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Motivation: MaglLIF

Magnetized Liner Inertial Fusion relies on compression of a magnetized,
laser-heated fuel to achieve thermonuclear ignition

o Experiments performed on Sandia's Z Pulsed Power Facility
© Preheated deuterium fuel

> Solid beryllium liner

Magnetization Laser Preheat Compression

P.F. Knapp, et al, 2015



Motivation: MaglLIF

The state of the fuel is not directly observable

Physicists rely on diagnostic metrics to understand:
o Target performance

> Impact of modifications

> Importance of sources of degradation

The calibration of these diagnostics becomes a multi-objective inference problem

Magnetization Laser Preheat

Compression

P.F. Knapp, et al, 2015



Calibration

Bayesian calibration naturally incorporates uncertainties during calibration and
prediction
m(d|@)7(6)
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Calibration

Bayesian calibration naturally incorporates uncertainties during calibration and
prediction

7(d|6)7(6)

m(0|d) = (d)

© Both the calibration and propagation phases require many runs of the model and
incur significant computational expense — Surrogate

The current standard of practice for multi-output surrogate models is to use individual
phenomenological surrogates

o Correlation between Qols is lost — Co-prediction

Goal: Construct co-predictive surrogate model



Gaussian Processes

A Gaussian process is a stochastic process such that every finite collection of its

random variables has a multivariate normal distribution

flx) ~ N (u(x), Z(x,x'))
Y is completely defined by the correlation function
k(XSEﬁ/L)ared exponential
> Matern

GP surrogates interpolate data points and provide
uncertainty estimates for each output value

Computation of prediction mean and variance requires
inversion of the N x N correlation matrix

R,"j = k(X,‘, XJ')

0 05 1
input, x

C.E. Rasmussen and C.K.l. Williams. Gaussian
Processes for Machine Learning



Multi-Output Gaussian Processes (MOGP)

Consider the multi-output vector

f(x) ~ N (u(x), Z(x,x'))
Y is defined by a multi-output covariance K(x, x’)
k11(x, X,) . le(X, X/)
K(x,x') = _ :
kn(x,x') ... krr(x,x')

Computation of prediction mean and variance requires inversion of the NT x NT
correlation matrix

Ry = Ky
Kuly = ku(xix))



Liner Model of Coregionalization (LMC)

Define Q covariance functions kq(x, x) and sample Ry latent functions
uf7 ~ GP(0, kq(x, x'))

For output t,
Q Rq

x)_zzatq Ug\X

g=1 i=1

The cross-covariance is given by
cov[f(x) ]—ZAAkxx ZBk (x,x)

where A, = [ala2 ... ag’]



Two special cases

- @ = 1 = intrinsic coregionalization model (ICM)
° Ry = 1 = semi-parametric latent factor model (SLFM)

LMC ICM SLFM
Q Rq . . R . . Q
)= DD atqup(x)  Yoaw(x) D anque(x)
a=1 i=1 =1 a=1
Q Q
cov[f(x), f(x')] = Z Bgkqg(x, X') Bk(x, x') Z Bgkq(x, X')
g=1 g=1
R,
Ay = [azal...ag"] [ata®...aF a,

Considerations
° kg can be the same function with different hyperparameters, or different function
types
> Larger Q increases flexibility (up to Q = T), but with computational cost



Benchmarking examples

Forrester
o 1 parameter
°cp=0.71

Accuracy:

> SLFM performs the worst, particularly as the
number of parameters increases

o ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

o ICM is less expensive than LMC with fewer build
points
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Benchmarking examples -
Branin

° 2 parameters

functionName = branin2d, n =

° p=20.68
Accuracy: o
> SLFM performs the worst, particularly as the o
number of parameters increases o

> ICM and LMC are competitive with SOGP . R

Expense:
> SOGP is cheaper than ICM and LMC ::‘::
© ICM is less expensive than LMC with fewer build g
points -

i e st



Benchmarking examples

Dette & Pepelyshev
o 3 parameters
° p=0.68

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points

wic

[

B

B

ey

so6p



Benchmarking examples

Gramacy & Lee
° 4 parameters
- p=20.83

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points

RMsE
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Benchmarking examples

Friedman
° 5 parameters
° p=0.98

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points
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ictionName = friedmansd, n =

i WMC siM soGp



Benchmarking examples

Borehole

° 8 parameters
cp=1

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points
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VISAR Experiment Simulations

VISAR = Velocity Interferometer System for Any Reflector

© Measures the shocks that occur during NIF experiments

hydrocarbon gas

-

T plastic window




VISAR Experiment Simulations

20

1D simulation using Hydra

-
&

° Input parameters:
o Deposition radius ~ U[400pm, 1200m]
° Deposition temperature ~ U[0.8keV, 2.2keV]
o Deposition time ~ U[5ns, 15ns] s
o Qutputs
° Deposited energy O e PP
o Arrival time of main shock
o Delta velocity of main shock 1

i
S

energy (in kj/cm)

visarld_base vl

Linon

shock velocity (kmrs)




