
A Probabilistic Characterization of Aleatoric and
Epistemic Uncertainty in Solutions to Stochastic Inverse

Problems Using Machine Learning Surrogate Models

Tim Wildey¨, Tian Yu Yen¨, Troy Butler©

¨ Sandia National Laboratories
Center for Computing Research

Scientific Machine Learning Department

© University of Colorado Denver
Department of Mathematics and Statistics

SIAM Conference on Uncertainty Quantification
April 12-15, 2022

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022 1 / 36

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525. SAND2021-4672 C

SAND2022-4339CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Data-informed Physics-Based Predictions

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022 2 / 36



Data-informed Physics-Based Predictions

MODEL

OBSERVED 
DATA

Optimization,
Inversion,
Data-assimilation

INPUTS, 
FORCINGS, 

ASSUMPTIONS

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022 2 / 36



Data-informed Physics-Based Predictions

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022 2 / 36



A Deterministic Inverse Problem

Modelx * *
*

Problem
Given some observed data, find λ ∈ Λ that best predicts the data.

Solutions may not be unique without additional assumptions.

Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

Model
Noise

* *
*

Problem
Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.

Solutions may not be unique without additional assumptions.

Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem

Model * *
*
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Problem
Given a probability density on observations, find a probability density on Λ such
that the push-forward matches the given density on the observed data.

Solutions may not be unique without additional assumptions.

We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:
1 A finite-dimensional parameter space, Λ.

2 A parameter-to-observation/data map, Q : Λ→ D = Q(Λ)

3 A observed/target probability measure on (D,BD), denoted Pobs
D , with

density πobs
D (typically from experimental data)

4 An initial probability measure on (Λ,BΛ), denoted Pinit
Λ , with density πinit

Λ

(typically from prior beliefs or expert knowledge)

We need to compute:
1 The push-forward of the initial density through the model.

In other words, we need to solve a forward UQ problem using the initial.

We use πpred
D to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, Pobs
D , is absolutely continuous

with respect to the push-forward of the initial, Ppred
D .

⇡obs
D

⇡
Q(prior)
D

⇡obs
D

⇡
Q(prior)
D
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A Solution to the Stochastic Inverse Problem

Theorem

Given an initial probability measure, Pinit
Λ on (Λ,BΛ) and an observed probability

measure, Pobs
D , on (D,BD), the probability measure Pup

Λ on (Λ,BΛ) defined by

Pup
Λ (A) =

∫
D

(∫
A∩Q−1(q)

πinit
Λ (λ)

πobs
D (Q(λ))

πpred
D (Q(λ))

dµΛ,q(λ)

)
dµD(q), ∀A ∈ BΛ

solves the stochastic inverse problem.

The updated density is:

πup
Λ (λ) = πinit

Λ (λ)
πobs
D (Q(λ))

πpred
D (Q(λ))

.

Both πinit
Λ and πobs

D are given.

Computing πpred
D requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Example

Consider a parameterized nonlinear system of equations:

λ1u
2
1 + u2

2 = 1,

u2
1 − λ2u

2
2 = 1

Quantity of interest is the second component: Q(λ) = u2.

Given πobs
D ∼ N(0.3, 0.0252).

Given a uniform initial density.

Use 10,000 samples from the initial and a standard KDE to approximate the
push-forward.

Use standard rejection sampling to generate samples from πup
Λ .
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A Parameterized Nonlinear System
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Figure: Samples from the updated density (left) and a comparison of πobs
D , πpred

D and
push-forward of the updated density (right).
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Why do we care about approximate models?

All are computationally expensive and require some form of approximation ...
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Convergence of Inverse Solutions

Recall that the updated density is given by

πup
Λ (λ) = πinit

Λ (λ)
πobs
D (Q(λ))

πpred
D (Q(λ))

The updated density using a surrogate model, QS(λ), is given by

πup,S
Λ (λ) = πinit

Λ (λ)
πobs
D (QS(λ))

πpred,S
D (QS(λ))

Theorem (B.J.W. SISC 2018b)

Under the the assumptions in [B.J.W., 2018b], QS(λ)→ Q(λ) in L∞(Λ) =⇒
πup,S

Λ (λ)→ πup
Λ (λ) in L1(Λ).

Extensions to convergence in Lp have also been developed recently [Butler, Wildey,

Zhang, IJUQ, 2022].
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Does this include data-driven models?

Theorem (W. Zhang Thesis 2021)

Suppose Q ∈ C (Λ) and the assumptions in [B.J.W., 2018b] are satisfied. Then
there exists a sequence of single hidden layer Neural Networks defined on Λ such
that (amongst other results):

πup,S
Λ (λ)→ πup

Λ (λ) in L1(Λ).

