototype PDE System

2 Reinforcement Learning

Actor-Critic Agent Models

Proximal Policy Optimization

Numerical Results

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 3 / 28

Control Problems in Scientific Computing

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 4 / 28

Control problems encapsulate a wide range of applications in
scientific computing relevant to large-scale issues such as:

Containment of wildfires, response to natural disasters

Reducing impact of oil spills and contamination events

High-level points:

Need for policy guidance/assistance with real-time decisions

Control problems often arise naturally in the form of a
sequence of “action-reaction” iterations:

Environment Observation Action

PDE Control Problem Setup

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 5 / 28

Find an optimal control policy a∗(t) = P(u(t), t) that induces a trajectory u∗ of the system
∂u
∂t

(t) = G(u(t), a(t), t) which minimizes the cost function:

J(t) = I (u(T),T) +

∫ T

t
L(u(t), a(t), t) dt (1)

e.g. with a spatial loss defined by L =

∫
ΩT

|u+|2 dm for a given target region ΩT ⊂ Ω.

Given parameters θ, find a policy a(x , y , t) such that the solution u(x , y , t) to:
Lθ[u] = Fθ[a] in Ω× [0,T]

u = gd on Ωd
∂u
∂n

= gn on Ωn

(2)

minimizes the cost function J =

∫ T

0

∫
ΩT

|u+|2 dm dt for a given target region ΩT ⊂ Ω.

Control Problems in Scientific Computing

Computational Time: fast evaluation of policy required for real-time applications.

Scale: states are governed by PDEs → infinite-dimensional

Uncertainty: precise source location and velocity field are unknown.

Local vs. Global solution method:

Local Method: optimal policy for fixed problem configuration, e.g. NLP methods, PMP.

Global Method: optimal policy for every problem configuration, e.g. Dynamic Programming
(HJB PDE), Reinforcemt Learning (RL) ; suitable for real-time applications

Curse-of-Dimensionality: HJB solvers suffer from CoD→ cost increases with dimension

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 6 / 28

Prototype PDE Environment

PDE System

∂u

∂t
+ v · ∇u − D ·∆u = f (t) in Ω× [0,T] with D = 0.5

u = 0 on {x = 0} ∪ {y = 0} ∪ {y = 1} and ∂u
∂n

= 0 on {x = 1}

Initial Source

f (0) = 5.0/σ · exp (−(|x − x0|+ |y − y0|)/σ) with σ = 0.01

x0 ∼ Uniform(0. 1, 0. 25) and y0 ∼ Uniform(0. 1, 0. 9)

Velocity Field

vδ(x , y) =

(√
η2 − δ2 · sin2(2π · [x − φ0]) , −η · sin(2π · [x − φ0])

)
where η = 12.5 , δ = 0.75 , and φ0 ∼ Uniform(0. 0, -0. 3)

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 7 / 28

Environment

Prototype PDE Environment

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 8 / 28

Sink Update

f (t+1) = f (t)(x , y) − α · exp (−(|x − 0.5|/σx + |y − At |/σy))

with σx = 0.025 , σy = 0.05 , and α = 2.5

Update RHS every ∆t = 0.02 time-step (25 total updates)

Control Decision

“Select the y-coordinate At ∈ [0, 1] of the next sink location

based on the current system state Ut = {u(x , y , t)}(x,y)∈Ω”

Environment

Prototype PDE Environment: Time-step 0

Source Sink Target

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 9 / 28

Prototype PDE Environment: Time-step 1

Source Sink Target

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 10 / 28

Prototype PDE Environment: Time-step 2

Source Sink Target

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 11 / 28

Prototype PDE Environment: Time-step 3

Source Sink Target

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 12 / 28

Prototype PDE Environment: Time-step 4

Source Sink Target

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 13 / 28

PDE Control Problem: Local vs. Global Solutions

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 14 / 28

Local Solutions

Fixed source location and velocity field

Solutions are computed w.r.t. a fixed problem instance

Global Solutions

Varying source location and velocity field

Offline calibration yields approximate solutions
for an entire family of problem instances

Minimal overhead for performing run-time inference

Overview

1 PDE Control Problems

Motivating Examples

Control Theory

Prototype PDE System

2 Reinforcement Learning

Actor-Critic Agent Models

Proximal Policy Optimization

Numerical Results

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 15 / 28

Reinforcement Learning

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 16 / 28

Environment

The dynamics of a PDE control problem can be used to
define the transition map and reward function for a MDP.

