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Multifidelity Methods: Sampling UQ, Surrogate UQ, OUU
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Optimization Under Uncertainty

• Production: manage simulation 
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.: 
extend TRMM to deep hierarchies

Derivative-free methods (DARPA Scramjet)
• SNOWPAC (w/ MIT, TUM) with goal-
oriented MLMC error estimates

• On the horizon: Gaussian process-based 
approaches: multifidelity EGO; Optimal 
experimental design (OED)

Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC)

• Production (v6.10+):  
ML PCE w/ projection & regression; 
ML SC w/ nodal/hierarchical interp; 
greedy ML adaptation (DARPA 
SEQUOIA), multilevel fn train (ASC V&V)

• Emerging: multi-index stochastic 
collocation; multiphysics/multiscale 
integration  (ASC V&V); new surrogates 
(GP, ROM, NN) w/ error mgmt. fmwk 
(LDRD, SciDAC); learning latent variable 
relationships (MFNets, LDRD)

• On the horizon: unification of surrogate 
+ sampling approaches (LDRD)

• Production: optimal resource 
allocation for multilevel, 
multifidelity, combined (DARPA 
EQUiPS, Wind, Cardiovascular)

• Emerging: active dimensions 
(LDRD, SciDAC), generalized 
fmwk for approx control variates 
(ASC V&V), goal orientation (rare 
events), hybrid methods for GSA

• On the horizon: control of time 
avg; model tuning / selection 
(LDRD)

Robust

Non-hierarchical methods, alternative surrogates, goal-orientation, shared subspaces for dissimilar models 



Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
• Extensions for complex multidimensional hierarchies  multi-index collocation, multiphysics / multiscale
• Investments in non-hierarchical MF methods  ACV and MFNets

Popular MF approaches neglect important practicalities
• "Oracle” correlations assumed  iterated versions of MFMC, ACV
• Imperfect data  embedded cross validation
• Dissimilar parameterizations  shared subspaces
• Free hyper-parameters  model tuning
• Stochastic simulation, simulation/surrogate error estimation  extended error management framework
• Ensemble management  integration with HPC workflow managers, R&D in ensemble AMT

Key mission feedbacks

MF methods most often utilize a fixed model ensemble determined by expert judgment
• Experts are often inaccurate in this context

• SMEs from a physics discipline often have high predictivity standards and tend to over-estimate the LF accuracy required
• Leads to non-optimal correlation / cost trade-off and sub-optimal MF UQ
 Initial explorations of hyper-parameter model tuning, within the context of particular estimators (ACV, MFMC, ...)



Background: paired ML/MF sampling methods of interest

Pasupathy et al, 2012; Ng and Willcox, 2014.

Minimize cost s.t. error balance:

M. Giles, “Multilevel Monte Carlo path simulation,” 2008.

Multilevel Monte Carlo

Multilevel-Control Variate Monte Carlo

Control Variate Monte Carlo

Classical control variate: LF oversample ratio:

G. Geraci, E., G. Iaccarino, “A multifidelity control variate approach for the multilevel Monte Carlo technique,” CTR Res Briefs 2015.



Background: ensemble sampling methods of interest

Sample set 
definitions

Theoretical perf. bounds for recursive vs. non-recursive
• Recursive limited by variance reduction of perfect m1 (OCV-1)
• Non-recursive can exploit potential gap between OCV-1 and OCV

Methods minimize estimator variance over number of truth evals N 
and approximation oversample ratios r
• MFMC has closed form for optimal r*,N* (given ordered/reordered models)
• ACV solves numerically for r*,N* (does not require ordering)

Monomial 
test problem

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)



Iterated ACVIterated MFMC

2) N(i) shared samples  Estimate r2LH(i)   Estimate r(i) 
3) Estimate N(i+1) using prescribed { budget C || tolerance e }
4) Compute one-sided DN for shared samples from N(i) to N(i+1)

A. Optional: apply under-relaxation factor g
B. If non-zero increment, advance (i) and return to 1)

Performance degradation from pilot over-estimation is not significant
• ACV-MF demonstrates greater flexibility / resilience:

locates near-optimal solutions that incorporate large pilots
• Starting pts on left are for budget = pilot (moves quickly from MC to ACV)

Std errors averaged 
across 10 seeds

Performance degradation from pilot over-estimation is clearly evident
• Analytic r* reduces numerical burden but also limits flexibility

Std errors averaged 
across 10 seeds

1) N(i) shared samples  CovLL(i), CovLH(i) (“C”, “c”)  opt. solver  r*, N*
2) Compute one-sided DN for shared samples from N(i) to N*

A. Optional: apply under-relaxation factor g
B. If non-zero increment, advance (i) and return to 1)

Initialize: select a small shared pilot sample N(0) expected to under-shoot the optimal profile
1) Sample all models

Finalize: apply r* for LF eval increments, estimate a  apply controls to compute final expectation(s)



