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Energy Exascale Earth System Model (E3SM) – Land
Component

The Land Model (ELM) Component of the Energy Exascale Earth System
Model (E3SM) is increasingly complex with many processes

Large ensembles are needed for uncertainty quantification… but
computationally infeasible
Focus on surrogate models based on small ensembles to increase the
efficiency of sensitivity analysis and model calibration studies
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Cheaper Surrogates are Necessary to Replace Expensive
Computational Models for UQ Assessments

Requirements:
expressivity with a limited number of parameters
once constructed surrogate models need to be computationaly cheap –
analyses often requiring 𝑂(106) evaluations with limited computational
resources

Functional Approximations:
tensor-product basis approximations

𝑓(𝝀) =
𝑁1

∑
𝑖1

𝑁2

∑
𝑖2

…
𝑁𝑑

∑
𝑖𝑑

𝜙(𝑖1)
1 (𝜆1; 𝜽)𝜙(𝑖2)

2 (𝜆2; 𝜽) … 𝜙 (𝑖𝑑)
𝑑 (𝜆𝑑; 𝜽)

the curse of dimensionality 𝑂(𝑁𝑑) typically limits the polynomial
order/no. of functions
…this places limits on the surrogate model capacity to adapt to
non-linear behavior

Instead focus on low-rank functional tensor networkmodels
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Functional Tensor-Train Models

Analogous to tensor-train models [Oseledets, 2013]: approximate multivariate functions
instead of multidimensional arrays
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⎥
⎦

Model evaluation/gradient computation consists of a sequence of matrix-vector
multiplications

A.A. Gorodetsky, J.D. Jakeman. “Gradient-based optimization for regression in
the functional tensor-train format,” J. of Comp. Phys. 374 (2018): 1219-1238.
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Tensor Models can have Arbitrary Network Structure

Increased flexibility to represent model structure
Example: a hierarchical Tucker format for a 5-dimensional model
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𝒱(𝑘) represent tensor cores
constructed with univariate
functions in 𝜆𝑘.
𝒢(𝑖) represent tensor cores with
scalar elements.
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Functional Tensor Networks – Definitions

A tensor contraction is a binary operation on two tensors 𝒜 ∈ ℝ𝐼1×…×𝐼 𝑑𝐴 and
ℬ ∈ ℝ𝐽1×…×𝐽 𝑑𝐵 yielding a tensor 𝒞.

𝒞 = 𝒜 Γ×Υ ℬ

The operation is parameterized by two index sets, Γ = {𝛾1, … , 𝛾 ℓ}and
Υ = {𝜂1, … , 𝜂 ℓ}, satisfying three conditions:
1. 1 ≤ 𝛾𝑘 ≤ 𝑑𝐴 for each 𝛾𝑘 ∈ Γ
2. 1 ≤ 𝜂𝑘 ≤ 𝑑𝐵 for each 𝜂𝑘 ∈ Υ
3. 𝐼𝛾𝑘

= 𝐽𝜂𝑘
for 𝑘 = 1, … , ℓ

After permuting the modes so that the contracting dimensions are first

𝑐𝑗1,…,𝑗 𝑑𝐴−ℓ,𝑘1,…,𝑘 𝑑𝐵−ℓ
=

𝐼𝛾1

∑
𝛾1=1

⋯
𝐼𝛾ℓ

∑
𝛾ℓ=1

̃𝑎𝛾1,…,𝛾 ℓ,𝑗1,…,𝑗 𝑑𝐴−ℓ
𝑏̃𝛾1,…,𝛾 ℓ,𝑘1,…,𝑘 𝑑𝐵−ℓ

,

with 𝒞 having order 𝑑𝐴 + 𝑑𝐵 − 2ℓ.
Example: Matrix-Matrix multiplication

𝑐𝑗,𝑘 =
𝐼2

∑
𝛾1=1

̃𝑎𝛾1,𝑗1
𝑏𝛾1,𝑘1
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Functional Tensor Networks – Definitions

