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Motivation: Example

MLMC mean estimator for Zmean =~ @L[Q(X, 0)]

—e— MLMC Mean
500 A
400 -
300 A
2001
100 4
0 T T T T T T T ¥ T
-0.735 -0.734 -0.733 -0.732 -0.731 -0.730 -0.729 -0.728 -0.727
M)

« Good match between standard MC estimator and MLMC.
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Motivation: Example
MLMC mean estimator for Zscaiar ~ 1L [Q(X, 0)] + G |ased[Q(X 0)]

C2

200

1754

1501

1251

100 4

754

50

251

_ N

—e— MC
—e— MLMC Mean

—0.68 -0.67 -0.66 -0.65 -0.64 -0.63
Mea(x)]

« MLMC estimator targeting the mean underestimates compared to MC.
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Motivation: Goal

MLMC scalarization estimator for Zscajar ~ u1 HQ(x,0)]+ ao |ased[Q(X 0)]

200 —— MC
—e— MLMC Scalarization

175
150 4
1254
100 4

75

50

25

0 T T T T T T T T T
~0.6575 ~0.6550 -0.6525 ~0.6500 ~0.6475 —0.6450 -0.6425 —0.6400 -0.6375
M cax)]

« New MLMC estimator targeting the scalarization matches MC.

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

Up next:

Mean in OUU: Scalarization in OUU:
mxin F\ean ~ mxin @L[Q(Xa 0)] mxin Fscalar mxin.u1 L[Q(X 0)] +ao |ased[Q(X 6)]
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Up next:

Mean in OUU: Scalarization in OUU:
mxin %Mean ~ mXin [I.‘ML[Q(X, 9)] mxin%Scalar ~ mxin.u1 L[Q(X 9)] + 0O |ased[Q(X 9)]
Up next:

1. Recap (from literature): @L[C)(X, 0)]
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MLMC estimator: Mean

Mean in OUU:

mxin F\lean ~ mxin @L[Q(Xa 0)]

*Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259-328
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MLMC estimator: Mean

Mean in OUU:

mxin F\lean ~ mxin @L[Q(Xa 0)]
. Estimator®:

/\ L
E[Qu] = pi[Qu] ~ ujH[Qu] = Zm[o Q=Y &

=\
telescoplc sum N 4

estimator expansion

5

1 z

\
I
—

*Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259-328
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MLMC estimator: Mean

Mean in OUU:

mxin F\lean ~ mxin @L[Q(Xa 0)]
. Estimator®:

L
E[Q] = u L[@]w%[@]—im[o Q=Y &

~ =14 1
telescopic sum N 4

estimator expansion

5

1 z

« Sample allocation:
mm Z Cg

L
L (ML ¢ v Q
s.t. V'] = €2, where V] = ZV[M( )— ] = Z | N
/=0 £=0 ¢

Ql— 1)]

*Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259-328
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MLMC estimator: Mean

Mean in OUU:

mxin F\lean ~ mxin @L[Q(Xa 0)]
. Estimator®:

/\ L
E[Qu] = pi[Qu] ~ ujH[Qu] = Zm[o Q=Y &

- o Nef 1
telescoplc sum N 4

estimator expansion

5

1 z

« Sample allocation:

mm Z Cg

~aQy "), V=

Ql— 1)]

L
— — ¢ viQ®
st Vi — ¢2, where VI — Y vial) - a0 — v VL
/=0 =0 N
e Solution:

- L
N = QL\/V[QE G Q] , where  =¢72Y \/V[Q,— Q_1]C
¢ (=0

*Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259-328
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MLMC estimator: Standard deviation

Mean in OUU: Standard deviation in OUU:
min Zisean ~ min 1 Q(x,6)] min Zscalar ~ min whQ(x, )]+ acl . [Q(x,6)]
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MLMC estimator: Standard deviation

« Estimator:
G[QL] -V V[QL ~ HEAL Gblased
where . L
via] ~ e = Y iel@"] - [0t

(=0 telescoplc sum
L1 (&0 e A1) ()

= Z _ Z(Qi 0T =(Q, Tk, )
= Ne—1\ /5

estimator‘gxpansion

[ — —

=Z6(u§£)—u§f£ V), =0
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MLMC estimator: Standard deviation

o Estimator:

