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TL team

• Sandia LDRD:
• Moe Khalil (Sandia): principal investigator, algorithm/software development - end-to-end workflows
• Uma Balakrishnan (Sandia): numerical experiments
• Justin Jacobs (Sandia): algorithm/software development – UQ for ML
• Reese Jones (Sandia): algorithm/software development – tempering transformations
• Wyatt Bridgman (Sandia): algorithm/software development – multi-fidelity UQ
• Jackie Chen and Bruno Soriano (Sandia): TL application in turbulent combustion modeling​
• Tarek Echekki (North Carolina State University): academic collaborator, TL application in turbulent combustion 

modeling​
• Prof. Chris Pettit (US Naval Academy): TL for DoD relevant applications in atmospheric acoustics
• Erin Swansen and Naira Hovakimyan (University of Illinois at Urbana–Champaign): TL application for adaptive control 

of urban air mobility

• SBIR subcontract (Cyentech Consulting LLC, Houston):
• Moe Khalil (Sandia): principal investigator, algorithm/software development
• Cosmin Safta (Sandia): algorithm/software development
• Yueqin Huang (Cyentech Consulting LLC): customer - TL application for subsurface characterization
• Xuqing Wu (University of Houston): academic collaborator, consultant
• Jiefu Chen (University of Houston): academic collaborator, consultant
• Han Lu (University of Houston): graduate student, algorithm/software development
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Alleviating Ill-Posedness in Training of ML Models with Sparse Data

• Challenge: Many Sandia mission domains are defined by a lack of reliable data, effectively precluding 
the use of many modern deep learning/machine learning techniques for predictive modeling:
✘Excessive expense of computer simulations
✘Prohibitive experimental data acquisition cost
✘Limited access to classified and/or sensitive data

• Goal: Enhance the trust in machine learning (ML) model predictions within noisy and sparse data 
settings

• Proposed Solution: Novel probabilistic transfer learning framework.
• Transfer learning (TL): knowledge gained through

similar training tasks is used to possibly improve
the training process on a target domain having
limited/noisy data:

✓Improved initialization
✓Increased rate of convergence
✓Greater achievable performance

• Proposed framework will aim to alleviate potential
negative transfer: TL resulting in decreased
Performance
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Shortcomings of existing TL methodologies

• State-of-the-art algorithms in TL
✘tend to be ML model-specific [George et al., 2018]
✘do not consider all (if any) types of uncertainties (data, parametric,

model-form/fidelity) [Colbaugh et al., 2017, Raina et al., 2006]
✘use simplified (i.e. Gaussian) probability representations of data

[Karbalayghareh et al., 2018].
• Most importantly, existing methods do not address key questions

relating to
✘when it is worth applying TL (as opposed to traditional ML)
✘which ML model to use in TL (out of a set of plausible ones)
✘how much knowledge is to be transferred in order to safeguard against negative learning

• TL settings [Pan and Yang, 2009]:
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Technical Approach

• Proposed TL framework aims to address the shortcomings in existing methodologies.
• It determines when to apply TL, which model to use, and how much knowledge to transfer.
• It relies on probability/measure theories to characterize and propagate uncertainties, thereby enhancing 

the trustworthiness of ML models in making predictions based on noisy and sparse training data. 
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Technical Approach

• The proposed framework comprises of four inter-related tasks:
• Capturing the knowledge to be transferred in training on source data

• Provide flexibility in capturing PDFs
• Low-fidelity Gaussian approximations (obtained using, for example, variational inference)
• High-fidelity Gaussian mixture-models (GMM), able to characterize general non-Gaussian 

PDFs while enabling analytical scrutiny of the Bayesian framework.
• Result in a spectrum of performance gains in TL

• Propagating the knowledge to be transferred to target training tasks
• Achieved via extensions of sequential (Bayesian) data assimilation
• Rely on prior PDF tempering transformations (more on this later)

• Determining how much knowledge to transfer given a choice of tempering transformation
• Hierarchical or empirical Bayesian approaches for (joint) inference of tempering hyper-

parameters
• Information-theoretic measures; similarity and distance metrics

• Selecting optimal ML model to use in TL
• Probabilistic TL framework facilitates the use of Bayesian techniques for optimal model 

selection
• Investigate feasibility of enhancing model complexity by leveraging Relevance Vector Machine 

learning techniques
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Training of ML Models – Bayesian Approach
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Transferal of “Learning” in a Probabilistic Setting
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Tempering-based Diffusion of Knowledge
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Tempering-based Diffusion of Knowledge
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Degree of Knowledge/Learning to Transfer - Hierarchical Bayes
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Degree of Knowledge/Learning to Transfer - Empirical Bayes
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Expected Data-fit to Dictate Degree of Knowledge/Learning to Transfer
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Integral over parameter-space!
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Expected Data-fit to Dictate Degree of Knowledge/Learning to Transfer
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Probabilistic Transfer Learning at Work – Polynomial Surrogates
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• The source data, once assimilated, provide the prior PDF for subsequent use in the target training task
• Similarly, the target data provide the likelihood PDF
• We maximize the expected data-fit to arrive at an optimal power prior

• The following are posterior predictive mean estimates and confidence intervals

• Observation: overlapping source and target domains result in full transfer of learning

Probabilistic Transfer Learning at Work – Polynomial Surrogates
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• Let’s repeat the procedure with a target domain that’s adjacent to the source domain (extrapolation)
• Again, we maximize the expected data-fit to arrive at an optimal power prior

• The following are posterior predictive mean estimates and confidence intervals

• Observation: Optimal transfer results in more accurate/precise predictions

Probabilistic Transfer Learning at Work – Polynomial Surrogates
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• Lastly, we examine dissimilar target and source domains
• Again, we maximize the expected data-fit to arrive at an optimal power prior

• The following are posterior predictive mean estimates and confidence intervals

• Observation: Negligible transfer takes place with dissimilar tasks

Probabilistic Transfer Learning at Work – Polynomial Surrogates
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Summary

• Developing a novel probabilistic framework for transfer learning:
1. Reducing the validation/testing errors of such models by leveraging data from similar domains
2. Propagating parametric, model-form, and data uncertainties towards predictions
3. Allowing for optimal ML model selection within the TL paradigm
4. Exhibiting moderate/strong computational scalability with increasing data volume and model complexity
5. Safeguarding against negative learning (decreased accuracy due to task disparity, w.r.t. baseline)
6. Consisting of strictly non-intrusive methods, applicable to most ML models without needing to modify the model 

(architecture) or implementation.
• Key technical steps:

1. Capture the knowledge to be transferred in training on source data
• Probability density functions on the calibrated ML model parameters/hyperparameters using Bayesian inversion
• Captures data and modeling errors/uncertainties

2. Propagate the knowledge to be transferred to target training tasks
• Novel mechanisms for knowledge transfer that extends the traditional Bayesian approach via the application of 

prior PDF tempering transformations
3. Determine how much knowledge to transfer given a choice of tempering transformation

• Explore hierarchical or empirical Bayes approaches, based on information-theoretic measures and distance 
metrics

4. Determine optimal ML model to use in TL
• Determine the optimal ML model for TL using Bayesian model selection
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