Observations

Decisions are often made based off of incomplete
information regarding the underlying physical system.

Agent

The agent processes observation data in order to select an
appropriate action for achieving the best possible outcome.

The agent’s policy is parameterized by values θ
corresponding to a neural network architecture.

This leads to a differentiable policy assignment rule.

Observation data Ut may differ from
the internal system state St

Details regarding the calculation of the
reward Rt+1 are unknown to the agent

Environment

Agent

At

Ut+1 ,Rt+1

Ut

Reinforcement Learning: Objective

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 17 / 28

Objective Function

Given a parameterized policy πθ and initial state distribution d0,
we define the episodic-return objective:

J(θ) = Eπθ

[
T∑
t=0

∆t · Rt+1

∣∣∣∣∣ S0 ∼ d0

]

Policy Gradient Theorem

The gradient of the objective function can be expressed as follows:

∇θJ(θ) = Eπθ

[
T∑
t=0

∆t · qπθ (St ,At) · ∇θ log πθ(At |Ut)

∣∣∣∣∣ S0 ∼ d0

]

where qπ(s, a) = Eπθ [Gt |St = s,At = a].

Optimal parameters are then approximated using gradient ascent.

Reference: https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021 [Lecture 9]

AgentU0 , R0

AgentU1 , R1

A0

AgentU2 , R2

A1

Reinforcement Learning: Actor-Critic Agents

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 18 / 28

Variance Reduction

Eπθ [B(Ut) · ∇θ log πθ(At |Ut)] = 0

for any baseline B(Ut) independent of the choice of action At .

For a value estimate Vπθ dependent only on the current state, we have:

∇θJ(θ) = Eπθ

[
T∑
t=0

∆t ·
[
qπθ (St ,At)− Vπθ (Ut)

]
· ∇θ log πθ(At |Ut)

]

≈ Eπθ

[
T∑
t=0

∆t ·
[
Gt − Vπθ (Ut)

]
· ∇θ log πθ(At |Ut)

]

Variance in the gradient approximation can be significantly reduced
by providing an accurate value estimate.

The action-value can be approximated by the observed return Gt .

Reference: https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021 [Lecture 9]

Environment

Actor

Critic

Agent

At

Vt

Ut+1 ,Rt+1

Ut

Actor-Critic Neural Networks

Position

Variance

Actor

Value

Critic

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 19 / 28

Both the actor and critic network architectures begin with convolutional layers to efficiently
parse the spatially-structured observation data retrieved from the PDE environment.

The actor provides predictions for the parameters of a probability distribution characterizing
the desired action, while the critic network estimates the value of the current state.

Critic Loss Definition

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 20 / 28

LossC

Vπθ (Ut) Gt

∇θJ(θ) ≈ Eπθ

[
T∑
t=0

∆t·
[
Gt − Vπθ (Ut)

]
·∇θ log πθ(At |Ut)

]

observed return

critic prediction

LossC =
∣∣Gt − Vπθ (Ut)

∣∣2
“advantage”

The critic is trained to provide an accurate baseline for variance reduction.

Huber Loss can be used to improve robustness of estimate with respect to outliers.

Actor Loss: Proximal Policy Optimization

πnew

πold

Action µ

σ

ρ = πnew
πold

−ρ · ADV

− clip(ρ, 1± ε) · ADV

MAX LossA

ADV = Gobs − V
(old)
pred

positive ∼ improved action

negative ∼ worse action
()

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 21 / 28

PPO is designed to avoid over-tuning parameters so that the updated
actor distributions remain relatively close to the previous distributions.