G[QL] -V V[QL ~ \/ HEAL Gblased

where
Vi@ ~ uyQ] = Z uz[O -l ]

telescoplc sum

N, — —
V4 V4 /—1 /—1
(R -yl -l )

Y

(= O\ i=1 J
estimator‘gxpansion
L — —
i (-1 —1
= Z(ué ) _.uz(',e ))7 Q/(,o ):=0
(=0
« Sample allocation:
C/N?
nlcllcngz CINY
1 V
st V[oyh.] = €%, where V[o[L__ | ~ 5] Deta Method)
>
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MLMC estimator: Standard deviation

o Estimator:

G[QL] -V V[QL ~ \/ ugL Gblased

where
Vi@ ~ uyQ] = Z uz[O -l ]

telescoplc sum

N, — —
V4 V4 /—1 /—1
(R -yl -l )

Y

(= O\ i=1 J
estimator‘gxpansion
L — —
i (-1 —1
= Z(“é ) _.ué,e ))7 Q/(,o ):=0
(=0
« Sample allocation:
C/N?
nlcllcngz CINY
1 V
st V[oyh.] = €%, where V[o[L__ | ~ 5] Deta Method)
>

« How to solve this?
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MLMC sample allocation for higher order terms

1. Analytic approximation $

— Obs: Decrease of variance of MLMC estimator ﬁ(%) true also for higher order moments
— ldea: Use similar analytic solution approach as for MLMC Mean:

L
min '} C/N,
— —~ L (0) — qle=1)
s.t. V[u'] = €%, where V[u] = }° ViU -]
i=o N
_ L
N]E — A\/V[Qﬁ = Q€—1] ’ where A — 8_2 Z \/V[Qg _ Q£_1]C£
¢ =0

$Pisaroni, M., Krumscheid, S., and Nobile, F., “MATHICSE Technical Report : Quantifying uncertain system outputs via

the multilevel Monte Carlo method - Part I: Central moment estimation,” 2017, p. 29.
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty
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i=o N
_ L
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o~ —

— Introduce helper variance: V[u@] = % S Y= V[ug)]N}E

$Pisaroni, M., Krumscheid, S., and Nobile, F., “MATHICSE Technical Report : Quantifying uncertain system outputs via

the multilevel Monte Carlo method - Part I: Central moment estimation,” 2017, p. 29.
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

8


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

MLMC sample allocation for higher order terms

1. Analytic approximation $

— Obs: Decrease of variance of MLMC estimator ﬁ(%) true also for higher order moments
— ldea: Use similar analytic solution approach as for MLMC Mean:

L
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L
_ _ 7

ML| — 2 ML — f

s.t. V[uWt] = &=, where V[ui| = ezzo N

L
NE= |2 Tt ,where A =2 Y \/7C,
Ce (=0

o~ o~

— Introduce helper variance: V[,u)(f)] = Nﬁi S Y= V[u,(f)]Ngg
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— Disregard higher order terms in ¥, = Analytic approximation
2. Numerical optimization
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MLMC estimator: Scalarization

Mean in OUU: Scalarization in OUU:
mxin F\ean ~ mxin @L[Q(Xa 0)] mxin Fscalar mxin @L[Q(Xa 0)] + Oméﬂésed[Q(X 0)]
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MLMC estimator: Scalarization

o Estimator:

S[QL] := E[Q/] + ao[Q] = @ura(ﬁ\ —m

biased -
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MLMC estimator: Scalarization

o Estimator:

S[QL] := E[Q/] + ao[Q] = @uracﬁ\ —m

biased *
« Sample allocation:

L
min Z C/N?,
NG =0

4

s.t.V E\ML — €2, where V Z?ML %V‘[,WL+05(;/“"L\
!

biased
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MLMC estimator: Scalarization

o Estimator:
S[Qu] = E[Qu] + 00 [QU] ~ B+ 00 = "
« Sample allocation:

L

min Z C/N>,

NS )=
¢ (=0

st. V[C"] = €2, where V[E"] ~ V[t + aofls ]
« Variance of scalarization:

V[Z::ML] — V[M”L + O‘Gk“JAiLased]

= VI + 02V [0l o] + 20 COVIH™, Gl

biased

« Solution: Numerical Optimization or analytic approximation
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MLMC estimator: Scalarization

o Estimator:

S[Q] :=E[Q/] + ao[Q] ~ i+ aall = O

biased *

« Sample allocation:

L
min Z CgNS,

N} =0

st V[{"] = €2, where V[{"] ~ VIui + aof g

o Variance of scalarization:

V[CML] = V[.UQAL + O‘Gk'\)ﬂ;sed
= V[,LL 4+ OCZV[ Opinsed) T 205@0\/[:“1 ; Gblased

S—— N———— ~~
known known up next

« Solution: Numerical Optimization or analytic approximation
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MLMC estimator: Scalarization Covariance

V[CML] — V[ + a®V[ap ]+ 2aCov[uit, 6/t

biased

/\ e~ ————

14 (—1 (—1 14 —1
- Z v [“1 o ;,L1 N )] + oV [Gtgiezsed o GkglaseZi 6] +2aCov [:u1( ) /'L1( N ) Géiazsed o Gt()iase<)j,€

o —

Three (independent) solution strategies:
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MLMC estimator: Scalarization Covariance

V[CML] — V[[,L L] + OCZV[ |ased] + 20‘@0\/[“1 7Gb|ased

/\ e~ ————

14 (—1 (—1 14 —1
- Z v [“1 o ;,L1 N )] + oV [Gkgiezsed o Gkglasezi 6] +2aCov [:u1( ) u1( N ) Géiazsed o Gt(>iase<)j,€

o —

Three (independent) solution strategies:

. Pearson correlation p[u1 ; Opinced) -

COV[“ML GlgllLased §1

CoV[iEF, o] < \/VIHH] - V[Gioog) SinCE 1 < N
'ul1wL |ased
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MLMC estimator: Scalarization Covariance

Vg ML] = V[ + a?V[op o] +2aCov[pit, ol

|ased]

/\ e~ ————

14 —1 —1 14 -1
o Z v [“1 o ;,L1 NG )] + OCZV [Gkgiezsed Gkglasezi 6] +2aCov [,u1( ) - ‘u1( N ) Géiazsed B Géiasezj,ﬁj

o —

Three (independent) solution strategies:

ML ML
. Pearson correlation p[u!" , Opiesed]

iy
Cov[u Gblased

Cov uML ol <V uML V(o™ ], since —1< <1
1

biased biased!’ —
\/V[“ML]V[Gblased]

2. Bootstrapping:

0 o 1 0 0O 0 o
COV[FH( )7 Géiezsed] ~N e 1 Z (“1( ,1)3 - “1( ,t)a)(céigsed,b - o-tgiazsed,b)
B—1/3

B
where e.g. .“1(2; Z Q; and uff) ) H1(f)3 and Q; iid from {Q;}™,
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MLMC estimator: Scalarization Covariance

Vg ML] = V[ + o?V[op oq] + 20Cov i, ol

|ased

—_—

(1) o |~ =1y N 0 -1y
- Z v [“1 1.4 )] +aV [Gtgla)sed Gkglasezll E] +20Cov ['u1( ) “1(,6 )7 Géiazsed o Géiase?i,ﬁ
Three (independent) solution strategies:

1. Pearson correlation: (easy to compute, inequality)

2. Bootstrapping (more expensive, approximation)
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MLMC estimator: Scalarization Covariance

V[CML] — V[.u L] + OCZV[ |ased] + ZO‘COV[."H >Gb|ased

——

(1) o |~ =1y N 0 -1y
- Z v [“1 1.4 )] +aV [Gtgla)sed Gt(nasezi E] +20Cov ['u1( ) “1(,6 )7 Géiazsed o Géiase?i,ﬁ
Three (independent) solution strategies:

1. Pearson correlation: (easy to compute, inequality)
2. Bootstrapping (more expensive, approximation)

3. Correlation Lift:

P e —_——

Assume: p[ui”), ol ol ~ plut?, 1), (0 — k) € {-1,0,1}

iased

Then: Cov [uy),oé.k) ] ~ Cov [ufg),uék)]
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MLMC estimator: Scalarization Covariance