Model Tuning Approaches: All-At-Once and Bi-Level 

Model tuning performed to maximize performance of a particular estimator (e.g., ACV-MF) using 
tunable hyper-parameters associated with one or more low-fidelity models (HF reference is immutable)

AAO optimization (in Python): hyper-parameters integrate as additional decision vars for minimizing EstVar

• Potential for greater efficiency: one integrated optimization solve
• Need to emulate lower-level r(q),w(q) to avoid expensive re-estimation at every change in q

Bi-level optimization (in Dakota):   inner loop optimization solve for each outer loop q  iterate

• For nested numerical solution, outer loop must now contend with inner-loop solver noise
• Noise and expense can be mitigated using pilot projections, with some loss of accuracy

• Can choose to emulate at a higher level, requiring fewer emulators (e.g. EGO, TRMM to min EstVar*(q))
• Plug and play with surrogate-based methods (EGO, TRMM), MINLP, etc.

• Note: for analytic cases (e.g., MLMC, CVMC, standard MFMC), AAO collapses to single level argminq



Exploration of model tuning for a parameterized model problem

Tunable model problem (from JCP paper on ACV*)
• 1 parameter is tunable: q1
• 2 parameters are fixed: q  = p/2, q2 = p/6

Model Definitions

Correlations (analytic form available but not used in experiments)

q1 controls:

* Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)



Tuning for parameterized model problem (Cont.)
Model tuning performed within the context of a particular estimator (here, ACV-MF)

AAO optimization (in Python):
• For ACV (and numerical MFMC), hyper-parameters integrate as additional decision vars for 
minimizing estimator variance

Mid-fidelity model (Q1) is tuned 
for ACV at ~ midpoint q1

* = p/3



Tuning for parameterized model problem (Cont.)

Online Pilot = 25

Projected Pilot = 25 Projected Pilot = 100

Bi-level optimization (in Dakota):

• For converged iteration (right), we observe some inner
-loop solver noise 
• TO DO: explore additional solution modes 
offline / online max_iterations = 0

• For expensive problems, can tune based on pilot 
projection (bypassing iteration to convergence)
• Eliminates some (but not all) sources of noise



For a modest number of hyper-parameters, we have explored surrogate-based approaches
• Efficient Global Optimization (EGO)
• First-order trust region model management (TRMM, aka surrogate-based local optimization)

With care in declaring the relevant q  subset per model, we can leverage Dakota’s evaluation cache 
and reuse pilot samples over q  (e.g., all HF pilots can be reused)

Global Optimization of multiple hyper-parameters

Add cost model w2 for LF2(q2): introduce d, g

log(w) = log( wlow ) - log( wlow / whigh ) (q - qlow )d / qrange
 
where wlow = .001 * g,  whigh = 1. * g,  qlow  = p / 6,   qrange = p / 2 – p / 6

For w1, d = g = 1 (reproduces previous cost model)
For w2, d = 2.5,  g = 0.55 
 



Tunable problem with multiple hyper-parameters: MLMC

Online pilot (100) / iteratedPilot projection (100)

Less robust: significant performance loss for non-optimal theta (up to EstVar* = 0.01)



Tunable problem with multiple hyper-parameters: MFMC

Online pilot (100) / iteratedPilot projection (100)

More consistent performance but susceptible to model mis-ordering: 
• Dakota mitigates with switch to reordered numerical solve w/ pyramid constraint enforcement
• While noisier, performance relative to analytic looks promising
• Excepting discontinuity, generally unimodal



Online pilot (100) / iteratedPilot projection (100)

Larger region of good performance and insensitive to model ordering: 
• Multimodal: two LF1,LF2 configurations achieve best performance overall

• Generally an algorithmic strength (as for adapting to over-estimated pilot), but a challenge for optimizers

Tunable problem with multiple hyper-parameters: ACV



Bi-Level Surrogate Optimization results: ACV

EGO

TRMM

TO DO: some run stats (iteration counts)

Online pilot (10,25,100,250)
/ iterated

Pilot projection (100)



Current Directions: Multiple Deployments

• Stochastic simulations: (previous talk)
• Turbulent flows/combustion with LES (H. Najm, C. Safta)
• Subsurface transport for repositories (T. Portone, L. Swiler)
• Radiation transport with PIC codes for HEDP (B. Reuter, G. Geraci, J. Jakeman)

• Spatial / temporal resolution
• EDL (NASA: G. Bomarito, J. Warner, M. Thompson) (upcoming talk)
• Thermal batteries (T. Portone, M. Eldred)

• Two-dimensional model hierarchy: MLMC (1D slice), CVMC (1d slice), MLCV MC (2d), MFMC (flatten), ACV (flatten)
• LF = 2D reduced physics mode;  HF = 2D full physics mode
• Same coarse/medium/fine spatial resolutions selected for both modes
• Fine temporal resolution settings used for HF, coarse temporal resolution settings for LF (tuning targets)

