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Multifidelity Methods: Sampling UQ, Surrogate UQ, OUU Nanonal

Laboratories
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Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC) Optimization Under Uncertainty
Production: optimal resource 5 o . * Production (v6.10+): * Production: manage simulation
allocation for multilevel, ) ML PCE w/ projection & regression; _ and/or stochastic fidelity
multifidelity, combined (DARPA ~ , #F——= / ML SC w/ nodal/hierarchical interp; | ,
EQUIPS, Wind, Cardiovascular) ig // . £ greedy ML adaptation (DARPA E:'E * Emerging:
_ o _ . A Ee SEQUOIA), multilevel fn train (ASC V&V) .| Derivative-based methods (DARPA SEQUOIA)
Emerging: active dimensions e T vl ! + Multigrid optimization (MG/Opt)
(LDRD, SciDAC), generalized 5 « Emerging: multi-index stochastic v — * Recursive trust-region model mgmt.:
fmwk for approx control variates | - wit ::'é"| collocation; multiphysics/multiscale extend TRMM to deep hierarchies
(ASC V&V), goal orientation (rare : it i a— integration (ASC V&V); new surrogates - Derivative-free methods (DARPA Scramjet)
events), hybrid methods for GSA" -} (GP, ROM, NN) w/ error mgmt. fmwk " * SNOWPAC (w/ MIT, TUM) with goal-
o (LDRD, SciDAC); learning latent variable = : oriented MLMC error estimates
On the horizon: control of time relationships (MFNets, LDRD) LR i
avg; model tuning / selection : o * On the horizon: Gaussian process-based
(LDRD) * On the horizon: unification of surrogate approaches: multifidelity EGO; Optimal

+ sampling approaches (LDRD) experimental design (OED)

Non-hierarchical methods, alternative surrogates, goal-orientation, shared subspaces for dissimilar models



Key mission feedbacks

Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
« Extensions for complex multidimensional hierarchies - multi-index collocation, multiphysics / multiscale
* Investments in non-hierarchical MF methods - ACV and MFNets

Popular MF approaches neglect important practicalities

* "Oracle” correlations assumed - iterated versions of MFMC, ACV

* Imperfect data > embedded cross validation

* Dissimilar parameterizations - shared subspaces

* Free hyper-parameters - model tuning

« Stochastic simulation, simulation/surrogate error estimation = extended error management framework
 Ensemble management - integration with HPC workflow managers, R&D in ensemble AMT

MF methods most often utilize a fixed model ensemble determined by expert judgment

* Experts are often inaccurate in this context
« SMEs from a physics discipline often have high predictivity standards and tend to over-estimate the LF accuracy required

» Leads to non-optimal correlation / cost trade-off and sub-optimal MF UQ
—> Initial explorations of hyper-parameter model tuning, within the context of particular estimators (ACV, MFMC, ...)




Background: paired ML/MF sampling methods of interest @ National

Laboratories

Multilevel Monte Carlo Control Variate Monte Carlo
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G. Geraci, E., G. laccarino, “A multifidelity control variate approach for the multilevel Monte Carlo technique,” CTR Res Briefs 2015.




Sample set
definitions

Background: ensemble sampling methods of interest
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{b) MFMC sampling strat.

Theoretical perf. bounds for recursive vs. non-recursive
* Recursive limited by variance reduction of perfect p, (OCV-1)
* Non-recursive can exploit potential gap between OCV-1 and OCV

Methods minimize estimator variance over number of truth evals N

and approximation oversample ratios r
« MFMC has closed form for optimal r*, N* (given ordered/reordered models)

* ACV solves numerically for r*,N* (does not require ordering)
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(d) ACV-MF sampling strat.
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Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)



2)
3)
4)

N( shared samples > Estimate p2,,,) > Estimate r()

Iterated MFMC

Iterated ACV
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Initialize: select a small shared pilot sample N© expected to under-shoot the optimal profile

1) Sample all models

—

Estimate N(*") using prescribed { budget C || tolerance ¢ }

Compute one-sided AN for shared samples from N® to N(+1)
A. Optional: apply under-relaxation factor y

B.

