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Science Driver

Energy Exascale Earth System Model (E3SM) - Land
Component

@ The Land Model (ELM) Component of the Energy Exascale Earth System
Model (E3SM) is increasingly complex with many processes

@ Large ensembles are needed for uncertainty quantification... but
computationally infeasible

@ Focus on surrogate models based on small ensembles to increase the
efficiency of sensitivity analysis and model calibration studies
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UQ via Tensors

Cheaper Surrogates are Necessary to Replace Expensive

Computational Models for UQ Assessments

Requirements:
@ expressivity with a limited number of parameters

@ once constructed surrogate models need to be computationaly cheap —
analyses often requiring O(10°) evaluations with limited computational
resources
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resources

Functional Approximations:

@ tensor-product basis approximations
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@ the curse of dimensionality O(N¢) typically limits the polynomial
order/no. of functions

@ ..this places limits on the surrogate model capacity to adapt to
non-linear behavior

@ Instead focus on low-rank functional tensor network models
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UQ via Tensors

Functional Tensor-Train Models

Analogous to tensor-train models [Oseledets, 2013]: approximate multivariate functions
instead of multidimensional arrays
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@ Model evaluation/gradient computation consists of a sequence of matrix-vector
multiplications
@ AA. Gorodetsky, ).D. Jakeman. “Gradient-based optimization for regression in
the functional tensor-train format,’ J. of Comp. Phys. 374 (2018): 1219-1238.
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Tensor Models can have Arbitrary Network Structure

@ Increased flexibility to represent model structure
@ Example: a hierarchical Tucker format for a 5-dimensional model
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UQ via Tensors
Functional Tensor Networks — Definitions

A tensor contraction is a binary operation on two tensors .4 € R"*/ 44 and
B € R 45 yielding a tensor C.

@ The operation is parameterized by two index sets, I' = { +, ..., v, } and
Y= {ny,...,n .}, satisfying three conditions:
1. 1<y,<d,foreachy, €T’
2. 1<n, <dgforeachn, e T
3.0, =J, fork=1,...¢
@ After permuting the modes so that the contracting dimensions are first

I, I,
Ciy,nd dg Rk dg e T Z Z oy ¥ g1 0 dAfewa,‘Y ok1okap—e?
=1 =1

with € having order d 4, + d; — 2¢.
Example: Matrix-Matrix multiplication

I
Cik = Z G101 b’Ylvkl
v1=1
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UQ via Tensors
Functional Tensor Networks — Definitions

A tensor network is a connected directed o
graph TN
7 7
TN = (V,E)
: g . ol
@ each vertex V) € Vis a tensor of order
(2)
d S TN 77N
@ the set of edges E denote contractions y {U {D
@ Anedge £/ from vertex V) to Y -
vertex V9 is a pair of v v

denotes the contraction

Full tensor network contraction consists of a set of recursive pairwise contractions until
one vertex is left

multi-indices E*) = {7, j} and {D {U

Here, V = {10 v g © g 1
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UQ via Tensors

Functional Representations — Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)

P

PO 0 =S 0w ()

=0

Non-Linear Representations (e.g. radial basis functions)

£ (0,00 Zekl Lexp(—0,7), (N — 017).)2)

SNL Safta FTN 10/19



UQ via Tensors

Functional Representations — Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)

Pk
IR OnE);00) =3 6w &)

=0

Non-Linear Representations (e.g. radial basis functions)

£ (0,00 Zekl Lexp(—0,7), (N — 017).)2)

SNL Safta FTN 10/19



UQ via Tensors

Functional Tensor Networks - Evaluate Moments and

Conditional Statistics

Each tensor core consists of scalars or univariate functions therefore contractions and
integrals commute

Expectation
(TN = (EV].5))
where E[V] £ {E, [V\Y],E, [VV)], ..}

@ For univariate functions given by polynomial chaos expansions, the elements of a 2D

tensor £, [VV(*)] are given by

(k) (k) (k)
1710 0130 0 1740
" oLk o'k o (k)
[Ak[‘y( J( A3 05)] = 2:10 22:0 ) 2r:k0
(k) k) *
9rk 110 9% 120 Grk 1750

@ Conditional expectations E;[T V] require marginalization over subset : of the set of
tensor cores, e.g.

[El[V] = { MO)& [Al [V<1>]7 V<2)a }

R. Ballester-Ripoll et al, “Sobol tensor trains for global sensitivity analysis’, Reliability Engineering &
System Safety 183 (2019): 311-322.