V[CML] — V[uu1ML] + aZV[Gg‘igsed] + ZOC(COV[,LLQ"L, Glgli;sed

—

L —_— —_— —_— —_—
( (-1 l (-1 (0) (1—1) (o) (1—1)
- ; Vv [“1( ) “1(,6 )] + OCZV [Gtgizzsed o Géiaseél,é] +20Cov ['u1 — H4 A > Opjased — cybiased,é’
=0
Three (independent) solution strategies:

1. Pearson correlation: (easy to compute, inequality)
2. Bootstrapping (more expensive, approximation)

3. Correlation Lift:

P e —_——

Assume: p[ui”), ol ol ~ plut?, 1), (0 — k) € {-1,0,1}

iased ’

— L ——— — /\]

Then: Cov [u1(£),6ék) ] ~ Cov [M(ﬁ),“ék)
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MLMC estimator: Scalarization Covariance

« Same level:

o (0)
¢ ¢ 28
cou .| =1

e Lower level variance:

Cov [m“),uéi ”] -

% [E[Q(@(Q(M ))2] — E[Q(f)]E[(Q(£—1 ))2] _ 21@[@(@-1 )]E[Q(ﬁ) QU1 )] i ZE[Q“)]E[Q“—1 )]2]
[

« Lower level mean:
-1 0
Cov [“1(,£ 15 )] =
1

- [ElQ1 (@) - E[@!ME[(Q)? - 2E[@E[Q¢ V] + 2E[Q - V]E[QV)?
14

TDodge Y., Rousson V., The Complications of the Fourth Central Moment, The American Statistician, 1999
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SNOWPAC in Dakota using MLMC

Design

Dakota
OUU loop
SNOWPAC
Derivative-free optimization _ ______._
1 1 Surrogate ' ' Feasibility
! TRM | Optimization : : Restoration

N

Statistics

Monte Carlo Multilevel Monte
Carlo

UQ Samples

)

Algorithmic details:
« lterative sample allocation

 Underrelaxation

« Choice of sample allocation strategy: Analytic approximation vs. numerical optimization

« Choice of covariance approximation: Pearson vs. Bootstrap vs. Correlation Lift
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty
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Cantilever beam problem:

2 design parameters: w,t 4 uncertain parameters:

- -0 — %}’ - Yield stress: R ~ .4 (40000,200)
X
! « Young’s modulus: E ~ .4'(2.9e7,1.45¢6)

ANNN

w

Adams, B.M., et. al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design H .

Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: ° HO”ZO ntal |Oad . X ~ :/V(SOO, 1 OO)
Version 6.15 User’s Manual

Objective: min,, ; wt - Vertical load: Y ~ .47(1000, 100)

- Level 3: Rectangle (Cost = 1)
600 600

stress( 5 Y + e X)/R—1<0

3

,‘;Lt\/(y)2+(%)2>/oo—1 <0

 Level 2: Ellipse instead of rectangle (Cost = 1e-2)

displacement :(

 Level 1: Circle inscribed in rectangle instead of rectangle (Cost = 1e-4)

 Level 0: Circle with same area instead of rectangle (Cost = 1e-6)
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Cantilever beam problem:

2 design parameters: w,t 4 uncertain parameters:

- -0 — %}’ - Yield stress: R ~ .4 (40000,200)
X
! « Young’s modulus: E ~ .4'(2.9e7,1.45¢6)

ANNN

w

Adams, B.M., et. al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design H .

Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: ° HO”ZO ntal |Oad . X ~ :/V(SOO, 1 OO)
Version 6.15 User’s Manual

Objective: miny w t (Sampling only) « Vertical load: Y ~ .47(1000, 100)

- Level 3: Rectangle (Cost = 1)
600 600

stress( 5 Y + e X)/R—1<0

3

,‘;Lt\/(y)2+(%)2>/oo—1 <0

 Level 2: Ellipse instead of rectangle (Cost = 1e-2)

displacement :(

 Level 1: Circle inscribed in rectangle instead of rectangle (Cost = 1e-4)

 Level 0: Circle with same area instead of rectangle (Cost = 1e-6)
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Test results