A tensor network is a connected directed
graph

𝒯𝒩 = (𝑉 , 𝐸)
each vertex 𝒱(𝑖) ∈ 𝑉 is a tensor of order
𝑑(𝑖)

the set of edges 𝐸 denote contractions
An edge 𝐸(𝑖𝑗) from vertex 𝒱(𝑖) to
vertex 𝒱(𝑗) is a pair of
multi-indices 𝐸(𝑖𝑗) = { ⃗𝑖, ⃗𝑗}and
denotes the contraction

𝒱(𝑖)
⃗𝑖× ⃗𝑗 𝒱(𝑗).
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Here, 𝑉 = {𝒱(0), 𝒱(1), … , 𝒢 (0), 𝒢(1), …}

Full tensor network contraction consists of a set of recursive pairwise contractions until
one vertex is left
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Functional Representations – Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)

𝑓 (𝑘)
𝑖𝑗 (𝜆𝑘(𝜉𝑘); 𝜽(𝑘)

𝑖𝑗 ) =
𝑝𝑘

∑
𝑙=0

𝜃(𝑘)
𝑖𝑗𝑙 Ψ(𝑘)

𝑙 (𝜉𝑘)

Non-Linear Representations (e.g. radial basis functions)

𝑓 (𝑖𝑗)
𝑘 (𝜆𝑘; 𝜽(𝑖𝑗)

𝑘 ) =
𝑝𝑘

∑
𝑙=0

𝜃(𝑖𝑗)
𝑘,𝑙,1 exp(−𝜃(𝑖𝑗)

𝑘,𝑙,2(𝜆𝑘 − 𝜃(𝑖𝑗)
𝑘,𝑙,3)2)
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Functional Tensor Networks - Evaluate Moments and
Conditional Statistics

Each tensor core consists of scalars or univariate functions therefore contractions and
integrals commute

Expectation
𝔼[𝒯𝒩] = (𝔼[𝒱], 𝐸)

where 𝔼[𝒱] ≜ {𝔼𝜆0
[𝒱(0)], 𝔼𝜆1

[𝒱(1)], …}
For univariate functions given by polynomial chaos expansions, the elements of a 2D
tensor 𝔼𝜆𝑘

[𝒱(𝑘)] are given by

𝔼𝜆𝑘
[𝒱(𝑘)(𝜆𝑘; 𝜽𝑘)] =

⎡
⎢
⎢
⎢
⎣

𝜃(𝑘)
110 𝜃(𝑘)

120 … 𝜃 (𝑘)
1 𝑟𝑘0

𝜃(𝑘)
210 𝜃(𝑘)

220 … 𝜃 (𝑘)
2 𝑟𝑘0

⋮ ⋮ ⋱ ⋮
𝜃(𝑘)

𝑟𝑘−110 𝜃(𝑘)
𝑟𝑘−120 … 𝜃 (𝑘)

𝑟𝑘−1𝑟𝑘0

⎤
⎥
⎥
⎥
⎦

Conditional expectations 𝔼𝑖[𝒯𝒩] require marginalization over subset 𝑖 of the set of
tensor cores, e.g.

𝔼1[𝒱] ≜ {𝒱(0), 𝔼𝜆1
[𝒱(1)], 𝒱(2), …}

R. Ballester-Ripoll et al, “Sobol tensor trains for global sensitivity analysis”, Reliability Engineering &
System Safety 183 (2019): 311-322.
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Functional Tensor Networks - Evaluate Moments and
Conditional Statistics

Variance

𝕍𝕒𝕣[𝒯𝒩] = 𝔼[(𝒯𝒩)2] − 𝔼[𝒯𝒩]2

The first term can be written as

𝔼[(𝒯𝒩)2] = (𝔼[𝒱̃], 𝐸)

where 𝔼[𝒱̃] ≜ {𝔼𝜆0
[𝒱(0) ⊗ 𝒱(0)], 𝔼𝜆1

[𝒱(1) ⊗ 𝒱(1)], …}
For univariate functions given by polynomial chaos expansions, the
elements of a 2D tensor 𝔼𝜆𝑘