Safta FTN 1/19



UQ via Tensors

Functional Tensor Networks - Evaluate Moments and

Conditional Statistics

Variance

(Var[T V] = E[(TNV)?] — E[TN]?)
The first term can be written as
(ElT )] = (E[V], E) )

where E[V] £ {E, [V @ VO E, [V @ V1], .}
@ For univariate functions given by polynomial chaos expansions, the
elements of a 2D tensor [, VR @ V)] are given by

Pk

k k k
Z 0§1;11652;2l <\IJE )(gk)2>
=0
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Functional Tensor Networks - Sobol Indices

Law of Total Variance

Var[TN] = Vutri[[E\i[iTNH +E [W@u“\i[fTN]]
after normalization
7 W@rri[ﬂi\i[ﬂ']\/]] E; [\/@r\i[ﬂ'N]]
~ Var[TN] * Yar[TN]
S; S\Ti

o First order S; and total order S} = 1 — S, are computed using
tensor network algebra described on previous slides.

@ Joint sensitivity indices are evaluated through a similar approach

= V@Ti,j[[E\i,j[TN}] _ 5, -5,
J Yar[T V] J
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ELM Data Model Fit

ELM Data — Simulations Corresponding to Select

Observation sites

Harvard Forest EMS Tower U. of Michigan Biological Station Walker Branch Watershed
US-Hal - monthly averages US-UMB - monthly averages US-WBW - monthly averages

150

GPP [gC m~2 571]

GPP [gC m~2 571]
GPP [gC m~2571]

Jan  Mar May Jul Sep Nov Jan  Mar May Jul Sep Nov Jan  Mar May Jul Sep Nov

@ 200 runs corresponding to uniformly randomly sampled parameters
over a 10D parameter space

@ 160 training runs/40 validations runs
o 8-fold cross validation over 160 training runs
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ELM Data Model Fit

Functional Tensor Network Models — Training

o Data split into 160 training runs / 40 validations runs
@ Non-linear least squares with 8-fold cross validation over the
training runs
@ Univariate functions represented as polynomial expansions based
on Legendre polynomials
@ Cross-validation to pick optimum regularization parameter,
tensor rank, and polynomial order

N
6" = argmin (;Z (f(AD:0) —Z}i>)2 +aflf |E>

i=1

@ Quality of fit assessed via mean-squared error (MSE)

MSE = A@; %) — )

Mz

N

[
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ELM a Model Fit

ELM Fit Results — FTN Models (in Hierarchical Tucker

Format)

Tensor rank Tensor rank
r=2 r=3 r=4 r=2 r=3 r=4
5 o=1/ 0.043 0.045 0.045 o=11 0.082 0.085 0.085
o
—
o
s
[S 0=2{ 0.027 0=2
S
c
>
0=3| 0.027 0.008 0.008 0=3/ 0.053 0.053 0.053
Hierarchical Tucker Format Tensor Train Format

Site US-Hal/June: Validation mean-squared error for Hierarchical Tucker models
compared to Tensor Train models
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ELM Data Model Fit

ELM Fit Results — FTN Models (in Hierarchical Tucker

Format)

US-umB

Tensor rank

r=2 r=3 r=4 H 2
5 o=1{ 0.043 0.045 0.045
kel
4
o US-MOz
o ? 2
E o=2{ 0.027 .
2 g ER
> = 2
= = z
/<] E Ea
a -2
0=3{ 0.027 0.008 0.008
-3 -2 -1 0 12 -373 -2 -1 0 1 2
ELI ELM

Validation data centered and normalized by

Site US-Ha1/June: Validation MSE the monthly standard deviation
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GSA

ELM Results: Variance-based GSA

Main Effect Sobol Index Total Effect Sobol Index
_ Var[E(FAN)] gr_ 1 VarB(F(AA-)]
' Var[f(A)] ’ Var[f(N)]

| March _| __June | September | _October |
S; sF 8§ STS S; ST

Parameter

i i i B S
flnr 0.70 0.72 0.80 0.83 0.84 0.86 0.76 0.77
mbbopt 0.01 0.02 0.09 0.13 0.04 0.06 0.02 0.02
vcmaxse 0.13 0.15 0.02 0.02 O 0 0.02 0.02
dayl_scaling 0.06 0.07 0 0 0.04 0.05 0.14 0.14

@ fnlr (fraction of N in RuBisCO — CO2 conversion process)
@ mbbopt (stomatal conductance slope — net CO2 flux)

@ vcmaxse (entropy for photosynthetic parameters)

@ dayl_scaling (day length scaling parameter)
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Summary
Closure

@ Extended functional tensor train models to accommodate generic tensor
network configurations

@ Expanded flexibility in capturing the structure of the original model

@ Efficient gradient computations through tensor network contractions

@ Alex Gorodetsky, CS, John Jakeman (2021)
https://tinyurl.com/2p92thbn

@ Functional tensor network models constructed via ridge regression are in
good agreement with validation data for the driver application

@ Global Sensitivity Analysis results match subject matter expertise given
the training runs available for this study
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