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« Sandia LDRD:
« Moe Khalil (Sandia): principal investigator, algorithm/software development - end-to-end workflows
« Uma Balakrishnan (Sandia): numerical experiments
« Justin Jacobs (Sandia): algorithm/software development — UQ for ML
* Reese Jones (Sandia): algorithm/software development — tempering transformations
« Wyatt Bridgman (Sandia): algorithm/software development — multi-fidelity UQ
« Jackie Chen and Bruno Soriano (Sandia): TL application in turbulent combustion modeling

« Tarek Echekki (North Carolina State University): academic collaborator, TL application in turbulent combustion
modeling

» Prof. Chris Pettit (US Naval Academy): TL for DoD relevant applications in atmospheric acoustics

* Erin Swansen and Naira Hovakimyan (University of lllinois at Urbana—Champaign): TL application for adaptive control
of urban air mobility

« SBIR subcontract (Cyentech Consulting LLC, Houston):
* Moe Khalil (Sandia): principal investigator, algorithm/software development
« Cosmin Safta (Sandia): algorithm/software development
* Yueqin Huang (Cyentech Consulting LLC): customer - TL application for subsurface characterization
« Xuging Wu (University of Houston): academic collaborator, consultant
« Jiefu Chen (University of Houston): academic collaborator, consultant
« Han Lu (University of Houston): graduate student, algorithm/software development
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Alleviating llI-Posedness in Training of ML Models with Sparse Data

« Challenge: Many Sandia mission domains are defined by a lack of reliable data, effectively precluding
the use of many modern deep learning/machine learning techniques for predictive modeling:

X Excessive expense of computer simulations
X Prohibitive experimental data acquisition cost
X Limited access to classified and/or sensitive data
* Goal: Enhance the trust in machine learning (ML) model predictions within noisy and sparse data
settings
* Proposed Solution: Novel probabilistic transfer learning framework.
* Transfer learning (TL): knowledge gained through

similar training tasks is used to possibly improve
the training process on a target domain having

v Greater achievable performance

Better start

Faster convergence

I|m|ted/n0|sy data: 2 Improved asymptote .
v Improved initialization W \ — Jraditional ML
v Increased rate of convergence % — Negative TL
5
o
o

Proposed framework will aim to alleviate potential

negative transfer: TL resulting in decreased
Performance

Training cycles



Shortcomings of existing TL methodologies
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» State-of-the-art algorithms in TL

X tend to be ML model-specific [George et al., 2018]

Traditional ML

X do not consider all (if any) types of uncertainties (data, parametric, - e snge kiearing

Knowledge is not retained

model-form/fidelity) [Colbaugh et al., 2017, Raina et al., 2006] " previoudy ovaine knowedge.
X use simplified (i.e. Gaussian) probability representations of data
[Karbalayghareh et al., 2018]. data Task 1
* Most importantly, existing methods do not address key questions

relating to

Source Learning

Target Learning
data Task 2

X when it is worth applying TL (as opposed to traditional ML)
X which ML model to use in TL (out of a set of plausible ones)
X how much knowledge is to be transferred in order to safeguard against negative learning

Transfer Learning

e Learning a new task relies on previously

learned tasks

® |eamning process on new task may be

more accurate with less data

Source Learning
data Task 1
Target Learning
data Task 2

Transfer Learning Approaches

Brief Description

Instance-transfer

To re-weight some labeled data in the source domain for use in the target domain

Feature-representation-transfer

Find a “good” feature representation that reduces difference between the source and the target

domains and the error of classification and regression models

Parameter-transfer

Discover shared parameters or priors between the source domain and target domain models, which

can benefit for transfer learning

Relational-knowledge-transfer

Build mapping of relational knowledge between the source domain and the target domains. Both

domains are relational domains and i.i.d assumption is relaxed in each domain




Technical Approach
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* Proposed TL framework aims to address the shortcomings in existing methodologies.

* |t determines when to apply TL, which model to use, and how much knowledge to transfer.

* It relies on probability/measure theories to characterize and propagate uncertainties, thereby enhancing
the trustworthiness of ML models in making predictions based on noisy and sparse training data.