• Data-driven surrogates with hyper-parameters: ROM, NN



Summary Observations

Realistic deployments of multifidelity methods encounter a variety of challenges
• Here we target the challenge of optimally configuring multiple LF models, given one or more DOF that trade accuracy vs. cost

Model Tuning Approaches
• AAO Optimization (in Python): hyper-parameters become additional decision vars in argminr,N,q EstVar

• Solve 1 integration optimization problem; emulate lower-level r(q), w(q); avoids optimizing on top of solver noise
• Bi-level optimization (in Dakota): argminq [ argminr,N EstVar ]

• Plug-and-play with surrogate-based optimizers to mitigate solver noise; either low-level or high-level emulators
• AAO collapses to this in many cases (analytic allocations with ML, CV, MLCV, MF)
• Implementation details: online cost recovery, solution modes, evaluation cache, bypass LF increments if only need EstVar

• Relative performance TBD

Numerical Experiments
• Tunable problem 1D (q1):       ACV > MFMC > CVMC > MLMC
• Tunable problem 2D (q1, q2):  ACV > MFMC > MLMC

• Robustness obtained from numerical solves: can better adapt to pilot over-estimation, model sequencing
• Production thermal battery studies in flight, with feedbacks per below

Next steps
• Feedback from expensive deployments: streamline approaches, maximize data reuse, prune convenience synchronizations
• More thorough exploration of AAO benefits, when admissible 



Extra



Background: multifidelity Monte Carlo (MFMC)

Correlations
Costs

Expectations from shared, refined

Optimal LF over-sample HF samples from budget

Peherstorfer, Willcox, Gunzburger, “Optimal Model Management For Multifidelity Monte Carlo Estimation”, SISC, Vol. 38, No. 5.
Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)

Following r estimation, 
budget p exhausted 
 No iteration

Background: approximate control variate (ACV) C = covariance matrix among Qi
c = covariance vector among Qi and Q

Optimal r*,N* w/i budget from 
C,c estimates  No iteration

 Differs only in off-diagonal
     terms + sample sets



A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of discrete model forms

• Discrepancy does not go to 0 under refinement

Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

An ensemble of peer models lacking clear preference structure / 
cost separation: e.g., SGS modeling options
• With data: model selection, inadequacy characterization

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model form propagation

• Intrusive, nonintrusive
• In MF context: correlation analysis, model tuning, ensemble selection

Discretization levels / resolution controls
• Exploit special structure: discrepancy  0 at order of 
spatial/temporal convergence

Combinations for 
multiphysics, multiscale



2018/2019 Deployments: ML, MF, MLMF Monte Carlo

Model forms: 
• 2D, 3D
Discretizations: 
• d/{8,16,32,64}

CardiovascularWind

UCAV NozzleScramjet

Nalu LES for Q0 is too 
coarse with limited 
predictive value

Project basis for ML 
emulator-based 
inference to follow

OpenFAST

No variance 
decay for higher 
turbulence levels

Non-predictive 
LF stress prior to 

reformulation

0D has greater 
predictive value, 
for which MF 
outperforms ML
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Recent Deployments: ML/MF Monte Carlo/Polynomial Chaos

Geologic Disposal

Prediction of Tokamak instability (SciDAC)Crash & Burn Multiphysics (ASC L2 Milestone)

Network Cybersecurity (SECURE GC LDRD)
• Deployed ACV for forward UQ with HF emulation (minimega) and LF 
discrete event simulation (ns-3)

• Investigated the efficiency of MF UQ by tuning ns-3 models  
• Demonstrated increased efficiency for tail est. given a minimega dataset

Forward UQ: ACV1 vs MC ns-3 tuning effect on ACV performance
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CIS LDRD: 
non-hierarchical 
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NW Repository

PFLOTRAN

Points where I129 tracked
GDSA 
example 
simulation 
and QOI:

Emerging

BES QC: 
exploration of 
the C3H6 PES 
with KinBot 

Forward UQ w/ explicit (LF) + implicit (HF) SIERRA mechanics
• Multilevel MC across model resolutions for LF model
• Multifidelity MC with HF implicit + selection of most effective LF explicit

Successful demonstration of 
advanced UQ methods, 
integrated alongside emerging
ASC workflows for 
multiphysics simulation

Mechanical loading of mock device

• Deployed MF PCE for GSA to a problem related 
to geologic disposal safety assessment (GDSA)
• Sobol’ indices for model response as fn. of time
• Indices practically identical with ~80 equivalent 
HF evaluations for MF PCE compared to 713 
evaluations for equivalent accuracy SF PCE.

Magneto-hydrodynamics (Drekar)
• Model resolutions are well 

correlated for demo problem
• MLMC is sufficient to obtain 30x 

reduction in cost for same accuracy

Tokamaks