WMean Error

If non-zero increment, advance (i) and return to 1)

100+

1) NO shared samples = Cov (), Cov 0 (“C”, “c”) = opt. solver > r', N’
2) Compute one-sided AN for shared samples from N® to N

A. Optional: apply under-relaxation factor y

B. If non-zero increment, advance (i) and return to 1)

Finalize: apply r* for LF eval increments, estimate o = apply controls to compute final expectation(s)
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Equivalent HF Jimulations

Performance degradation from pilot over-estimation is clearly evident

Analytic r* reduces numerical burden but also limits flexibility
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Performance degradation from pilot over-estimation is not significant
 ACV-MF demonstrates greater flexibility / resilience:

locates near-optimal solutions that incorporate large pilots
« Starting pts on left are for budget = pilot (moves quickly from MC to ACV)




Sandia

Model Tuning Approaches: All-At-Once and Bi-Level e es

Model tuning performed to maximize performance of a particular estimator (e.g., ACV-MF) using
tunable hyper-parameters associated with one or more low-fidelity models (HF reference is immutable)

AAOQO optimization (in Python): hyper-parameters integrate as additional decision vars for minimizing EstVar

Var|Q]
N

arg min

f.r,.N i1

M
(1—R%*@,r)) st. N (w—kai(ﬁ)n) <C

« Potential for greater efficiency: one integrated optimization solve
* Need to emulate lower-level p(8),w(6) to avoid expensive re-estimation at every change in 4

Bi-level optimization (in Dakota): inner loop optimization solve for each outer loop & iterate

) . Var|Q]
arg min [argmin ———
g r,N

(1-R%*6,r)) st. N (w—l—Zwi(Q)n) <C

i=1

« For nested numerical solution, outer loop must now contend with inner-loop solver noise
* Noise and expense can be mitigated using pilot projections, with some loss of accuracy

« Can choose to emulate at a higher level, requiring fewer emulators (e.g. EGO, TRMM to min EstVar*(6))
* Plug and play with surrogate-based methods (EGO, TRMM), MINLP, etc.

* Note: for analytic cases (e.g., MLMC, CVMC, standard MFMC), AAO collapses to single level argmin,




Exploration of model tuning for a parameterized model problem

Tunable model problem (from JCP paper on ACV*)

* 1 parameter is tunable: 6,
* 2 parameters are fixed: € = n/2, 6, = /6

Model Definitions

Sandia
National _
Laboratories

6, controls:

» Correlations among models p; and pis;
» Cost of evaluating @, according to the cost law
log ws — logw
(61 — 62)
By — 6

logw; = logws +

Q = Vily’ with w=1 and wy=10""
Q= \/ff (CGS -91.::3 + sin 91.‘}’3) Low-fidelity model properties
1.0 -
3 1
Q, = V3 (£x+ —y) . where x.y ~U(—1,1)
2 2 0.8 -
Correlations (analytic form available but not used in experiments) “‘f- e
Q.
Q Q1 Q2 =04
V1T o V33
Q 1 T Sin 91 T 0.2 — W
Qi | sym 1 % (Sil‘l 61 + /3 cos 91) —— P
Qs | sym sym 1 0.0{ +—e—e—e—o—e—e—s —— P12

* Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)



Tuning for parameterized model problem (Cont.)
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Model tuning performed within the context of a particular estimator (here, ACV-MF)

1

91 _.N,il"‘l ,.?"2 N

2
argmin - (1 — Ricv_umr (9111'1,?"2)) st. C”" =N (w + Zwiri) < Crarget = 1000
i=1

AAQ optimization (in Python):

* For ACV (and numerical MFMC), hyper-parameters integrate as additional decision vars for
minimizing estimator variance

Variance ACV-MF

0.0014 1 -®- ACV-MF b
— MC f]
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3 0.0006 ‘o P

L N s
0.0004 - "‘1‘_
Aot WSy oY g
U.Iﬁ {].IB 1.I{] 1j2 1.4 1.6
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Tuning for parameterized model problem (Cont.) Leberacories

Bi-level optimization (in Dakota): x 107
1.8 I
e MC with HF

= MLMC with LF2,LF1,HF Online Pilot = 25
CVMC with LF1,HF

1.6 ——— MFMC with LF2,LF1,HF |
* For converged iteration (right), we observe some inner —— ACV with LF2,LF1 HF