1. Present sampling results by resampling estimators and plot histogram of estimators
2. Compare three strategies for estimating Cov-term:

— Pearson
— Bootstrap

— using pu{”, Gkeal = [y, 18] (CorrLift
3. Compare algorithmic strategies:

— lterations vs. no iterations
— Analytics approximation (only) vs. numerical optimization

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty
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Sampling Results: Mean

C2

500

400 -

300

200 -

100 A

—— MC

—e— MLMC Mean 20 iter

»-e: MLMC Mean 1 iter

-0.734 -0.732 -0.730 -0.728
Ac2(x)]

-0.726

« MLMC Mean distribution (blue) consistent with MC reference (red) for lower cost.
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Sampling Results: Mean

Cost

—e— MLMC Mean 20 iter
~+e¢: MLMC Mean 1 iter

= MC ref
0.012 4

0.010 4

0.008

0.006

0.004 -

0.002

0.000
0

200 400 600 800 1000
Cost[max (AY'[c1(x)], AYH{c2(x)])]

« MLMC Mean distribution (blue) consistent with MC reference (red) for lower cost.
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Sampling Results: Scalarization (Pearson)

C?2

MC

MLMC Scalarization Opt 20 iter
MLMC Scalarization Opt 1 iter
=—e= MLMC Scalarization AA 20 iter
=« MLMC Scalarization AA 1 iter

250 A

fH

200 A

1501

100 A

50 4

~0.6575 ~0.6550 ~0.6525 ~0.6500 ~0.6475 ~0.6450 ~0.6425 ~0.6400 ~0.6375
M ea(x)]

« MLMC Scalarization (green) close but overresolves to MC reference case (red).

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty 18


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

Sampling Results: Scalarization (Pearson)

Cost

—e— MLMC Scalarization Opt 20 iter
MLMC Scalarization Opt 1 iter
MLMC Scalarization AA 20 iter
MLMC Scalarization AA 1 iter
MC ref

0.005 4

| 41

0.004

0.003 4

0.002 -

0.001 -

fe— T

1500 2000 2500
Cost{max ({"[c1(x)], {M[c2(x)])]

« MLMC Scalarization (green) close but overresolves to MC reference case (red).

0.000

 Results in higher computational cost than MC reference.
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Sampling Results: Scalarization (Bootstrap)

C2

—— MC

—e— MLMC Scalarization Opt 20 iter
-+ MLMC Scalarization Opt 1 iter

=—e= MLMC Scalarization AA 20 iter
—e . MLMC Scalarization AA 1 iter

200 -

1754

1501

100 4

754

50

254

1

Z
o
—0.6575 —0.6550 —0.6525 —0.6500 —0.6475 —0.6450 —0.6425 —0.6400 —0.6375
ey (x)]

« MLMC Scalarization (green) consistent with MC reference (red) using Bootstrap.

0

« Cost reduced compared to Pearson

« BUT bootstrapping itself becomes computational bottleneck
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Sampling Results: Scalarization (Bootstrap)

Cost

0.006 o .
—e— MLMC Scalarization Opt 20 iter
++e+ MLMC Scalarization Opt 1 iter
—e— MLMC Scalarization AA 20 iter
—e - MLMC Scalarization AA 1 iter

0.005 1 = MC ref

0.004

0.003 1

0.002

L]
0.001 A
0.000 _ et e N N\ e T oy ‘ s ‘ ‘ ‘
0 2000 2500 3000 3500 4000

Cost{max ({"[c1(x)], {M[c2(x)])]

« MLMC Scalarization (green) consistent with MC reference (red) using Bootstrap.
« Cost reduced compared to Pearson

« BUT bootstrapping itself becomes computational bottleneck
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Sampling Results: Scalarization (CorrLift)

C2

——  MC

—e— MLMC Scalarization Opt 20 iter
200 1 -+e+ MLMC Scalarization Opt 1 iter
== MLMC Scalarization AA 20 iter
—e : MLMC Scalarization AA 1 iter

150 4

100 A

50

0

- — - - - - - " -
—0.6575 —0.6550 —0.6525 —0.6500 —0.6475 —0.6450 —0.6425 —0.6400 —0.6375
M ca(x)]

« MLMC Scalarization (green) consistent with MC reference (red) (left) for lower cost (right) using
CorrLift.

