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A Deterministic Inverse Problem

» m) SIS

Problem
Given some observed data, find A € A that best predicts the data.

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022



A Deterministic Inverse Problem

» m) SIS

Problem
Given some observed data, find A € A that best predicts the data.

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

Problem

Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.
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A Stochastic Inverse Problem
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Problem

Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem

N-- -

Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.
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A Different Stochastic Inverse Problem

N-- -

Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

@ Solutions may not be unique without additional assumptions.
@ We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

@ A finite-dimensional parameter space, A.
@ A parameter-to-observation/data map, Q : A — D = Q(A)
© A observed/target probability measure on (D, Bp), denoted PS5, with

density 7% (typically from experimental data)

@ An initial probability measure on (A, By), denoted P't, with density it
(typically from prior beliefs or expert knowledge)
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Notation

We assume we are given:

@ A finite-dimensional parameter space, A.

@ A parameter-to-observation/data map, Q : A — D = Q(A)

© A observed/target probability measure on (D, Bp), denoted PS5, with
density 7% (typically from experimental data)

@ An initial probability measure on (A, By), denoted P't, with density it
(typically from prior beliefs or expert knowledge)

We need to compute:

@ The push-forward of the initial density through the model.

@ In other words, we need to solve a forward UQ problem using the initial.

o We use wged to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, Pobs s absolutely continuous
with respect to the push-forward of the initial, P%ed.

s

pred
D

Good Initial Bad Initial
(Cannot predict all observations)
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pi" on (A, Bp) and an observed probability

measure, P, on (D, Bp), the probability measure Py¥ on (A, By) defined by

up init ﬂ.obs Q A
B = [ ([ o, OB T dn ) dun(a). ¥A < By

solves the stochastic inverse problem.

Tim Wildey (tmwilde@sandia.gov)

ML for DCI

SIAM UQ 2022



A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pt on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (A, Bp) defined by

up _ 7I_init ﬂ-'ons( Q()‘))
rea = [ ([ oy TSN Q()\))dMA,q(A)) dun(q), YA € By

solves the stochastic inverse problem.

The updated measure of N\ is 1.
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pt on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (A, Bp) defined by

up _ 7I_init ﬂ-'ons( Q()‘))
rea = [ ([ oy TSN Q()\))dMA,q(A)) dun(q), YA € By

solves the stochastic inverse problem.

The updated measure of N\ is 1.

PPy¥ is stable with respect to perturbations in P%* and in Pit.

For details: [Combining Push-forward Measures and Bayes’ Rule to Construct Consistent
Solutions to Stochastic Inverse Problems, BJW. SISC 40 (2), 2018.]
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pi" on (A, Bp) and an observed probability
measure, P, on (D, Bp), the probability measure Py¥ on (A, By) defined by

up init ﬂ.obs Q A
B = [ ([ o, OB T dn ) dun(a). ¥A < By

solves the stochastic inverse problem.

The updated density is:

71_up _ 7_l,init 7T':)DbS(Q()‘))
R S C)

e Both 7ifit and 7% are given.

o Computing 72 requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

)\1U% + U% = ].7

v — Ui =

Quantity of interest is the second component: Q(\) = us.
Given 725 ~ N(0.3,0.0252).

Given a uniform initial density.

Use 10,000 samples from the initial and a standard KDE to approximate the
push-forward.

Use standard rejection sampling to generate samples from 7,".
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A Parameterized Nonlinear System
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Figure: Samples from the updated density (left) and a comparison of 73, wged and

push-forward of the updated density (right).

Tim Wildey (tmwilde@sandia.gov) SIAM UQ 2022 10/36



Why do we care about approximate models?

Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD)

Climate Modeling Multi-scale Materials Modeling
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Convergence of Inverse Solutions

Recall that the updated density is given by

5 (Q(N)

OO

The updated density using a surrogate model, Qs()), is given by

o obs
oW =W SR
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Convergence of Inverse Solutions

Recall that the updated density is given by

P(N) = T (n) 2 Q)

The updated density using a surrogate model, Qs()), is given by

o obs
oW =W SR

Theorem (B.J.W. SISC 2018b)

Under the the assumptions in [B.J.W., 2018b], Qs(A) = Q(A) in L*(A) =
A2 () = (A in LY(A).