-loop solver noise 14l |
« TO DO: explore additional solution modes R D
offline / online max_iterations = 0

Var|Q] -
. . 2
arg min |arg min T(l — R*(A,r)) st. N (w + ;Zl wi(ﬂ)n) <C

2] r, N

* For expensive problems, can tune based on pilot
projection (bypassing iteration to convergence)
* Eliminates some (but not all) sources of noise

Estimator Variance
[

0.8 -
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22 T T T T T T 2 T
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= ML wilt LF2.LF1,4F = RLME wilk LFZ.LF1,4F
2n GV wilt LF1.HF 1 1.8H CYHWC wilt LF1.HF
= MFMC wilh LF2,-F1.HF = LFMIC wilh LF2,-F1.HF
= AV wilt LFZLF.1IF = AT wiln LF2.LF . 1IF O 6 I 7

Projected Pilot = 25 | Projected Pilot = 100
N H |

28 4 | thetal
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Global Optimization of multiple hyper-parameters Nationa
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Cost profile for LF1 and LF2

B [y Add cost model w, for LF2(4,): introduce &, »

log(w) = log( Wlow) - log( Wlow/ Whigh) (9' alow)(s/ erange

where wy,,, =.001* 5, Wy, =1.% %, Oy =7/ 6, Opge=7n/2—7/6

range

0.4 For w,, 6= y=1 (reproduces previous cost model)
Forw,, 6=2.5 y=0.55

For a modest number of hyper-parameters, we have explored surrogate-based approaches
« Efficient Global Optimization (EGO)

* First-order trust region model management (TRMM, aka surrogate-based local optimization)

With care in declaring the relevant 8 subset per model, we can leverage Dakota’s evaluation cache
and reuse pilot samples over 8 (e.g., all HF pilots can be reused)




Tunable problem W|th multlple hyper-parameters: MLMC (i) Netones

Pllot prOJectlon (100) . Onllne pllot (100) / |terated

Less robust: significant performance loss for non-optimal theta (up to EstVar* = 0.01)




Tunable problem with multiple hyper-parameters: MFMC () por .

| *"}f:ff::j:?:fiPiIot_projection (100) _,.»f*'jﬁf].zjf““*-Oﬁhjljiﬁne-pilpt (100) / iterated

x10° o

EstvVar*
— (8] N
EstVar*

More consistent performance but susceptible to model mis-ordering:

« Dakota mitigates with switch to reordered numerical solve w/ pyramid constraint enforcement
« While noisier, performance relative to analytic looks promising

* Excepting discontinuity, generally unimodal




Tunable problem W|th multlple hyper-parameters: ACV e, (i) Mot

Onllne pllot (100) / iterated

X107

. \\\‘\
\\“\ \\

&

EstvVar®

EstVar*

14
1.2

0 04 04

Larger region of good performance and insensitive to model ordering:

* Multimodal: two LF1,LF2 configurations achieve best performance overall
« Generally an algorithmic strength (as for adapting to over-estimated pilot), but a challenge for optimizers
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Bi-Level Surrogate Optlmlzatlon results: ACV

Pllot prOJectlon (100)
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Current Directions: Multiple Deployments

e Stochastic simulations: (previous talk)
* Turbulent flows/combustion with LES (H. Najm, C. Safta)
e Subsurface transport for repositories (T. Portone, L. Swiler)
* Radiation transport with PIC codes for HEDP (B. Reuter, G. Geraci, J. Jakeman)

* Spatial / temporal resolution
 EDL (NASA: G. Bomarito, J. Warner, M. Thompson) (upcoming talk)
* Thermal batteries (T. Portone, M. Eldred)
* Two-dimensional model hierarchy: MLMC (1D slice), CYMC (1d slice), MLCV MC (2d), MFMC (flatten), ACV (flatten)
* LF=2D reduced physics mode; HF = 2D full physics mode
» Same coarse/medium/fine spatial resolutions selected for both modes
* Fine temporal resolution settings used for HF, coarse temporal resolution settings for LF (tuning targets)

* Data-driven surrogates with hyper-parameters: ROM, NN



Summary Observations National
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Realistic deployments of multifidelity methods encounter a variety of challenges
* Here we target the challenge of optimally configuring multiple LF models, given one or more DOF that trade accuracy vs. cost