Traditional ML

« [solated, single task learning
* Knowledge is not retained
* Learning is performed while ignoring previously obtained

knowledge

Source
data, Dg

Target
data, Dy

lll-posed learning
problem due to
data sparsity!

Proposed TL

* L earnings a new task relies on previously learned tasks
* Learning process on hew task may be more accurate
with sparse target data

Source
data, Dg

Tempering
transformation,
parameterized by

Target
data, D

Well-posed
learning problem

Probabilistic Approaches to Transfer Learning



Technical Approach @ Nofous
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* The proposed framework comprises of four inter-related tasks:
« Capturing the knowledge to be transferred in training on source data
* Provide flexibility in capturing PDFs
» Low-fidelity Gaussian approximations (obtained using, for example, variational inference)
« High-fidelity Gaussian mixture-models (GMM), able to characterize general non-Gaussian
PDFs while enabling analytical scrutiny of the Bayesian framework.
* Result in a spectrum of performance gains in TL
* Propagating the knowledge to be transferred to target training tasks
« Achieved via extensions of sequential (Bayesian) data assimilation
* Rely on prior PDF tempering transformations (more on this later)
« Determining how much knowledge to transfer given a choice of tempering transformation
 Hierarchical or empirical Bayesian approaches for (joint) inference of tempering hyper-
parameters
 Information-theoretic measures; similarity and distance metrics
» Selecting optimal ML model to use in TL
» Probabilistic TL framework facilitates the use of Bayesian techniques for optimal model
selection
 Investigate feasibility of enhancing model complexity by leveraging Relevance Vector Machine
learning techniques



Training of ML Models — Bayesian Approach @ ﬁ;fﬁfﬁ;m

\ .
ML model// \ \ \ noise

features observation
parameters target
» Forward Problem: Given ML model, M, model parameters, @, and feature vector, x, predict “clean” targets, y
» Inverse Problem: Given a set of “noisy” observations, D = {d, ..., dy}, and feature vectors, X = {x,, ..., xy}, infer parameters
» Observations are
* inherently noisy with unknown (or weakly known) noise model
» sparse in space and time (insufficient resolution)
» Problem typically ill-posed, i.e. no guarantee of solution existence nor uniqueness
« Solution: Probability density function (PDF) over the parameter space obtained using Bayes’ rule:

likelihood prior
! \p(Dlﬁ')p(B)/

D
p(D)—_ evidence

« p(0) is the prior PDF of 8: describes prior knowledge, inducing regularization
« p(d|@) is the likelihood PDF of @: describes data fit
« p(@]d) is the posterior PDF of 8: full Bayesian solution

* Not a single point estimate

« Completely characterizes the uncertainty in 6

» Subseauently used in makina predictions under uncertainty

Probabilistic Approaches to Transfer Learning 7/19



Transferal of “Learning” in a Probabilistic Setting @ Natorel
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* In a transfer learning context, we have a target task of interest (regression/classification) with
associated target data {D;, X;}. We also have access to "supplementary” source data {Ds, Xs}.

« Extending on mechanisms of propagating knowledge in sequential data assimilation (e.g. Kalman-
based filters), we can take the captured knowledge from the source data in the form of the
likelihood function and use it as prior knowledge in the target task:

S likelihood of target data

posterior — p(81Dr, Ds) « p(Dr|0)ps(6) —_ prior from source data

« Sequential data assimilation would dictate that the prior PDF is in fact the likelihood PDF obtained
using the source data, i.e. ps(8) = p(Ds|0)

X This approach does not provide flexibility in allowing the modeler to dictate how much knowledge,
If any, is transferred:

* In a traditional setting of data assimilation, all data, whether source or target, can be captured
by the same model with the same parameter values (or PDFs). This assumption is not longer
guaranteed to be valid in a transfer learning setting

* Need a mechanism to control how much knowledge, if any, is transferred from source task to target

task



Tempering-based Diffusion of Knowledge @ Notoel
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How much knowledge to transfer: Tempering-based methodologies
Tempering transformations allow us to “diffuse” or “concentrate” probabilistic knowledge (PDFs)
gained through source domain learning tasks, effectively dictating how much knowledge is
transferred to the target learning task
Many PDF-tempering transformations that dictate how knowledge is transferred are envisaged
Two proposed strategies consist of extensions/modifications of existing Bayesian priors:

* ps(0 | B) xp(Dg|B)F Based on “power” priors

* ps(@|B)=BpDs|®) + (1 —B)N(8;0,02]) Based on “mixture” priors

For the two types of transformations above

* Full transfer: g — 1 reverts back to the full likelihood from the source training task (i.e.
traditional Bayes)

* No transfer: g — 0 results in a flat prior
 Partial transfer:0< g <1
Optimal choice of  depends on many factors, including:
* ML model used (can capture local vs global trends)
* Disparity between source and target domains
» Degree of relative data sparsity (between source and target domains)
 Relative intensity of noise in source and target domain data

Probabilistic Approaches to Transfer Learning 9/19



Tempering-based Diffusion of Knowledge @ Notoel
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The following is an example of the extension of power-based and mixture-based prior tempering transformation to “diffuse”
knowledge in the prior PDF

The prior and likelihood PDFs are chosen to be Gaussian

Note: one can show that for a Gaussian PDF, raising it to a power § is equivalent to scaling the associated covariance
matrix by the same f (mean vector unaffected)

Power prior: Gaussian posterior

p(0|D,B) < p(D|8)p(6)*
=1 = 0.5 =0.3 = 0.15

|—power prio |—power prio; |—power prio —P_l’“’(_’«" prior|
|~ likeliho d —like! l h d [~=likeliho l‘l [—likelihood
[— posterior [— pos [—posterior [— posterior

PEF
Pl_l)-F
PEF
PEF

2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
0 [ 0 0

» Mixture prior: Gaussian-mixture posterior

P(E'ID B) «xp(D|6)[B p(9) + (1 —B) N (6; 01><104)]

— mix rior| — mixture prior —mixture prior| — mix: ior|
—Iklh d —Iklh d —Iklh d —Iklh d
|— posterior — pos [—pos |— posterior

PEF
PEF
PEF
PEF




Degree of Knowledge/Learning to Transfer - Hierarchical Bayes @ Natorel
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« The “tempering” hyper-parameter(s) g allow us to control the degree to which learning is transferred from the
source task, characterized by the prior PDF, to the target task

« There are two approaches within a Bayesian context to determining f:
1. Hierarchical Bayes

« Afully Bayesian treatment of model parameters, 8, and noise and prior hyper-parameters, e.g. y
and f8

« Proceed with joint inference of all unknowns according to joint posterior:

p0,8|D)=p@|B,D)p(B|D) (probability chain rule)
xp(D|6,8)p@|B)p(B|D) (Bayes’rule)
=pD|0)p@|L)pr(p) (independence assumptions) Q Q

« Posterior distribution over the ML model parameters, 8, can be |
obtained by marginalizing over the hyper-parameters ~N(@©,) 0~ps(®15)

v Propagates uncertainty in hyper-parameters through to parameter /dD

posterior

X Added complexity associated with inference of “less relevant”
parameters and propagation of uncertainty associated with it Mx,0) =d+e

jof

Probabilistic Approaches to Transfer Learning
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Degree of Knowledge/Learning to Transfer - Empirical Bayes @ Natorel

« There are two approaches within a Bayesian context to determining g:
2. Empirical Bayes
* A pseudo-Bayesian treatment of prior hyper-parameter(s),

v" Instead of inferring and subsequentially propagating uncertainties in the hyper-parameters, point
estimates are obtained by maximizing some objective function

X What objective function? Although empirical Bayes has been applied in numerous contexts for
various purposes, there is not precedent for its use in transfer learning in determining such hyper-
parameters

v' Our solution: Follow an information-theoretic approach, focusing on the relative entropy that
measures the information geometry in moving from the prior to posterior:

Di[p(@1D,5),p®1p)] =—H[p®|D,B),pD|6)] = J logp(D | 6) p(6 | D.B)

Relative entropy Cross entropy Expected data-fit
(prior & posterior) (likelihood & posterior) (posterior-averaged log-likelihood)