Similar results can be shown for Neural Networks with arbitrary depth and fixed
width by combining this result with the UAT from [Zhou et al 2017].

Does this help me add error bars or confidence intervals to my solution to the
stochastic inverse problem?

No, but let’s see what we can do ...
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Back to verification for physics-based models

To paraphrase a quote from the movie Shrek:

Verification is like an onion ...

it stinks. Also, it has layers.

We need to consider a variety of approaches to quantify the various sources of
error/uncertainty.
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Error Estimates for Surrogates of Deterministic
Physics-based Models

If we assume:

we have a QoI from a physics-based model,

we build a surrogate approximation of the QoI.

Then, the error in point-wise evaluations of the surrogate model are due to:

interpolation or extrapolation of the surrogate model

biased training data from using discretized physics-based models
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Error Estimates for Surrogates of Deterministic
Physics-based Models

If we also assume:

we have an adjoint for the physics-based model,

Then, we can use a generalization of adjoint-based techniques to estimate the
error in point-wise evaluations of the surrogate model [Butler, Dawson, W. 2011].

Such error estimates are higher-order and can be used to:

Define an improved surrogate model [Butler, Dawson, W. 2013]

Drive adaptivity in the surrogate model [Jakeman, W. 2015]

Decompose errors into various contributions [Bryant, Prudhomme, W. 2015]

Derive better MCMC sampling strategies [Butler, Dawson, W. 2015]

Estimate errors in probabilities of rare events [Butler, W. 2018]

Have not been used to estimate errors in data-consistent inversion ...
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Error Estimates for Data-consistent Solutions

Suppose we are given

A surrogate model, QS(λ) ≈ Q(λ).

A set of samples (not training data), {λi}Ni=1, generated from πinit
Λ , where we

want to evaluate QS(λ).

An estimate of the error ei ≈ Q(λi )− QS(λi )

Then, we can defined the improved surrogate approximation:

QS+(λi ) = QS(λi ) + ei ,

and the improved data-consistent solution:

πup,S+
Λ (λi ) = πinit

Λ (λi )rS+(λi ), rS+(λi ) =
πobs
D (QS+(λi ))

πpred,S+
D (QS+(λi ))
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Error Estimates for Data-consistent Solutions

The improved ratio, rS+(λi ), can be used to estimate the error in the updated
density in the total variation metric:∫

Λ

∣∣∣πup
Λ (λ)− πup,S

Λ (λ)
∣∣∣ dµΛ ≈

∫
Λ

∣∣∣πup,S+
Λ (λ)− πup,S

Λ (λ)
∣∣∣ dµΛ

≈ 1

N

N∑
i=1

|rS+(λi )− rS(λi )|

We can also it to evaluate the reliability in the updated density on a point-wise
basis.
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A simple example

Consider the following partial differential equation,{
−∇ · (K∇u) + b(λ1, λ2, x) · ∇u = g(x), x ∈ Ω = (0, 1)× (0, 1)

u = 0, x ∈ ∂Ω

The quantity of interest is a mollified point-evaluation:

Q(λ) =
100

π
e−100(x1−0.5)2−100(x2−0.5)2

Discretization details:

Finite element on 50× 50 mesh,

Surrogate approximation is 3rd-order pseudo-spectral approximation

Implies the error estimate is 6th-order

πinit
Λ is uniform on [0, 1]2

Use 50,000 samples evaluated using surrogate to approximate push-forward
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A simple example
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A simple example

True TV error = 0.4002

Estimated TV error = 0.4017
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This is nice, but ...

This approach is not very useful for models built from data!

Data-driven models tend to have many sources of error/uncertainty:

Discretization/architecture (epistemic)

Sparse/uninformative data (epistemic)

Noisy data (aleatoric)

Optimization/solver variability (aleatoric)

Extrapolation/OoD (epistemic)

From [Hüllermeier and Waegeman 2021]:

... a trustworthy representation of uncertainty is desirable and should be
considered as a key feature of any machine learning method ...

Bayesian [Neal 2012; Gal et al 2016; ...] and ensemble-based [Lakshminarayanan et al

2017; Ashukha et al 2021, ...] approaches are the most common.

From [Abdar et al 2021]:

... ensemble methods have a great ability to deal with uncertainty ...

We use a combination of ensemble-based approaches ...
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From [Abdar et al 2021]:

... ensemble methods have a great ability to deal with uncertainty ...

We use a combination of ensemble-based approaches ...
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Using the proper ensemble for DCI

Suppose we compute an ensemble of data-driven surrogate models,
{
Q

(i)
S (λ)

}M

i=1
.

Let g denote an ensemble-averaged quantity, e.g.,

QS(λ) =
1

M

M∑
i=1

Q
(i)
S (λ)

How can we construct a data-consistent measure/density?

