

A heteroencoder architecture for prediction of failure locations in porous metals using variational inference

Wyatt Bridgman¹, Xiaoxuan Zhang², Greg Teichert², Mohammad Kahlil¹
Krishna Garikipati², Reese Jones¹

¹*Sandia National Laboratories, Livermore, CA*

²*University of Michigan, Ann Arbor, MI*

Sandia National Laboratories

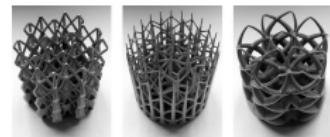
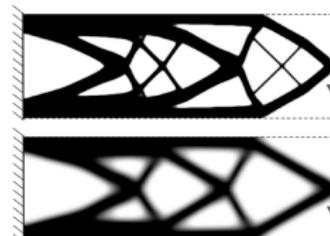
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

March 18, 2022

boratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-

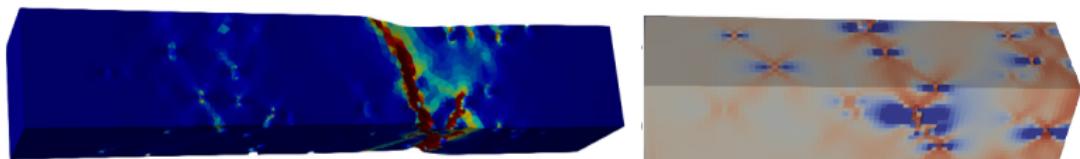
Motivation: AM porosity and failure

- ▶ **Additive manufacturing (AM)** allows design of components with more complex structure than traditional techniques.
- ▶ Often combined with **topology optimization** to create optimally performing components.
- ▶ AM parts typically suffer from **porosity** issues that induce failure in a complex manner.
- ▶ How to address this issue with measurement and/or modeling techniques?

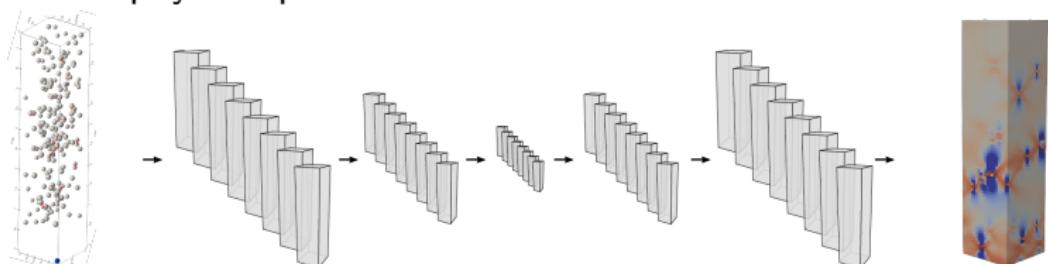


Goal: predicting failure locations

- ▶ Tools exist for measuring porosity in AM materials like Computed Tomography (CT) but failure highly sensitive to void locations.
- ▶ Want: model for reliably predicting failure from porosity. Accurate DNS models exist but are expensive:



- ▶ **Neural networks** have been used successfully as surrogates for a number of physical problems.



- ▶ Goal: train Convolutional Neural Network (CNN) on DNS failure model.

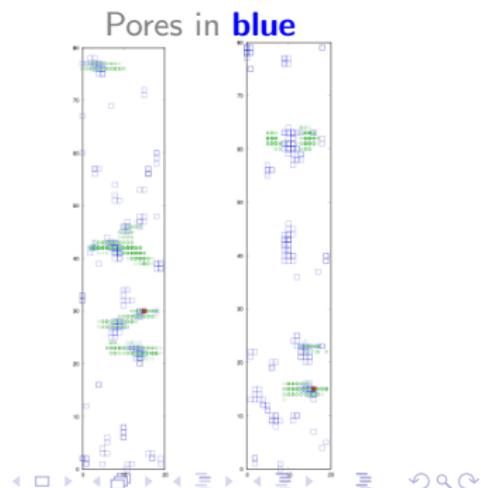
Failure model: overview

DNS model

- ▶ Calibrated plasticity model of AM 17-4 PH stainless steel to model material behavior affected by accumulation of damage.
- ▶ Stress linear, elastic $\sigma = (1 - \phi)\mathbb{C}(\epsilon - \epsilon_p)$, with \mathbb{C} isotropic elastic modulus tensor, ϵ total strain, ϵ_p plastic strain, ϕ void fraction.
- ▶ ϕ, ϵ_p evolve according to complex system of ODEs modeling failure process.