Extensions to convergence in LP have also been developed recently [Butler, Wildey,
Zhang, 1JUQ, 2022].
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Does this include data-driven models?

Theorem (W. Zhang Thesis 2021)

Suppose @ € C(N) and the assumptions in [B.J.W., 2018b] are satisfied. Then
there exists a sequence of single hidden layer Neural Networks defined on N\ such
that (amongst other results):

T2 (X) = wP(N) in L1(N).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].
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Theorem (W. Zhang Thesis 2021)

Suppose @ € C(N) and the assumptions in [B.J.W., 2018b] are satisfied. Then
there exists a sequence of single hidden layer Neural Networks defined on N\ such
that (amongst other results):

T2 (X) = wP(N) in L1(N).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].

Does this help me add error bars or confidence intervals to my solution to the
stochastic inverse problem?
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Does this include data-driven models?

Theorem (W. Zhang Thesis 2021)

Suppose @ € C(N) and the assumptions in [B.J.W., 2018b] are satisfied. Then
there exists a sequence of single hidden layer Neural Networks defined on N\ such
that (amongst other results):

T2 (X) = wP(N) in L1(N).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].

Does this help me add error bars or confidence intervals to my solution to the
stochastic inverse problem?

No, but let's see what we can do ...
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Back to verification for physics-based models

To paraphrase a quote from the movie Shrek:
Verification is like an onion ...
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Back to verification for physics-based models

To paraphrase a quote from the movie Shrek:
Verification is like an onion ... it stinks. Also, it has layers.

Linear solver
Nonlinear solver
Spatial discretization
Transient discretization

Coupling

Uncertain inputs
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Back to verification for physics-based models

To paraphrase a quote from the movie Shrek:
Verification is like an onion ... it stinks. Also, it has layers.

Linear solver
Nonlinear solver
Spatial discretization
Transient discretization

Coupling

Uncertain inputs

We need to consider a variety of approaches to quantify the various sources of
error/uncertainty.
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Error Estimates for Surrogates of Deterministic

Physics-based Models

If we assume:
@ we have a Qol from a physics-based model,
@ we build a surrogate approximation of the Qol.
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Error Estimates for Surrogates of Deterministic

Physics-based Models

If we assume:
@ we have a Qol from a physics-based model,

@ we build a surrogate approximation of the Qol.

Then, the error in point-wise evaluations of the surrogate model are due to:
@ interpolation or extrapolation of the surrogate model
@ biased training data from using discretized physics-based models

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022 15 /36



Error Estimates for Surrogates of Deterministic

Physics-based Models

If we also assume:
@ we have an adjoint for the physics-based model,

Then, we can use a generalization of adjoint-based techniques to estimate the

error in point-wise evaluations of the surrogate model [Butler, Dawson, W. 2011].

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022

16 /36



Error Estimates for Surrogates of Deterministic

Physics-based Models

If we also assume:
@ we have an adjoint for the physics-based model,

Then, we can use a generalization of adjoint-based techniques to estimate the

error in point-wise evaluations of the surrogate model [Butler, Dawson, W. 2011].

Such error estimates are higher-order and can be used to:
o Define an improved surrogate model [Butler, Dawson, W. 2013]
Drive adaptivity in the surrogate model [Jakeman, W. 2015]

°
@ Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]
@ Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]

(]

Estimate errors in probabilities of rare events [Butler, W. 2018]
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Error Estimates for Surrogates of Deterministic

Physics-based Models

If we also assume:

@ we have an adjoint for the physics-based model,
Then, we can use a generalization of adjoint-based techniques to estimate the
error in point-wise evaluations of the surrogate model [Butler, Dawson, W. 2011].
Such error estimates are higher-order and can be used to:

o Define an improved surrogate model [Butler, Dawson, W. 2013]

@ Drive adaptivity in the surrogate model [Jakeman, W. 2015]

@ Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]
@ Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]
(]

Estimate errors in probabilities of rare events [Butler, W. 2018]

Have not been used to estimate errors in data-consistent inversion ... )
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Error Estimates for Data-consistent Solutions

Suppose we are given
@ A surrogate model, Qs(\) = Q()).
init

o A set of samples (not training data), {)\,-};Vzl, generated from 7", where we
want to evaluate Qs()).

