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Motivation
Robustness in OUU:

min
x

RMean =min
x

E[Q(x ,θ )]

Reliability in OUU:

min
x

RScalar =min
x

E[Q(x ,θ )]+ασ [Q(x ,θ )]

Solve using derivative-free optimization method SNOWPAC*

⇒ SNOWPAC requires sampling estimator with samples Qi := Q(x ,θi):

min
x

RMean ≈min
x

µ̂1[Q(x ,θ )]︸ ︷︷ ︸
1
N ∑

N
i=1 Qi

min
x

RScalar ≈min
x

µ̂1[Q(x ,θ )]+α σ̂biased[Q(x ,θ )]︸ ︷︷ ︸√
1

N−1 ∑
N
i=1(Qi−µ̂1)2

BUT: Monte Carlo is very expensive (O( 1√
N
))

⇒ Use MLMC estimators† if hierarchy available

min
x

RMean ≈min
x

µ̂ML
1 [Q(x ,θ )] min

x
RScalar ≈min

x
µ̂ML

1 [Q(x ,θ )]+ασ̂ ML
biased[Q(x ,θ )]

BUT: Original MLMC estimator not sufficient for RScalar formulation
⇒ Need MLMC estimators for higher order moments

*Menhorn, F. et al. (2022). A trust-region method for derivative-free nonlinear constrained stochastic optimization. (arXiv)
†Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259–328
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Motivation: Example
MLMC mean estimator for RMean ≈ µ̂ML

1 [Q(x ,θ )]

0.735 0.734 0.733 0.732 0.731 0.730 0.729 0.728 0.727
ML
1 [c2(x)]

0

100

200

300

400

500

C 2
MC
MLMC Mean 

• Good match between standard MC estimator and MLMC.
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Motivation: Example
MLMC mean estimator for RScalar ≈ µ̂ML

1 [Q(x ,θ )]+ασ̂ ML
biased[Q(x ,θ )]

0.68 0.67 0.66 0.65 0.64 0.63 0.62
ML[c2(x)]

0

25

50

75

100

125

150

175

200
C 2

MC
MLMC Mean 

• MLMC estimator targeting the mean underestimates compared to MC.
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Motivation: Goal
MLMC scalarization estimator for RScalar ≈ µ̂ML

1 [Q(x ,θ )]+ασ̂ ML
biased[Q(x ,θ )]

0.6575 0.6550 0.6525 0.6500 0.6475 0.6450 0.6425 0.6400 0.6375
ML[c2(x)]

0

25

50

75

100

125

150

175

200

C 2
MC
MLMC Scalarization 

• New MLMC estimator targeting the scalarization matches MC.
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Up next:
Mean in OUU:

min
x

RMean ≈min
x

µ̂ML
1 [Q(x ,θ )]

Scalarization in OUU:

min
x

RScalar ≈min
x

µ̂ML
1 [Q(x ,θ )]+ασ̂ ML

biased[Q(x ,θ )]

1. Recap (from literature): µ̂ML
1 [Q(x ,θ )]

2. (Our contribution) ML for Standard deviation: σ̂ ML
biased[Q(x ,θ )]

3. (Our contribution) ML for Scalarization: µ̂ML
1 [Q(x ,θ )]+ασ̂ ML

biased[Q(x ,θ )]
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Multilevel Estimator
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MLMC estimator: Mean
Mean in OUU:

min
x

RMean ≈min
x

µ̂ML
1 [Q(x ,θ )]

• Estimator‡:

E[QL] = µ
ML
1 [QL]≈ µ̂ML

1 [QL] =
L

∑
`=0

µ̂1[Q(`)−Q(`−1)]︸ ︷︷ ︸
telescopic sum

=
L

∑
`=0

1
N`

N`

∑
i=1

(Q(`)
i −Q(`−1)

i,` )︸ ︷︷ ︸
estimator expansion

, Q(−1)
i,0 := 0

• Sample allocation:

min
NE
`

L

∑
`=0

C`NE
` ,

s.t. V[µ̂ML
1 ] = ε

2, where V[µ̂ML
1 ] =

L

∑
`=0

V[µ̂(`)
1 − µ̂

(`−1)
1,` ] =

L

∑
`=0

V[Q(`)−Q(`−1)]