Porosity realizations

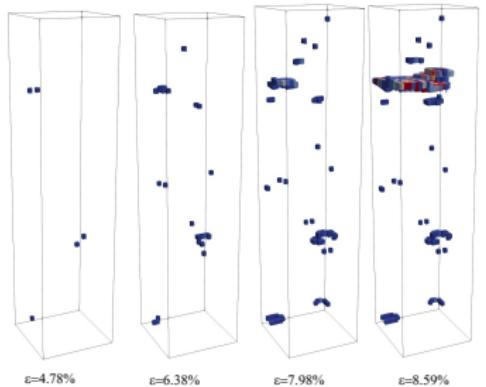
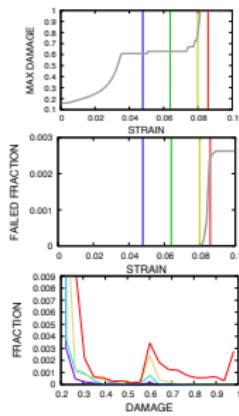
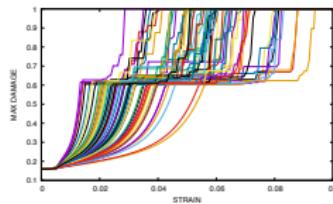
- ▶ **Small pores** are implicit in constitutive model.
- ▶ **Large pores** generated on mesh through **Karhunen–Loève (KL)** process with $\approx 12,000$ modes & power-exponential correlation function fit via CT scans.
- ▶ Many modes needed for high frequencies



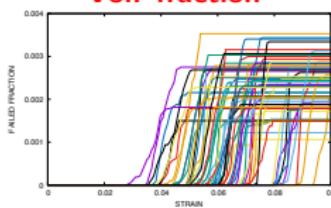
Failure model: phenomenology & sensitivity to pores

Max dmg.

Damage evolution - representative example

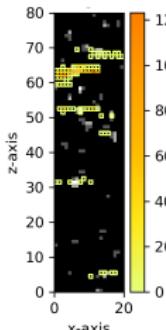
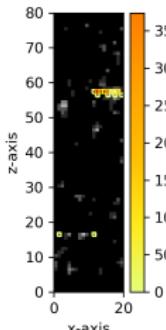
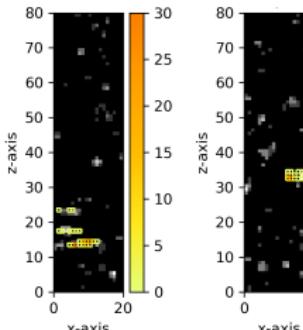
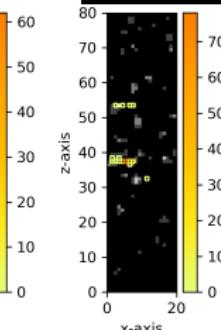
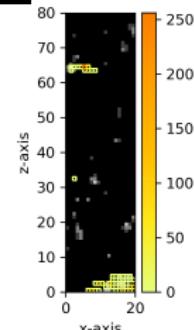


Vol. fraction



Sensitivity - perturbed failure locations in

yellow (□)



Machine learning model objectives

1. Construct CNN to predict failure locations.
2. Build comparative Bayesian CNN (BCNN) model to capture uncertainty and/or sensitivities.

CNN model setup

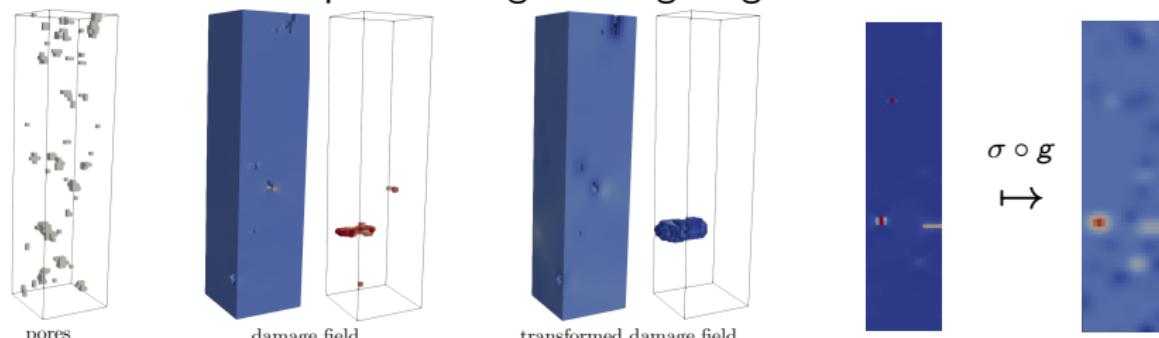
Goal: Binary classification of failure $\Phi(\mathbf{X})$ given porosity $\varphi(\mathbf{X})$.