@ An estimate of the error g; = Q(\;) — Qs(\i)
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Error Estimates for Data-consistent Solutions

Suppose we are given
@ A surrogate model, Qs(\) = Q()).

o A set of samples (not training data), {)\,-};V:l, generated from 7', where we
want to evaluate Qs()).

@ An estimate of the error g; = Q(\;) — Qs(\i)
Then, we can defined the improved surrogate approximation:

Qs+ (Aj) = Qs(\i) + e,
and the improved data-consistent solution:

%( Qs+ (M)

7T/L{p’5+()\i) = A (s (N), s (X)) = T2 (Qs1 (M)
D S+AI
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Error Estimates for Data-consistent Solutions

The improved ratio, rs();), can be used to estimate the error in the updated
density in the total variation metric:

) = ()] i

T (A) — pr’s()\)) dup =~ //\

N
1
~ DI = 1)
i=1

We can also it to evaluate the reliability in the updated density on a point-wise
basis.

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022
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A simple example

Consider the following partial differential equation,

—V - (KVu) 4+ b(A1, A2,x) - Vu=g(x), xe€Q=(0,1)x(0,1)
u=0, x € 09

The quantity of interest is a mollified point-evaluation:

Q) = %e—loo(><1—0.5)2—100(x2—0.5)2

Discretization details:
@ Finite element on 50 x 50 mesh,

@ Surrogate approximation is 3"d-order pseudo-spectral approximation
o Implies the error estimate is 6™-order

e 7iMt is uniform on [0, 1]2

@ Use 50,000 samples evaluated using surrogate to approximate push-forward

Tim Wildey (tmwilde@sandia.gov) ML for DCI

SIAM UQ 2022 19/36



A simple example

True Updated Density

0.8




A simple example

Estimated Error in the Updated Density Error in the Updated Density

True TV error = 0.4002
Estimated TV error = 0.4017
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This is nice, but ...

This approach is not very useful for models built from data!
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This approach is not very useful for models built from data!

Data-driven models tend to have many sources of error/uncertainty:
o Discretization/architecture (epistemic)

Sparse/uninformative data (epistemic)

Noisy data (aleatoric)

Optimization/solver variability (aleatoric)

Extrapolation/OoD (epistemic)
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This approach is not very useful for models built from data!

Data-driven models tend to have many sources of error/uncertainty:
o Discretization/architecture (epistemic)
@ Sparse/uninformative data (epistemic)
o Noisy data (aleatoric)
e Optimization/solver variability (aleatoric)
o Extrapolation/OoD (epistemic)

From [Hiillermeier and Waegeman 2021]:
. a trustworthy representation of uncertainty is desirable and should be
considered as a key feature of any machine learning method ...

Bayesian [Neal 2012; Gal et al 2016; ...] and ensemble-based [Lakshminarayanan et al
2017; Ashukha et al 2021, ...] approaches are the most common.

From [Abdar et al 2021]:
. ensemble methods have a great ability to deal with uncertainty ...

We use a combination of ensemble-based approaches ...
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Q.(sl)()‘)}
i=1

Let g denote an ensemble-averaged quantity, e.g.,

Qs(A) = % Z QYN
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Q.(sl)()‘)}
i=1

Let g denote an ensemble-averaged quantity, e.g.,
1L
Qs(N) = 37> QM)
i=1

How can we construct a data-consistent measure/density?
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Q.(sl)()‘)}
i=1

Let g denote an ensemble-averaged quantity, e.g.,
1L
Qs(N) = 37> QM)
i=1

How can we construct a data-consistent measure/density?
Each member of the ensemble can be used to compute a data-consistent solution:
) obs(Q(i)()\))
up,S,i A) = ity D S
A ( ) = T\ ( ) pred,S,i [6) A
D (Qs7(A)
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Using the proper ensemble for DCI