[𝒱(𝑘) ⊗ 𝒱(𝑘)] are given by

𝑝𝑘

∑
𝑙=0

𝜃(𝑘)
𝑖1𝑗1𝑙𝜃

(𝑘)
𝑖2𝑗2𝑙⟨Ψ

(𝑘)
𝑙 (𝜉𝑘)2⟩
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Functional Tensor Networks - Sobol Indices

Law of Total Variance

𝕍𝕒𝕣[𝒯𝒩] = 𝕍𝕒𝕣𝑖[𝔼\𝑖[𝒯𝒩]] + 𝔼𝑖[𝕍𝕒𝕣\𝑖[𝒯𝒩]]

after normalization

1 =
𝕍𝕒𝕣𝑖[𝔼\𝑖[𝒯𝒩]]

𝕍𝕒𝕣[𝒯𝒩]⏟⏟⏟⏟⏟⏟⏟
𝑆𝑖

+
𝔼𝑖[𝕍𝕒𝕣\𝑖[𝒯𝒩]]

𝕍𝕒𝕣[𝒯𝒩]⏟⏟⏟⏟⏟⏟⏟
𝑆𝑇

\𝑖

First order 𝑆𝑖 and total order 𝑆𝑇
𝑖 = 1 − 𝑆\𝑖 are computed using

tensor network algebra described on previous slides.
Joint sensitivity indices are evaluated through a similar approach

𝑆𝑖𝑗 =
𝕍𝕒𝕣𝑖,𝑗[𝔼\𝑖,𝑗[𝒯𝒩]]

𝕍𝕒𝕣[𝒯𝒩]
− 𝑆𝑖 − 𝑆𝑗
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ELM Data – Simulations Corresponding to Select
Observation sites

200 runs corresponding to uniformly randomly sampled parameters
over a 10D parameter space

160 training runs/40 validations runs
8-fold cross validation over 160 training runs
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Functional Tensor Network Models – Training

Data split into 160 training runs / 40 validations runs
Non-linear least squares with 8-fold cross validation over the
training runs
Univariate functions represented as polynomial expansions based
on Legendre polynomials

Cross-validation to pick optimum regularization parameter,
tensor rank, and polynomial order

𝜃∗ = argmin
𝜃

(1
2

𝑁
∑
𝑖=1

(𝑓(𝜆(𝑖); 𝜃) − 𝑦(𝑖))2 + 𝛼||𝜃||22)

Quality of fit assessed via mean-squared error (MSE)

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑖=1

(𝑓(𝜆(𝑖); 𝜃∗) − 𝑦(𝑖))2
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ELM Fit Results – FTN Models (in Hierarchical Tucker
Format)

Site US-Ha1/June: Validation mean-squared error for Hierarchical Tucker models
compared to Tensor Train models
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ELM Fit Results – FTN Models (in Hierarchical Tucker
Format)
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ELM Results: Variance-based GSA

fnlr (fraction of N in RuBisCO – CO2 conversion process)
mbbopt (stomatal conductance slope – net CO2 flux)
vcmaxse (entropy for photosynthetic parameters)
dayl_scaling (day length scaling parameter)
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Closure

Extended functional tensor train models to accommodate generic tensor
network configurations

Expanded flexibility in capturing the structure of the original model
Efficient gradient computations through tensor network contractions
Alex Gorodetsky, CS, John Jakeman (2021)
https://tinyurl.com/2p92thbn

Functional tensor network models constructed via ridge regression are in
good agreement with validation data for the driver application

Global Sensitivity Analysis results match subject matter expertise given
the training runs available for this study
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