Issue: Failed to not-failed ratio $\approx 1 : 10^4 \rightarrow$ **Class Imbalance**.

Initial **regularization** of classification problem by

- ▶ Recasting as regression of damage field $\phi(\mathbf{X}, t_{\text{fail}})$ at time of failure with data $\mathcal{D} = \{\varphi_i, \phi_i\}$ and MSE loss.
- ▶ Transforming damage $\phi' = \sigma \circ g(\phi)$ where σ **softmax** and g **Gaussian filter**.

Smoothing emphasizes low-freq. content consistent with latent space while **softmax** emphasizes high-damage regions of interest:

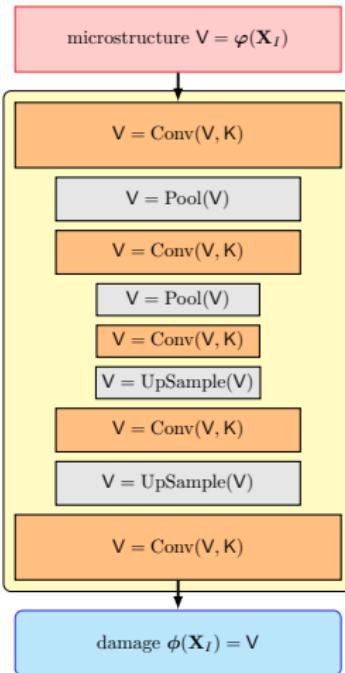


Dimensionality reduction & network architecture

Various aspects of model motivate **low-dimensional** latent space:

- ▶ **KL** expansion represents process with $\approx 12,000$ linear modes.
 - ▶ Motivates initial linear encoder-decoder structure
$$\phi = W_2 W_1 \varphi + b$$
- ▶ Can further reduce number of modes through **nonlinear dimensionality reduction**.
- ▶ Spatial smoothing via **convolution** layers reduces high-freq. content.
- ▶ Results in **heteroencoder** architecture with intermediate low-dimensional latent space layer of smaller dimension than output space.

CNN architecture



Class imbalance & loss re-weighting

- ▶ MSE loss $\frac{1}{N_v N_s} \sum_{s=1}^{N_s} \|\phi_s - \hat{\phi}_s\|^2$ in context of class-imbalance

$$\frac{1}{N_v N_s} \left[\sum_{\phi_s, \hat{\phi}_s \in \mathcal{D}_{\text{low}}} \|\phi_s - \hat{\phi}_s\|^2 + \sum_{\phi_I, \hat{\phi}_I \in \mathcal{D}_{\text{high}}} \|\phi_I - \hat{\phi}_I\|^2 \right]$$