Each member of the ensemble can be used to compute a data-consistent solution:

πup,S,i
Λ (λ) = πinit

Λ (λ)
πobs
D (Q

(i)
S (λ))

πpred,S,i
D (Q

(i)
S (λ))

But we need to be careful with ensemble averages ...
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Using the proper ensemble for DCI

A few options:

1 Use the ensemble-averaged updated density (ratio),

πup,S
Λ (λ) = πinit

Λ (λ)rS(λ)

2 Use the ensemble averaged observed and predicted densities,

πup,S
Λ (λ) = πinit

Λ (λ)
πobs
D

πpred
D

where πobs
D and πpred

D are understood to be averaged for each λ.

3 Use the ensemble-averaged surrogate model, QS(λ),

πup,S
Λ (λ) = πinit

Λ (λ)
πobs
D (QS(λ))

πpred,S
D (QS(λ))

Options 1 and 2 are not guaranteed to give a consistent measure/density.
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Using the proper ensemble for DCI

We will use

1 The ensemble-averaged surrogate model, QS(λ), to estimate the
data-consistent solution.

2 The ensemble of data-consistent solutions to assess the variability in the
data-consistent solution.

3 A different ensemble of perturbation to assess impact of point-wise errors in
ensemble-averaged model
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Example

Consider the 2-dimensional map Q : [0, 1]→ D defined by

Q(λ1, λ2) = sin(λ1) sin(λ2)

First, we are interested in approximating the model without noise.

Feedforward ReLU-NN with 2 hidden layers with width of 10.

Data-set contains uniformly distributed 1,000 samples split into 900 training
and 100 test samples

Evaluate surrogate using 10,000 uniformly distributed samples.

Observed density is N(0.5,0.01).

Ensemble size: 20
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Example
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A perturbation ensemble to estimate interpolation error

Suppose ε is an L∞(Λ) error bound:

sup
λ∈Λ

∣∣Q(λ)− QS(λ)
∣∣ ≤ ε

Then, for each evaluation point, λi , we know that

Q(λi ) ∈
[
QS(λi )− ε,QS(λi ) + ε

]
We use error at test points to estimate ε

For each evaluation point, λi , we generate an ensemble of perturbations
uniformly distributed in [−ε, ε]
Use these to assess how interpolation errors affect πup

Λ (λ).

Even with a small ensemble size, this should over-estimate the error in the
updated density.
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Example
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Incorporating Noise in the Data

Assumptions:

Data is composed of signal plus noise

Variability in the data is due to noise and intrinsic variability over Λ

Data-consistent approach in [Butler, W., Yen 2020] addresses this problem, but
inverts into the joint Λ-noise space.

We seek a simpler deconvolutional approach:

1 Approximate the signal using NN regression

2 Approximate the noise using the residuals

3 Assuming Gaussian observations and noise, deconvolve the approximate
noise from the observed distribution

4 Solve the inverse problem using the deconvolved observed and NN model

Pushforward of updated distribution convolved with noise = observed

5 Use an ensemble to characterize the variability in the updated density
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Example

Consider the 2-dimensional map Q : [0, 1]→ D defined by

Q(λ1, λ2) = sin(λ1) sin(λ2) + ε

where ε ∼ N(0, σ2
noise).

Feedforward ReLU-NN with 2 hidden layers with width of 10.

Data-set contains uniformly distributed 1,000 samples split into 900 training
and 100 test samples

Evaluate surrogate using 10,000 uniformly distributed samples.

Observed density is N(0.5,0.01).

Noise is N(0.0, 0.005)
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Example

Tim Wildey (tmwilde@sandia.gov) ML for DCI SIAM UQ 2022 32 / 36



How about extrapolation (OoD) errors?

We use the same problem trained/tested on [0, 1]2

We attempt to solve the stochastic inverse problem on [0, 2]2

Evaluate surrogate using 10,000 uniformly distributed samples on [0, 2]2.
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Conclusions and Future Work

Many approaches exist for incorporating data into a model.

Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.

The data-consistent inversion approach provides an aleatoric
characterization of inputs over a population/collection.

Main computational expense is the forward UQ problem to obtain the
push-forward of the initial density.

We can use data-driven models within data-consistent inversion.

Errors and uncertainties can significantly affect the solution to the inverse
problem.

Affects the accept/reject of samples
Affects subsequent predictions

If an adjoint model is available, then the affect of surrogate errors on
updated density can be estimated

We used a couple of ensemble-based methods to heuristically estimate a
portion of the error/uncertainty.

These do not capture OoD errors, but this is work in progress ...
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Thanks! Questions?
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Questions?
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