» This objective function (usually employed for Bayesian experimental design) has multiple
interpretations, including an “average” log-likelihood one, resulting in a maximum “expected”
likelihood estimate for hyper-parameter(s)



Expected Data-fit to Dictate Degree of Knowledge/Learning to Transfer @ ﬁ;fﬁ&;m

« Current strategy: Empirical Bayesian treatment of the tempering hyper-parameter(s) with information-theoretic
objective function in the form of the expected data-fit

« This is a data-driven approach: Optimal tempering hyper-parameters depend on the extent to which the
source and target data provide “similar” information on the unknown model parameters:

p@ID,B) xp(D|6)p(8|B) Bop: =max Ellogp(D | 6)] = mgxflogP(D |6)p(6|D,B) do
| |

Integral over parameter-space!
« Desirable properties:
+ Utilizes whatever available sparse target data (no need to split target data into training and testing sets)

« Full Bayesian treatment of parametric uncertainties

« Generally applicable to any ML model and tempering transformation

« For Gaussian distributions (linear-in-parameter ML models) and power prior tempering transformation,
closed form expression available for the objective function and gradient/Hessian, thus facilitating

optimization step

Probabilistic Approaches to Transfer Learning 13/19



Laboratories

Expected Data-fit to Dictate Degree of Knowledge/Learning to Transfer @ Natorel

» Revisiting the 1-D example of dealing with Gaussian PDFs, let’s examine the result of utilizing the expected data-fit to drive
the choice of tempering hyper-parameter(s)

» Note: for Gaussian PDFs and the use power-prior based tempering transformations, the expected data-fit is available

analytically
p(@|D,B) o< p(D|8)p(68)s Bopt = maxg Ellogp(D | 6)] = maxﬁflogp(D |6) p(6 | 5,D) db

., 1 Little transfer
> om = 02

:, . :, Moderate transfer
: Bopt = 0.55

:, i :, Full transfer
g Bope =1

Probabilistic Approaches to Transfer Learning



Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natorel
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« Assuming we’re dealing with a “true” model given by
yi = f(x) +€ = 0.1x3 — 0.75x + ¢; e ~ N (0,1x10%)

« We have 30 data points from the source domain and 4 from the target domain

0.6 = 1 I |
—truth i f —truth
0.4} ® source data %1 " " ® source data
i ® target data p i ® target data
0.2F 0.1F | ! !
1 1 1
ok ol 1 1 1 1
- -~ 1 1 1 1
= = 1 1 1
0.2F 0.1F I | )® 1
1 [ 1 1
-0.4F -0.2F 1 I 1
1 1 1 1
-0.6F -0.3F 1 I 1 1
1 1 1 1
0.8 L N L : 0t : 1 1 L 1 2 I L
-1 0.5 1 1.5 2 04 -03 -0.2 -0.1 0 0.1 02 03 04
X X

« Transfer learning task: Leverage the available source data to enhance accuracy of predictive model for target
task, trained using the scarce target data

» We start with an approximate ML model to train. Let’s assume a linear model:

yiza0+a1x+ei

Probabilistic Approaches to Transfer Learning



Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natorel
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* The source data, once assimilated, provide the prior PDF for subsequent use in the target training task
Similarly, the target data provide the likelihood PDF
* We maximize the expected data-fit to arrive at an optimal power prior

) |@prior

-0.55} (@ likelihood 055} g}’imﬁ;&r‘;"r
0.6} ] & 06} F&*posterior
-0.65} ] | -0.65}
~ 7t ] E T+~ 07t
-0.75f 1 — g 4 ] — -0.75F
=]
-0.8} E = 0.8}
-0.85} -1SE -0.85}
0.9} : 2 ) ) ) E =2 " . 09} : , ) . ) E
-0.01 -0.005 0  0.005 0.01 0.015 10 107 107 10° -0.01 -0.005 0  0.005 0.01 0.015

B

30 a

The following are posterior predictive mean estimates and confidence intervals

—truth —truth — truth
# target data ® target data ® target data
—mean predictions —mean predictions