VISAR Experiment Simulations

427 data points

p=0.10
’ p : percentage Of pOInts Used for Deposited energy Arrival time Delta velocity
build data .
LMC performs the best ) q] ] i
o ICM is hit or miss, but better with _‘ “ H
fewer build points D
SOGP is cheaper than ICM and LMC
ICM  LMC SOGP ICM  LMC SOGP ICM  LMC SOGP

o But no correlation information



VISAR Experiment Simulations

427 data points

° p = percentage of points used for
build data

LMC performs the best

> [CM is hit or miss, but better with
fewer build points

SOGP is cheaper than ICM and LMC

o But no correlation information

Deposited energy

X
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ICM  LMC SOGP

p = 0.30

Arrival time

ICM LMC SOGP

Delta velocity
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ICM  LMC SOGP



VISAR Experiment Simulations

427 data points

) p = 0.50
’ p - percentage Of pOInts Llsed for Deposited energy Arrival time Delta velocity
build data ﬁ
LMC performs the best : D J ) =
> [CM is hit or miss, but better with T ' ‘
fewer build points ’ | H
SOGP is cheaper than ICM and LMC
ICM  LMC SOGP ICM LMC SOGP ICM LMC SOGP

o But no correlation information



VISAR Experiment Simulations

427 data points

° p = percentage of points used for
build data

LMC performs the best

> [CM is hit or miss, but better with
fewer build points

SOGP is cheaper than ICM and LMC

o But no correlation information

Deposited energy

X

ICM  LMC SOGP

p=0.70

Arrival time

gj

ICM  LMC SOGP

Delta velocity

IL

ICM  LMC SOGP



VISAR Experiment Simulations

427 data points

° p = percentage of points used for
build data

LMC performs the best

> [CM is hit or miss, but better with
fewer build points

SOGP is cheaper than ICM and LMC

o But no correlation information

Deposited energy

|

|

T

ICM  LMC SOGP

p = 0.90

Arrival time

[

T
ICM  LMC SOGP

Delta velocity

ICM  LMC SOGP



VISAR Experiment Simulations

427 data points

° p = percentage of points used for
build data

LMC performs the best

> [CM is hit or miss, but better with
fewer build points

SOGP is cheaper than ICM and LMC

o But no correlation information

—
‘2.

comp. time (s)

10t

Comp. time for fitting GPs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p (fraction of data used for training)



ID MagLIF

1D simulation using GORGON
° 8 Input parameters

o Laser energy deposited ~ U [ 500 J, 2kJ ]
o Laser deposition start time ~ U/ [ 3020 ns, 3100 ns ]
o Laser deposition duration ~ U [ 2ns, 6ns |
o Laser spot size ~ U [ 0.75mm, 1.5mm ]
o Aspect ratio ~ U [4.5, 11]
o Inner liner radius ~ U [1.875 mm, 3.25 mm]
o Initial axial magnetic field strength ~ U/ [5T, 20T]
o Gas fill density ~ U [0.5mg/cc, 1.5mg/cc]

> 4 Qutputs

° Ypp = Neutron yield
o PCD; = 3 different X-ray energy yields




ID MagLIF

~1000 data points

° p = percentage of points used for
build data

Both ICM and LMC outperform SOGP
for PCDs

¢ ICM performs the best
> Not the case for Ypp

SOGP is cheaper than ICM and LMC

> But no correlation information

p = 0.10
Ypp PCD; PCD, PCD3
ICM LMC SOGP ICM LMC SOGP ICM LMC SOGP ICM LMC SOG




ID MagLIF

~1000 data points

° p = percentage of points used for
build data

Both ICM and LMC outperform SOGP
for PCDs

¢ ICM performs the best
> Not the case for Ypp

SOGP is cheaper than ICM and LMC

> But no correlation information

p = 0.50
YpD PCDy PCD, PCD;
| L
| [
|
o
4x10 7
ICM LMC SOGP ICM LMC SOGP ~ **""ICM LMC SOGP ICM LMC SOG




ID MagLIF

~1000 data points

° p = percentage of points used for
build data

Both ICM and LMC outperform SOGP
for PCDs

¢ ICM performs the best
> Not the case for Ypp

SOGP is cheaper than ICM and LMC

> But no correlation information

Ybp

p = 0.90

PCD,

PCD,

PCD;

% X <
e o
—

ICM LMC SOG

P

ICM LMC SOG!

P

ICM LMC SOG

P
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ID MagLIF

~1000 data points

° p = percentage of points used for
build data Comp. time for fitting GPs

Both ICM and LMC outperform SOGP
for PCDs

¢ ICM performs the best

comp. time (s)
-
5

> Not the case for Ypp

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
p (fraction of data used for training)

SOGP is cheaper than ICM and LMC

> But no correlation information




ID MagLIF
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Conclusions

Presented examples to compare three methods for calibrating MOGPs
c ICM and LMC are favorable over SLFM
> Benchmark examples: mixed results
> VISAR example: LMC outperforms SOGP
> MagLIF example: MOGP outperforms SOGP

Next steps:
o Extend methodology to “field” data
° Include physics constraints
o Incorporate information from causal statistics

> Bayesian calibration and validation



Thank you

Questions?

kmaupin@sandia.gov