N`

• Solution:

NE
` =

λ

√
V[Q`−Q`−1]

C`

 , where λ = ε
−2

L

∑
`=0

√
V[Q`−Q`−1]C`

‡Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259–328
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estimator expansion

, Q(−1)
i,0 := 0

• Sample allocation:

min
NE
`

L

∑
`=0

C`NE
` ,

s.t. V[µ̂ML
1 ] = ε

2, where V[µ̂ML
1 ] =

L

∑
`=0

V[µ̂(`)
1 − µ̂

(`−1)
1,` ] =

L

∑
`=0

V[Q(`)−Q(`−1)]

N`

• Solution:

NE
` =

λ

√
V[Q`−Q`−1]

C`

 , where λ = ε
−2

L

∑
`=0

√
V[Q`−Q`−1]C`

‡Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259–328
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MLMC estimator: Mean
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MLMC estimator: Standard deviation
Mean in OUU:

min
x

RMean ≈min
x

µ̂ML
1 [Q(x ,θ )]

Standard deviation in OUU:

min
x

RScalar ≈min
x

µ̂ML
1 [Q(x ,θ )]+ασ̂ ML

biased[Q(x ,θ )]
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MLMC estimator: Standard deviation
• Estimator:

σ [QL] =
√
V[QL]≈

√
µ̂ML

2 := σ̂ ML
biased

where
V[QL]≈ µ̂ML

2 [QL] =
L

∑
`=0

µ̂2[Q(`)]− µ̂2[Q(`−1)]︸ ︷︷ ︸
telescopic sum

=
L

∑
`=0

1
N`−1

( N`

∑
i=1

(Q(`)
i − µ̂

(`)
1 )2− (Q(`−1)

i,` − µ̂
(`−1)
1,` )2

)
︸ ︷︷ ︸

estimator expansion

=
L

∑
`=0

(µ̂
(`)
2 − µ̂

(`−1)
2,` ), Q(−1)

i,0 := 0

• Sample allocation:

min
Nσ
`

L

∑
`=0

C`Nσ
` ,

s.t. V[σ̂ ML
biased] = ε

2, where V[σ̂ ML
biased]≈

1
4
V[µ̂ML

2 ]

µ̂ML
2

(Delta Method)

• How to solve this?
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MLMC sample allocation for higher order terms
1. Analytic approximation §

− Obs: Decrease of variance of MLMC estimator O( 1
N ) true also for higher order moments

− Idea: Use similar analytic solution approach as for MLMC Mean:

min
NE
`

L

∑
`=0

C`NE
` ,

s.t. V[µ̂ML
1 ] = ε

2, where V[µ̂ML
1 ] =

L

∑
`=0

V[Q(`)−Q(`−1)]

N`

NE
` =

λ

√
V[Q`−Q`−1]

C`

 , where λ = ε
−2

L

∑
`=0

√
V[Q`−Q`−1]C`

− Introduce helper variance: V[] = V`
N`
⇔ V` = V[]NE

`
− Disregard higher order terms in V`⇒ Analytic approximation

2. Numerical optimization

− Solve minNX
`

∑
L
`=0 C`NX

` , s.t. V[µ̂ML
x ] = ε2 numerically

§Pisaroni, M., Krumscheid, S., and Nobile, F., “MATHICSE Technical Report : Quantifying uncertain system outputs via
the multilevel Monte Carlo method - Part I: Central moment estimation,” 2017, p. 29.
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MLMC estimator: Scalarization
Mean in OUU:

min
x

RMean ≈min
x

µ̂ML
1 [Q(x ,θ )]