0.1

—mean predictions

0.05f

0.05 0.05f
- o & &
Z of —— O | Z o

0.15 0.1 0.05 0 0.05 0.1 0.15 0.1 -0..05 0 0.05 0.1 0.15 0.1 0.05 0.05 0.1
no transfer full transfer optimal transfer, B, = 1

* Observation: overlapping source and target domains result in full transfer of learning



Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natorel
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» Let’s repeat the procedure with a target domain that's adjacent to the source domain (extrapolation)
Again, we maximize the expected data-fit to arrive at an optimal power prior

0.6¢ ,
sl : -0.5 05 i@power prior|
gl : 055 & 0.5
-0.6 'E -0.6
s ot ! o 065 § -~ 068
= L2t ; ‘ 0.7 ] i
0.4} : Eait 4 -0.75
0.6} . . 0.8
; ! -0.85 ) ) ) 0.85 ) ) )
B FYEErE— 1 15 2 i y i -0.03 L 0.5
4 ) 2,

The following are posterior predictive mean estimates and confidence intervals

0.1 ~ 0.1p 0.1p
T~ T:;:::t data —truth o —truth
- ® target data ® target dat.
N & . _—rgngeﬂzng]redlctmns —mean predictions, __ﬁ%ézglllsicﬁms
02} |
03} ol
0025 03 035 04 045 05 055 0.4 ' 0.4
025 03 035 04 045 05 055 025 03 035 04 045 05 055
X X .
no transfer full transfer optimal transfer, S, = 0.1

* Observation: Optimal transfer results in more accurate/precise predictions



Probabilistic Transfer Learning at Work — Polynomial Surrogates
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 Lastly, we examine dissimilar target and source domains
« Again, we maximize the expected data-fit to arrive at an optimal power prior

0.6 i .
| 1 -0.35
04F 1 |
i . 0.4
0.2F . : -0.45
of ' . _ 05
g ; ' ) -
= -0.55
0.2} ;
1 -0.6
0.4} 1
" -0.65
0.6+ : -0.7
-0.8

Expected data-fit

-0.35
0.4
-0.45
-0.5
-0.55
-0.6
-0.65
0.7

" " [ IR N
-1 -0.5 0 0.5 1
X

04}

f(x)

-0.8F

1.05

15

2

—truth

- ® target data

- —mean predictions
T~ == 99% CI

1.

1 1.15 1.2

X

no transfer

1.25 1.3 1.35

%

0.2 -015 -0.1 -0.05 0 0.05

1.05 1.1 1.15 1.2

—truth
® target data
—mean predictions

- 99% CI

—

-—“‘\‘““‘k

X

full transfer

1.25 1.3 1.35

* Observation: Negligible transfer takes place with dissimilar tasks

0.2 -015 -0.1 -005 0 0.05

%

The following are posterior predictive mean estimates and confidence intervals

—truth

@ target data
—mean predictions
- 99% CI

optimal transfer, B,,. = 0.0005
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» Developing a novel probabilistic framework for transfer learning:
1. Reducing the validation/testing errors of such models by leveraging data from similar domains
Propagating parametric, model-form, and data uncertainties towards predictions
Allowing for optimal ML model selection within the TL paradigm
Exhibiting moderate/strong computational scalability with increasing data volume and model complexity
Safeguarding against negative learning (decreased accuracy due to task disparity, w.r.t. baseline)
Consisting of strictly non-intrusive methods, applicable to most ML models without needing to modify the model
(architecture) or implementation.
* Key technical steps:
1. Capture the knowledge to be transferred in training on source data
* Probability density functions on the calibrated ML model parameters/hyperparameters using Bayesian inversion
« Captures data and modeling errors/uncertainties
2. Propagate the knowledge to be transferred to target training tasks
* Novel mechanisms for knowledge transfer that extends the traditional Bayesian approach via the application of
prior PDF tempering transformations
3. Determine how much knowledge to transfer given a choice of tempering transformation
« Explore hierarchical or empirical Bayes approaches, based on information-theoretic measures and distance
metrics
4. Determine optimal ML model to use in TL
* Determine the optimal ML model for TL using Bayesian model selection

S