Model Tuning Approaches
« AAO Optimization (in Python): hyper-parameters become additional decision vars in argmin,  , EstVar
« Solve 1 integration optimization problem; emulate lower-level p(6), w(6); avoids optimizing on top of solver noise
* Bi-level optimization (in Dakota): argmin, [ argmin,  EstVar ]
* Plug-and-play with surrogate-based optimizers to mitigate solver noise; either low-level or high-level emulators
* AAO collapses to this in many cases (analytic allocations with ML, CV, MLCV, MF)
* Implementation details: online cost recovery, solution modes, evaluation cache, bypass LF increments if only need EstVar
* Relative performance TBD

Numerical Experiments
* Tunable problem 1D (6,): ACV > MFMC > CVMC > MLMC
« Tunable problem 2D (8,, 6,): ACV > MFMC > MLMC
* Robustness obtained from numerical solves: can better adapt to pilot over-estimation, model sequencing
* Production thermal battery studies in flight, with feedbacks per below

Next steps
* Feedback from expensive deployments: streamline approaches, maximize data reuse, prune convenience synchronizations
* More thorough exploration of AAO benefits, when admissible
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Background: multifidelity Monte Carlo (MFMC)

Optimal LF over-sample
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HF samples from budget

Correlations o Jun(pls = pla) N Following p estimation,
Costs v wi(l— p2,) LT T budget p exhausted
’ - No iteration
12
a; = PLiTL —> Expectations from shared, refined

T;

Background: approximate control variate (ACV)

C = covariance matrix among Q,
¢ = covariance vector among Q; and Q

GAVIS _ [{- . F{IS}: - [diag (F19) M.:|

. 1V -1
var[Qﬁﬂ—IS{gﬁﬂ—ls) _ al'N[Q] (] B Rimjs)- where R2qy.js =a' [Co FUS}] a

-1
QNVMF _ [c o FMF) [diag (F”““) 5 c] .

. 1V -1
Var[Qﬂw'MF{gﬁw'ij_ _ HJTJQ] (1 N Riw-mp)- where Rcy_y ¢ =a' [CD F:MF}] a

a = [diag (F'®) oc] and F"*" € RM*M has elements

a = [diag (FMP)) o €] and F™MF) € RM*M nas elements

ps), _ SIS pOME) % ifi # j < Differs only in off-diagonal
J "=l otherwise ! Bl otherwise terms + sample sets

M

Nmi}& log(Jacv(N,r, K, L)) subjecttoN(w+2wiri) <C, N=1, n=1
ul 1=

Optimal r*,N* w/i budget from
C,c estimates = No iteration

Peherstorfer, Willcox, Gunzburger, “Optimal Model Management For Multifidelity Monte Carlo Estimation”, SISC, Vol. 38, No. 5.

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelit



Potential Flow

Multiple Model Forms in UQ & Opt

Discrete model choices for simulation of same physics

A clear hierarchy of fidelity (from low to high)

» Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ), inference

« Support general case of discrete model forms
« Discrepancy does not go to 0 under refinement

Hybrid RANS/LES
An ensemble of peer models lacking clear preference structure /
cost separation: e.g., SGS modeling options
« With data: model selection, inadequacy characterization
 Criteria: predictivity, discrepancy complexity
» Without (adequate) data: epistemic model form propagation
 Intrusive, nonintrusive
* In MF context: correlation analysis, model tuning, ensemble selection

L
Vortex sheet
Potential Flow model

Reynolds One- * ] s
Averaged Navier- equation equation stress RANS
Stokes (RANS) EANS model RANS model maodel
Hybrid Fddy m
RANS/LES Model

Large Eddy

AN[API] [PPOJAl SuUISEAIDU]

Discretization levels / resolution controls
» Exploit special structure: discrepancy - 0 at order of
spatial/temporal convergence

Combinations for
multiphysics, multiscale




2018/2019 Deployments: ML, MF, MLMF Monte Carlo

Mukiscale-rullipfysics application al
Lange Eddy Simulation [LES)