Scalarization in OUU:

min
x

RScalar ≈min
x

µ̂ML
1 [Q(x ,θ )]+ασ̂ ML

biased[Q(x ,θ )]
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MLMC estimator: Scalarization
• Estimator:

S[QL] := E[QL]+ασ [QL]≈ µ̂ML
1 +ασ̂ ML

biased := ζ̂ ML

• Sample allocation:

min
NS
`

L

∑
`=0

C`NS
` ,

s.t. V[ζ̂ ML] = ε
2, where V[ζ̂ ML]≈ V[µ̂ML

1 +ασ̂ ML
biased]

• Variance of scalarization:

V[ζ̂ ML] = V[µ̂ML
1 +ασ̂ ML

biased]

= V[µ̂ML
1 ]+α

2V[σ̂ ML
biased]+2αCov[µ̂ML

1 , σ̂ ML
biased]

• Solution: Numerical Optimization or analytic approximation
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MLMC estimator: Scalarization
• Estimator:

S[QL] := E[QL]+ασ [QL]≈ µ̂ML
1 +ασ̂ ML

biased := ζ̂ ML

• Sample allocation:

min
NS
`

L

∑
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` ,

s.t. V[ζ̂ ML] = ε
2, where V[ζ̂ ML]≈ V[µ̂ML

1 +ασ̂ ML
biased]

• Variance of scalarization:

V[ζ̂ ML] = V[µ̂ML
1 +ασ̂ ML

biased]

= V[µ̂ML
1 ]︸ ︷︷ ︸

known

+α
2V[σ̂ ML

biased]︸ ︷︷ ︸
known

+2αCov[µ̂ML
1 , σ̂ ML

biased]︸ ︷︷ ︸
up next

• Solution: Numerical Optimization or analytic approximation
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MLMC estimator: Scalarization Covariance

V[ζ̂ ML] = V[µ̂ML
1 ]+α

2V[σ̂ ML
biased]+2αCov[µ̂ML

1 , σ̂ ML
biased]

=
L

∑
`=0

V
[

µ̂
(`)
1 − µ̂

(`−1)
1,`

]
+α

2V
[

σ̂
(`)
biased− σ̂

(`−1)
biased,`

]
+2αCov

[
µ̂
(`)
1 − µ̂

(`−1)
1,` , σ̂

(`)
biased− σ̂

(`−1)
biased,`

]

Three (independent) solution strategies:

1. Pearson correlation ρ[µ̂ML
1 , σ̂ ML

biased]:

Cov[µ̂ML
1 , σ̂ ML

biased]≤
√
V[µ̂ML

1 ] ·V[σ̂ ML
biased], since −1≤

Cov[µ̂ML
1 , σ̂ ML

biased]√
V[µ̂ML

1 ]V[σ̂ ML
biased]

≤ 1

2. Bootstrapping:

Cov[µ̂(`)
1 , σ̂

(`)
biased]≈

1
B−1

B

∑
b=1

(µ̂
(`)
1,b− µ̂

(`)
1,b)(σ̂

(`)
biased,b− σ̂

(`)
biased,b)

where e.g.µ̂(`)
1,b =

1
N`

N`

∑
i=1

Q∗i and µ̂
(`)
1,b =

1
B

B

∑
b=1

µ̂
(`)
1,b and Q∗i iid from {Qi}N`

i=1
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MLMC estimator: Scalarization Covariance
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=
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Three (independent) solution strategies:
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MLMC estimator: Scalarization Covariance
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MLMC estimator: Scalarization Covariance
• Same level¶:

Cov
[

µ̂
(`)
1 , µ̂

(`)
2

]
=

µ
(`)
3

N`

• Lower level variance:

Cov
[

µ̂
(`)
1 , µ̂

(`−1)
2,`

]
=

1
N`

[
E[Q(`)(Q(`−1))2]−E[Q(`)]E[(Q(`−1))2]−2E[Q(`−1)]E[Q(`)Q(`−1)]+2E[Q(`)]E[Q(`−1)]2

]
• Lower level mean:

Cov
[

µ̂
(`−1)
1,` , µ̂

(`)
2

]
=

1
N`

[
E[Q(`−1)(Q(`))2]−E[Q(`−1)]E[(Q(`))2]−2E[Q(`)]E[Q(`−1)Q(`)]+2E[Q(`−1)]E[Q(`)]2

]

¶Dodge Y., Rousson V., The Complications of the Fourth Central Moment, The American Statistician, 1999
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SNOWPAC in Dakota using MLMC

TRM Surrogate
Optimization

Feasibility
Restoration

Monte Carlo Multilevel Monte
Carlo

Dakota
OUU loop


Black-box solver


Forward UQ


SNOWPAC
Derivative-free optimization


...

Design Statistics

UQ Samples

Algorithmic details:
• Iterative sample allocation

• Underrelaxation

• Choice of sample allocation strategy: Analytic approximation vs. numerical optimization

• Choice of covariance approximation: Pearson vs. Bootstrap vs. Correlation Lift
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SNOWPAC

Friedrich Menhorn (TUM), et al. | menhorn@in.tum.de | MLMC estimators for derivative-free optimization under uncertainty 14

Results

mailto:menhorn@in.tum.de


Cantilever beam problem:
2 design parameters: w , t

Adams, B.M., et. al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design
Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis:

Version 6.15 User’s Manual

Objective: minw ,t wt

4 uncertain parameters:

• Yield stress: R ∼N (40000,200)

• Young’s modulus: E ∼N (2.9e7,1.45e6)

• Horizontal load: X ∼N (500,100)

• Vertical load: Y ∼N (1000,100)

• Level 3: Rectangle (Cost = 1)

stress :(
600
wt2 Y +

600
w2t

X )/R−1≤ 0

displacement :(
4L3

Ewt

√
(
Y
t2)

2+(
X
w2)

2)/D0−1≤ 0

• Level 2: Ellipse instead of rectangle (Cost = 1e-2)

• Level 1: Circle inscribed in rectangle instead of rectangle (Cost = 1e-4)

• Level 0: Circle with same area instead of rectangle (Cost = 1e-6)
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Cantilever beam problem:
2 design parameters: w , t

Adams, B.M., et. al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design
Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis:

Version 6.15 User’s Manual

Objective: minw ,t w t (Sampling only)

4 uncertain parameters:

• Yield stress: R ∼N (40000,200)

• Young’s modulus: E ∼N (2.9e7,1.45e6)

• Horizontal load: X ∼N (500,100)

• Vertical load: Y ∼N (1000,100)

• Level 3: Rectangle (Cost = 1)
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X )/R−1≤ 0
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√
(
Y
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2+(
X
w2)

2)/D0−1≤ 0

• Level 2: Ellipse instead of rectangle (Cost = 1e-2)

• Level 1: Circle inscribed in rectangle instead of rectangle (Cost = 1e-4)

• Level 0: Circle with same area instead of rectangle (Cost = 1e-6)
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Test results

1. Present sampling results by resampling estimators and plot histogram of estimators
2. Compare three strategies for estimating Cov-term:
− Pearson
− Bootstrap

− using ρ[µ̂
(`)
1 , σ̂

(k)
biased] = ρ[µ̂

(`)
1 , µ̂

(k)
2 ] (CorrLift)

3. Compare algorithmic strategies:
− Iterations vs. no iterations
− Analytics approximation (only) vs. numerical optimization
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Sampling Results: Mean
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ML
1 [c2(x)]
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MLMC Mean 20 iter
MLMC Mean 1 iter

• MLMC Mean distribution (blue) consistent with MC reference (red) for lower cost.
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Sampling Results: Mean
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Cost[max ( ML

1 [c1(x)], ML
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• MLMC Mean distribution (blue) consistent with MC reference (red) for lower cost.
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Sampling Results: Scalarization (Pearson)
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• MLMC Scalarization (green) close but overresolves to MC reference case (red).