. M
Suppose we compute an ensemble of data-driven surrogate models, {Q.(sl)()‘)}
i=1

Let g denote an ensemble-averaged quantity, e.g.,
1L
Qs(N) = 37> QM)
i=1

How can we construct a data-consistent measure/density?
Each member of the ensemble can be used to compute a data-consistent solution:
) obs(Q(i)()\))
up,S,i A) = ity D S
A ( ) = T\ ( ) pred,S,i [6) A
D (Qs7(A)

But we need to be careful with ensemble averages ...
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Using the proper ensemble for DCI

A few options:
@ Use the ensemble-averaged updated density (ratio),

TS () = T (A)Fs(N)
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Using the proper ensemble for DCI

A few options:
@ Use the ensemble-averaged updated density (ratio),

TS () = T (A)Fs(N)

@ Use the ensemble averaged observed and predicted densities,

up,S init ﬁ%as
w0 = TR 22
D

where 7% and ﬁlp)re‘j are understood to be averaged for each .
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Using the proper ensemble for DCI

A few options:
@ Use the ensemble-averaged updated density (ratio),

TS () = T (A)Fs(N)

@ Use the ensemble averaged observed and predicted densities,

up,S init ﬁ%as
w0 = TR 22
D

where 7% and 72 are understood to be averaged for each \.

@ Use the ensemble-averaged surrogate model, 65()\),

5°(Qs(N)

TP (N) = miit(\
I s @s)

SIAM UQ 2022 24 /36
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Using the proper ensemble for DCI

A few options:
@ Use the ensemble-averaged updated density (ratio),

TS () = T (A)Fs(N)

@ Use the ensemble averaged observed and predicted densities,

up,S init ﬁ%as
w0 = TR 22
D

—obs —pred

where T3 and T, are understood to be averaged for each A.

@ Use the ensemble-averaged surrogate model, 65()\),

obs
ﬂ_/lj\p,S()\) — ﬂ_init(>\) (QS( ))

A d S
5 (Qs(N)
Options 1 and 2 are not guaranteed to give a consistent measure/density. J
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Using the proper ensemble for DCI

We will use

@ The ensemble-averaged surrogate model, 55()\), to estimate the
data-consistent solution.

@ The ensemble of data-consistent solutions to assess the variability in the
data-consistent solution.

© A different ensemble of perturbation to assess impact of point-wise errors in
ensemble-averaged model

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022 25 /36



Consider the 2-dimensional map @ : [0,1] — D defined by
Q()\l, /\2) = sin()\l) Sin()\z)
First, we are interested in approximating the model without noise.

o Feedforward ReLU-NN with 2 hidden layers with width of 10.

o Data-set contains uniformly distributed 1,000 samples split into 900 training
and 100 test samples

Evaluate surrogate using 10,000 uniformly distributed samples.
Observed density is N(0.5,0.01).
Ensemble size: 20
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Example

True Updated Density Ensemble Mean Updated Density .
10 ST
08 4 og 4
06 3 06 3
04 2 04 2
02 1 02 1
00 0.0
T T T T T T T T T T T T
00 02 04 0.6 08 10 0.0 02 04 06 038 10
Variance in Updated Density over Ensemble True Error in Updated Density
10
05
08
04
06
03
04
02
02
01
00
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A perturbation ensemble to estimate interpolation error

@ Suppose € is an L>(A) error bound:

sup [Q(A) — @s(V)] < e
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A perturbation ensemble to estimate interpolation error

@ Suppose € is an L>(A) error bound:

sup |Q(A) — Qs(N)| < ¢

@ Then, for each evaluation point, \;, we know that

Q) € [Qs(\i) — €, Qs(\) + €]
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A perturbation ensemble to estimate interpolation error

@ Suppose € is an L>(A) error bound:

sup [Q(A) — @s(V)] < e

@ Then, for each evaluation point, \;, we know that
Q) € [Qs(Ai) — €, Qs(Ni) +¢]

@ We use error at test points to estimate ¢
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A perturbation ensemble to estimate interpolation error

Suppose € is an L°°(A) error bound:
sup [Q(A) — @s(V)] < e
AeA

@ Then, for each evaluation point, \;, we know that

Q) € [Qs(\i) — €, Qs(\) + €]

@ We use error at test points to estimate ¢

@ For each evaluation point, A;, we generate an ensemble of perturbations
uniformly distributed in [—¢, €]

o Use these to assess how interpolation errors affect m,"(\).

