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Motivation: AM porosity and failure

I Additive manufacturing (AM)
allows design of components with more
complex structure than traditional
techniques.

I Often combined with topology
optimization to create optimally
performing components.

I AM parts typically suffer from porosity
issues that induce failure in a complex
manner.

I How to address this issue with
measurement and/or modeling
techniques?
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Goal: predicting failure locations
I Tools exist for measuring porosity in AM materials like Computed

Tomography (CT) but failure highly sensitive to void locations.
I Want: model for reliably predicting failure from porosity. Accurate

DNS models exist but are expensive:

I Neural networks have been used successfully as surrogates for a
number of physical problems.

I Goal: train Convoutional Neural Network (CNN) on DNS failure
model.
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Failure model: overview
DNS model

I Calibrated plasticity model of AM 17-4 PH stainless steel to model
material behavior affected by accumulation of damage.

I Stress linear, elastic σ = (1− φ)C(ε− εp), with C isotropic elastic
modulus tensor, ε total strain, εp plastic strain, φ void fraction.

I φ, εp evolve according to complex system of ODEs modeling failure
process.

Porosity realizations

I Small pores are implicit in constitutive
model.

I Large pores generated on mesh through
Karhunen–Loève (KL) process with
≈ 12, 000 modes & power-exponential
correlation function fit via CT scans.

I Many modes needed for high frequencies

Pores in blue
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Failure model: phenomenology & sensitivity to pores
Damage evolution - representative example
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Neural network surrogate failure model

Machine learning model objectives

1. Construct CNN to predict failure locations.

2. Build comparative Bayesian CNN (BCNN) model to capture
uncertainty and/or sensitivities.
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CNN model setup

Goal: Binary classification of failure Φ(X) given porosity ϕ(X).
Issue: Failed to not-failed ratio ≈ 1 : 104 −→ Class Imbalance.

Initial regularization of classification problem by

I Recasting as regression of damage field φ(X, tfail) at time of failure
with data D = {ϕi ,φi} and MSE loss.

I Transforming damage φ′ = σ ◦ g(φ) where σ softmax and g
Gaussian filter.

Smoothing emphasizes low-freq. content consistent with latent space
while softmax emphasizes high-damage regions of interest:

pores damage field transformed damage field

σ ◦ g
7→
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Dimensionality reduction & network architecture

Various aspects of model motivate low-dimensional latent space:

I KL expansion represents process with
≈ 12, 000 linear modes.
I Motivates initial linear

encoder-decoder structure
φ = W2W1ϕ+ b

I Can further reduce number of modes
through nonlinear dimensionality
reduction.

I Spatial smoothing via convolution
layers reduces high-freq. content.

I Results in heteroencoder architecture
with intermediate low-dimensional
latent space layer of smaller dimension
than output space.

CNN architecture

microstructure V = ϕ(XI)

V = Conv(V, K)

V = Pool(V)

V = Conv(V, K)

V = Pool(V)

V = Conv(V, K)

V = UpSample(V)

V = Conv(V, K)

V = UpSample(V)

V = Conv(V, K)

damage φ(XI) = V
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Class imbalance & loss re-weighting

I MSE loss 1
NvNs

∑Ns
s=1 ‖φs − φ̂s‖2 in context of class-imbalance

1

NvNs

 ∑
φs ,φ̂s∈Dlow

‖φs − φ̂s‖2 +
∑

φl ,φ̂l∈Dhigh

‖φl − φ̂l‖2


where |Dlow| � |Dhigh| are partioned sets of low and high damage
data.

I Optimizer tends to find poor local minimum.

I Re-weight loss function to address class imbalance

1

NvNs

Ns∑
s=1

‖φs − φ̂s‖2 w(φs)

where w(φ) is the per-voxel weighting function of true damage
values φ
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Loss re-weighting effect on optimizer solution
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Overall network performance via overlap metrics

I Cluster overlap
metrics as final
performance
metric over MSE.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Overlap =
TP

TP + FP + FN

True negatives

True positives

False negatives

False positives

Data transformation Notation Loss re-weightings Notation
None id None id
Softmax σ Inverse histogram IH
Gaussian filter g Inverse histogram per realization IHpr

Softmax ◦ Gaussian filter t

Recall: fraction of

true values capture by

predictions.

11 / 17



CNN reflects sensitivity of physics
I CNN learns sensitivity, i.e., alternate failure locations, in addition to

main failure location via false positives:

Figure: CNN prediction of four realizations.Red: true damage, blue: CNN
prediction, yellow :failure locations from the sensitivity analysis, gray: pore
location.
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Bayesian Convolutional Neural Network (BCNN)

Why consider a Bayesian neural network model?

I Uncertainty Quantification (UQ) in the sense of capturing data
sufficiency and (possibly) sensitivities.

I Regularization provided by the Bayesian prior distribution.

UQ with Bayesian inference

I UQ by treating model parameters as RVs whose distributions are
calibrated to training data.

I Model NNw(ϕ), parameters w, data D = {ϕi ,φi}, then
φ = NNw(ϕ) + ε where ε ∼ N (0, σ2) captures model discrepancy.

I Posterior probability of parameters w given D provided by Baye’s
rule:

p(w | D) =
p(D |w)p(w)

p(D)
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Approximate posteriors with variational inference (VI)

Posterior is intractable so we seek approximation qθ (often mean-field
Gaussian) from known parametric family minimizing KL-divergence

qθ = min
qθ∈F

DKL(qθ(w) ‖ p(w | D))

recast as minimizing negative Evidence Lower Bound (ELBO)

−L(θ) = DKL(qθ(w) ‖ p(w))− Eqθ(w) [log p(D |w)]

usually through a type of gradient descent.
Challenge with VI: non-convexity

I Non-convexity of ELBO loss leads to multiple local minima. Also
reported in literature, addressed with strategies like annealing.

I Observed poor local minima inherited from MSE, i.e., see similar
poor solution in deterministic CNN.

I Avoid by warm-starting means of params w from CNN solution.
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Relationship between Bayesian and deterministic

BCNN has same network architecture as CNN but convolutional layers
replaced by layers with random parameters. What’s the difference?

I Likelihood loss component resembles MSE:

−Eqθ(w) [log p(D |w)] = c +
1

2σ2
Eqθ(w)

[
Ns∑
s=1

‖(φs − NNw(ϕs))‖2

]
I If NNW(x) = Wx linear, mean(W) = µq, var(W) = Σq, ELBO is

−2Lθ =
1

σ2
tr{(Y − µqX)T (Y − µqX)}+ (µp − µq)TΣ−1

p (µp − µq)

+ log det(Σ−1
q Σp) + tr(Σ−1

p Σq) +
1

σ2
tr{VXXT}

which takes the form of least squares in means µq with quadratic
regularization. Variance Σq balanced between prior Σp and 0.

Non-linear case: view likelihood componentas as convolution with
Gaussian: Ns

2σ2 (N (w | 0,Σq) ∗MSE(w))(µq)⇒ inherit MSE local min.
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Mean predictions and uncertainty distribution

I Uncertainty in parameters pushed forward through model to get
pushed forward posterior (PFP) distribution over outputs.

I Mean, variance of PFP estimated through Monte Carlo sampling.

Recall (left) and precision
(right) of mean BCNN
predictions in orange.
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Leveraging uncertainty to rank damage clusters

I Compute empirical CDF to
measure probability mass
above a threshold and use
this to rank clusters.

I Ranking reflects actual
failure location and
alternative locations via
sensitivity analysis.

cluster 1

cluster 2

cluster 3
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Empirical CDFs for 3 clusters Red-high rank, blue-low rank, yellow -failures.
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