• Results in higher computational cost than MC reference.
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Sampling Results: Scalarization (Pearson)
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• MLMC Scalarization (green) close but overresolves to MC reference case (red).

• Results in higher computational cost than MC reference.
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Sampling Results: Scalarization (Bootstrap)
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• MLMC Scalarization (green) consistent with MC reference (red) using Bootstrap.

• Cost reduced compared to Pearson

• BUT bootstrapping itself becomes computational bottleneck
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Sampling Results: Scalarization (Bootstrap)
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• MLMC Scalarization (green) consistent with MC reference (red) using Bootstrap.

• Cost reduced compared to Pearson

• BUT bootstrapping itself becomes computational bottleneck
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Sampling Results: Scalarization (CorrLift)
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• MLMC Scalarization (green) consistent with MC reference (red) (left) for lower cost (right) using

CorrLift.

• Computational effort similar to Pearson and << Bootstrap
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Sampling Results: Scalarization (CorrLift)
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• MLMC Scalarization (green) consistent with MC reference (red) (left) for lower cost (right) using

CorrLift.

• Computational effort similar to Pearson and << Bootstrap
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Sampling Summary
• MLMC targeting the respective formulation necessary for optimal result

• Covariance term approximation crucial in scalarization

• Bootstrap leads to consistently better results but non-negligible computational cost

• ”Best of both worlds” achieved using CorrLift approach
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Sampling Summary
• MLMC targeting the respective formulation necessary for optimal result

• Covariance term approximation crucial in scalarization

• Bootstrap leads to consistently better results but non-negligible computational cost

• ”Best of both worlds” achieved using CorrLift approach

How does this translate to optimization?
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Cantilever beam problem:
2 design parameters: w , t

Adams, B.M., et. al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design
Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis:

Version 6.15 User’s Manual

Objective: minw,twt

4 uncertain parameters:

• Yield stress: R ∼N (40000,200)

• Young’s modulus: E ∼N (2.9e7,1.45e6)

• Horizontal load: X ∼N (500,100)

• Vertical load: Y ∼N (1000,100)

• Level 3: Rectangle (Cost = 1)

stress :(
600
wt2 Y +

600
w2t

X )/R−1≤ 0

displacement :(
4L3

Ewt

√
(
Y
t2)

2+(
X
w2)

2)/D0−1≤ 0

• Level 2: Ellipse instead of rectangle (Cost = 1e-2)

• Level 1: Circle inscribed in rectangle instead of rectangle (Cost = 1e-4)

• Level 0: Circle with same area instead of rectangle (Cost = 1e-6)
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OUU Results (Pearson)
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Mean + Pushback: s.t. f(x) [gH(x, )] + 3 [gH(x, )] (Pearson)
MC
MLMC Scalarization

• Pearson approximation results in overestimation

• At the price of higher computational cost
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OUU Results (Pearson)
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Cost(Scalarization): minx [fH(x, )] + 3 [fH(x, )] (Pearson)

• Pearson approximation results in overestimation

• At the price of higher computational cost
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OUU Results (CorrLift)
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• CorrLift can reduce costs and improve the results

• Still higher computational cost compared to MC
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OUU Results (CorrLift)
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Cost(Scalarization): minx [fH(x, )] + 3 [fH(x, )] (CorrLift)

• CorrLift can reduce costs and improve the results

• Still higher computational cost compared to MC
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Conclusion

⇒ New MLMC estimators for Standard Deviation and Scalarization coupled with SNOWPAC.

⇒ New approximations for Cov-Term in Scalarization.

Future work and open questions:

• Investigate cost increase in Cantilever case

• Near future: Wind application

Links:

• SNOWPAC: github.com/snowpac/snowpac

• Dakota: dakota.sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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