@ Even with a small ensemble size, this should over-estimate the error in the
updated density.
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Example

True Error in Updated Density Maximum Difference in Updated Density over Perturbation Ensemble
10 10
05
175
0.8 04 08 150
06 0.6 123
03
100
04 04
02 075
02 02 050
01
025
0.0 0.0
T T T T T T T T T T T T
0.0 02 0.4 0.6 08 10 0.0 0z 0.4 0.6 08 10
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Incorporating Noise in the Data

Assumptions:
@ Data is composed of signal plus noise
o Variability in the data is due to noise and intrinsic variability over A

Data-consistent approach in [Butler, W., Yen 2020] addresses this problem, but
inverts into the joint A-noise space.
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Incorporating Noise in the Data

Assumptions:
@ Data is composed of signal plus noise
o Variability in the data is due to noise and intrinsic variability over A

Data-consistent approach in [Butler, W., Yen 2020] addresses this problem, but
inverts into the joint A-noise space.

We seek a simpler deconvolutional approach:
@ Approximate the signal using NN regression
@ Approximate the noise using the residuals

@ Assuming Gaussian observations and noise, deconvolve the approximate
noise from the observed distribution

@ Solve the inverse problem using the deconvolved observed and NN model
o Pushforward of updated distribution convolved with noise = observed

@ Use an ensemble to characterize the variability in the updated density
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Consider the 2-dimensional map Q : [0, 1] — D defined by
Q(/\l, )\2) = sin()\l) Sin(/\z) +e€

where € ~ N(0,02_..).

» Y noise

o Feedforward ReLU-NN with 2 hidden layers with width of 10.

@ Data-set contains uniformly distributed 1,000 samples split into 900 training
and 100 test samples

Evaluate surrogate using 10,000 uniformly distributed samples.
Observed density is N(0.5,0.01).
Noise is N(0.0, 0.005)
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Example

True Updated Density Ensemble Mean Updated Density
10
7
08 3
5
06
4
04 3
02 2
1
00
0
Variance in Updated Density over Ensemble True Error in Updated Density
1o 175
08 150
125
0.6
100
04 075
02 050
025
0.0
0.00
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How about extrapolation (OoD) errors?

@ We use the same problem trained /tested on [0, 1]?
@ We attempt to solve the stochastic inverse problem on [0,2]?

e Evaluate surrogate using 10,000 uniformly distributed samples on [0, 2]2.

True Updated Density Ensemble Mean Updated Density

200 0 200 7
175 175 3
150 8 1so s
125 125

3 4
100 100
075 4 0.75 3
050 0.50 2
025 ¥ 13 N
0.00 0.00

0 0

T T T T T T T T T T
0.0 05 10 15 20 0.0 05 10 15 20
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How about extrapolation (OoD) errors?

@ We use the same problem trained /tested on [0, 1]?
@ We attempt to solve the stochastic inverse problem on [0,2]?

e Evaluate surrogate using 10,000 uniformly distributed samples on [0, 2]2.

True Error in Updated Density Variance in Updated Density over Ensemble
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Conclusions and Future Work

@ Many approaches exist for incorporating data into a model.
o Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.
o The data-consistent inversion approach provides an aleatoric
characterization of inputs over a population/collection.

@ Main computational expense is the forward UQ problem to obtain the
push-forward of the initial density.
@ We can use data-driven models within data-consistent inversion.

o Errors and uncertainties can significantly affect the solution to the inverse
problem.

o Affects the accept/reject of samples
o Affects subsequent predictions

@ If an adjoint model is available, then the affect of surrogate errors on
updated density can be estimated

@ We used a couple of ensemble-based methods to heuristically estimate a
portion of the error/uncertainty.

@ These do not capture OoD errors, but this is work in progress ...
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Thanks! Questions?
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Thank you for your attention!

Questions?
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