Model forms:
« 2D, 3D

Discretizations:
«  d/{8,16,32,64}

the Art LES

Scramjet

UCAV Nozzle

["F2" Case)
Pomean | H?l.rmx.wmm | Musean | TEE mean | Hrean LF LF [updated}l
TSR T qg’ii.._ 01 1 38905007 | 4245700003 N dicti correlation | Variance reduction [%] correlation | Variance reduction [%]
df ANIao4e-1); A dae-U6 AYlate-Ud | a5 - | LA dle-L) NO Variance On-pre IClive Th
1/16 || 4.03350e-07 | 7.77838¢-08 | 6.68974-05 | 1.74847¢-08 | 4.40048¢-05 ) : rust 0.997 9142 0.950 .2
= = PT updated decay for higher LF stress priorto | pechanical Stress || 231e:5 212¢:3 0.944 89.2
d/8 [ 4.05795¢-03 | 1.906126-06 | 1.60029-02 turbulence levels reformulation Thermal Stress 0391 1251 0.067 s
d/16 || 2.85017¢-04 | 7.36978¢-07 | 2.07638¢-03 )
Table 2: Variance for the five Qols of the P1 unit problem. TABLE: Correlations and variance reduction for £“/e5 = 0.001.
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Recent Deployments: ML/MF Monte Carlo/Polynomial Chaos
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Crash & Burn Multiphysics (ASC L2 Milestone)

Forward UQ w/ explicit (LF) + implicit (HF) SIERRA mechanics
*  Multilevel MC across model resolutions for LF model
*  Multifidelity MC with HF implicit + selection of most effective LF explicit

Successful demonstration of
advanced UQ methods,
integrated alongside emerging
ASC workflows for
multiphysics simulation

Mechanical loading of mock device

—

Prediction of Tokamak instability (SciDAC)

0.1 -

MLMC {2 lavals)

Magneto-hydrodynamics (Drekar) 8 — :
* Model resolutions are well . -
correlated for demo problem 2 NN N
«  MLMC is sufficient to obtain 30x £ S~ 5
reduction in cost for same accuracy E oo | - \ |
I - o ‘W

B I

Equivalent Cast

Estimator | Naoo Naoo  Nioo | Eq. Cost
e MC 1273 - - 1273
[ — MLMC (2 levels) 1 1278 - 236.62
MLMC 1 8 1366 44 .36

Geologic Disposal

GDSA T s ,/
example Points where 1129 tracked . IS /
simulation 2 2 o
and QOI: NW Repository é N
: E .
PFLOTRAN R T oo
Peak 1129 Concentration
1.0 * Deployed MF PCE for GSA to a problem related
to geologic disposal safety assessment (GDSA)
059 —e— ml e =% .| @ S0bol indices for model response as fn. of time
—+— af prz, land ol * Indices practically identical with ~80 equivalent
- HF evaluations for MF PCE compared to 713

E6i) . ey evaluations for equivalent accuracy SF PCE.

t [+]

Network Cybersecurity (SECURE GC LDRD)

* Deployed ACYV for forward UQ with HF emulation (minimega) and LF -
discrete event simulation (ns-3)

* Investigated the efficiency of MF UQ by tuning ns-3 models

* Demonstrated increased efficiency for tail est. given a minimega dataset

Low-Fidality Selection

140 | MAC - Mean 1
| n WA -- B8 T Ol i
— 12} B ACVT -~ Mean —=— ,-g'.-
g | e ACYT - 80T G g
2 | =] . -
E 1o} = -~
o - d
2 | g = C#
& 100 | Wy g ; -
E | -./\-v-_\'_'r;‘ et ;] /a/
o a0 | v, i E
] | a
s | I e
2 g | S — E
= e e e e,
= ' o O !
| #Aeg =10, S5z =508 &
a0 | g 01 OFeq = 500, Slze = 1HE -4
10 100 1000 Rl w0 i i0rd 1or?
Equivaleni number of High-Fidelity evalialions Delay [5]

Forward UQ: ACV1 vs MC ns-3 tuning effect on ACV performance

Emerging

Z-PINCH
EXPERIMENT
FLuID

CIS LDRD:
non-hierarchical
ensemble (models
+ experiments)

BES QC:
exploration of
the C;Hg PES
with KinBot