« Computational effort similar to Pearson and << Bootstrap
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Sampling Results: Scalarization (CorrLift)

Cost

0.006
—e— MLMC Scalarization Opt 20 iter
-+e« MLMC Scalarization Opt 1 iter
=—e—= MLMC Scalarization AA 20 iter
—e : MLMC Scalarization AA 1 iter

00031 —— MC ref

0.004 A

0.003 1

0.002 1

0.001 1

0.000 . . '__.". ——___.' ........... ' .

0 500 1000 1500 2000 2500

Costimax (Z"cy(x)], " [c2(:)D)]

« MLMC Scalarization (green) consistent with MC reference (red) (left) for lower cost (right) using

CorrLift.

« Computational effort similar to Pearson and << Bootstrap
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Sampling Summary

MLMC targeting the respective formulation necessary for optimal result

Covariance term approximation crucial in scalarization

Bootstrap leads to consistently better results but non-negligible computational cost

- "Best of both worlds” achieved using CorrLift approach
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Sampling Summary

MLMC targeting the respective formulation necessary for optimal result

Covariance term approximation crucial in scalarization

Bootstrap leads to consistently better results but non-negligible computational cost

- "Best of both worlds” achieved using CorrLift approach

How does this translate to optimization?
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Cantilever beam problem:

2 design parameters: w,t 4 uncertain parameters:

- -0 — %}’ - Yield stress: R ~ .4 (40000,200)
X
! « Young’s modulus: E ~ .4'(2.9e7,1.45¢6)

ANNN

w

Adams, B.M., et. al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design H .

Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: ° HO”ZO ntal |Oad . X ~ :/V(SOO, 1 OO)
Version 6.15 User’s Manual

Objective: miny, (wt - Vertical load: Y ~ .47(1000, 100)

- Level 3: Rectangle (Cost = 1)
600 600

stress( 5 Y + e X)/R—1<0

3

4L Y X
24(—5)?)/Dp—1 <

- t\/( 52+ (25)7) /Do —1<0

 Level 2: Ellipse instead of rectangle (Cost = 1e-2)

o 1= Circle i bed o i ' of e (Cost = Te-4

QW% i i i —
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OUU Results (Pearson)

Mean + Pushback: s.t. f(x) =FE[gn(x, §)]+ 30lgn(x, §)] (Pearson)

N\ N\

® MC

S \\ ~ S\ v MLMC Scalarization

4.0

3.8

36N

3.4

32
2.0

« Pearson approximation results in overestimation

« At the price of higher computational cost
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OUU Results (Pearson)

2000

= -
o ~
=3 a
S o

-
N
o
o

[ ~
o o
o o

Total Optimization Cost (avg ov 50 runs)

« Pearson approximation results in overestimation

Cost(Scalarization): mingE[fy(x, 8)] + 3o[fy(x, )] (Pearson)

1000 4

MC

« At the price of higher computational cost
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OUU Results (CorrLift)

Mean + Pushback: s.t. f(x) = E[gn(x, §)]+ 3olgnu(x, §)] (CorrLift)

N N

® MC

N \ N v MLMC Scalarization

40N\

3.8 1

36N

3.4

3.2

2.0

« CorrLift can reduce costs and improve the results

« Still higher computational cost compared to MC
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OUU Results (CorrLift)

Cost(Scalarization): minyE[fy(x, 8)] + 3o[fy(x, 6)] (CorrLift)

2000

-
~
a
o

1500 4

1250

1000 4

[ ~
o o
o o

Total Optimization Cost (avg ov 50 runs)

MC MLMC Scalarization

« CorrLift can reduce costs and improve the results

« Still higher computational cost compared to MC
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Conclusion

= New MLMC estimators for Standard Deviation and Scalarization coupled with SNOWPAC.

= New approximations for Cov-Term in Scalarization.

Future work and open questions: Links:
« Investigate cost increase in Cantilever case « SNOWPAC: github.com/snowpac/snowpac
« Near future: Wind application « Dakota: dakota.sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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