Simplified version of previous work on trust region policy optimization.

Reference: Proximal Policy Optimization Algorithms [https://arxiv.org/pdf/1707.06347.pdf]

Parallel Environment Workflow

Env.
Manager

Env 1

Env 2

Env 3

Ut

Rt

Dt
Actor

Critic

At

Vt

Env.
Manager

Memory
Manager

Mem 1 Mem 2 Mem 3

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 22 / 28

Parallel Environment Workflow

Memory
Manager

Mem 1 Mem 2 Mem 3

U
(1)
1 , R

(1)
1 , A

(1)
1 , V

(1)
1

U
(1)
2 , R

(1)
2 , A

(1)
2 , V

(1)
2

.

.

.

.

.

.

.

.

.

.

.

.

U
(1)
T
, R

(1)
T
, A

(1)
T
, V

(1)
T

G
(1)
1

G
(1)
2

.

.

.

G
(1)
T

U
(2)
1 , R

(2)
1 , A

(2)
1 , V

(2)
1

U
(2)
2 , R

(2)
2 , A

(2)
2 , V

(2)
2

.

.

.

.

.

.

.

.

.

.

.

.

U
(2)
T
, R

(2)
T
, A

(2)
T
, V

(2)
T

G
(2)
1

G
(2)
2

.

.

.

G
(2)
T

U
(3)
1 , R

(3)
1 , A

(3)
1 , V

(3)
1

U
(3)
2 , R

(3)
2 , A

(3)
2 , V

(3)
2

.

.

.

.

.

.

.

.

.

.

.

.

U
(3)
T
, R

(3)
T
, A

(3)
T
, V

(3)
T

G
(3)
1

G
(3)
2

.

.

.

G
(3)
T

Shuffle
& Batch

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 23 / 28

Parallel Environment Algorithm

Algorithm 1 Actor-Critic Agent: Proximal Policy Optimization

for n in {1, . . . , num episodes} do
environment manager.reset() . Run simulations
states, actions, values, rewards← run parallel envs()

returns← memory manager.compute returns(rewards) . Process results
memory manager.shuffle and batch()

for k in {1, . . . , num batches} do
ADV← (returns[k]− values[k]) . Evaluate actions
ratio← πθA (actions[k] | states[k]) / probs[k]
clipped← −ADV · clip(ratio, 1− ε, 1 + ε)
unclipped← −ADV · ratio

LA ← max[clipped, unclipped] . Compute losses
LC ← 1

2
ADV2 or huber loss(values[k], returns[k])

minimize(LA, θ
A) . Update parameters

minimize(LC , θ
C)

end for
end for

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 24 / 28

Initial Predictions for Control Policies

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 25 / 28

Rewards

-70.70 -36.21 -20.66

-87.85 -47.75 -28.22

-66.77 -54.20 -53.73

Network Predictions for Control Policies

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 26 / 28

Rewards

-66.09 -32.51 -14.10

-61.22 -36.60 -25.22

-31.11 -38.41 -47.21

Concluding Remarks

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 27 / 28

Summary

RL provides a potential framework for solving PDE control problems semi-globally.

Run-time inference requires minimal overhead after offline calibration.

Parallel implementations can be leveraged to reduce training time.

Future Work

How well does this approach extend to more complex systems?

How does this compare with local methods and semi-global dynamic programming?

Can knowledge of the physical system be incorporated to improve model calibration?

HJB equations, FEM formulation

Questions

Thank you for your time.

Questions?

Nick Winovich (nwinovi@sandia.gov) Reinforcement Learning for PDE Control Problems 28 / 28

	PDE Control Problems
	Motivating Examples
	Control Theory
	Prototype PDE System

	Reinforcement Learning
	Actor-Critic Agent Models
	Proximal Policy Optimization
	Numerical Results