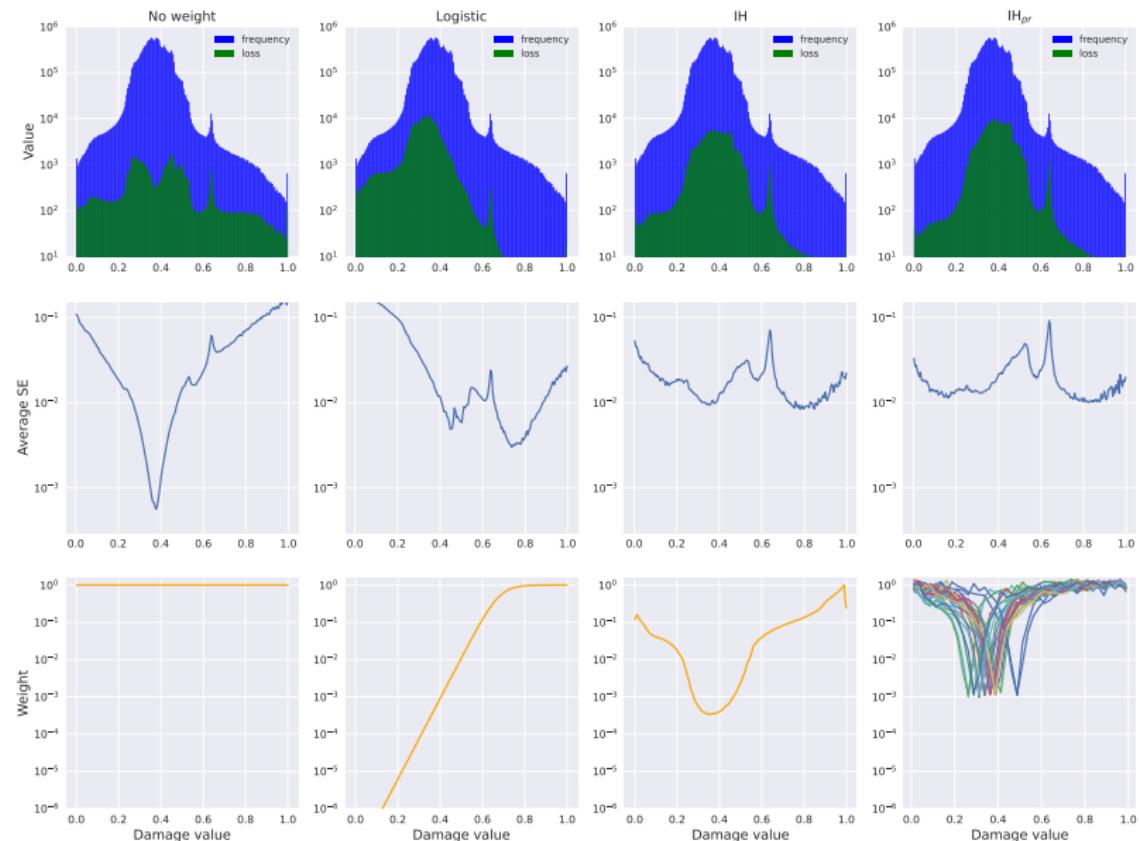
where $|\mathcal{D}_{\text{low}}| \gg |\mathcal{D}_{\text{high}}|$ are partitioned sets of low and high damage data.

- ▶ Optimizer tends to find **poor local minimum**.
- ▶ Re-weight loss function to address class imbalance

$$\frac{1}{N_v N_s} \sum_{s=1}^{N_s} \|\phi_s - \hat{\phi}_s\|^2 w(\phi_s)$$

where $w(\phi)$ is the per-voxel weighting function of true damage values ϕ

Loss re-weighting effect on optimizer solution



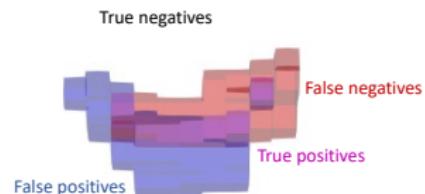
Overall network performance via overlap metrics

- ▶ Cluster **overlap** **metrics** as final performance metric over MSE.

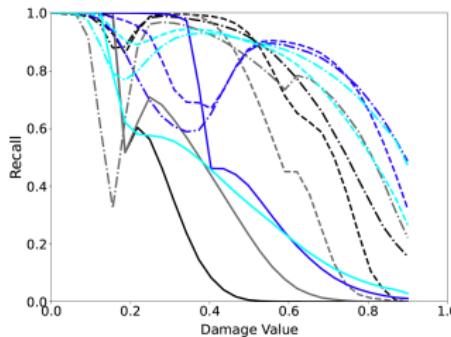
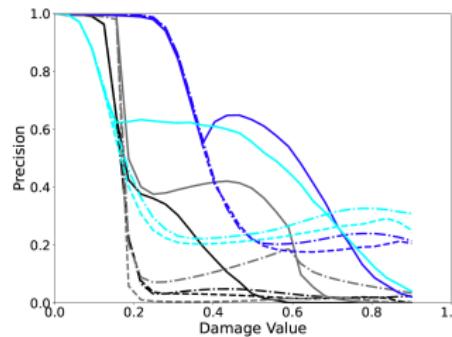
$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Overlap} = \frac{TP}{TP + FP + FN}$$



Data transformation	Notation	Loss re-weightings	Notation
None	id	None	id
Softmax	σ	Inverse histogram	IH
Gaussian filter	g	Inverse histogram per realization	IH_{pr}
Softmax \circ Gaussian filter	t		



Recall: fraction of **true** values capture by predictions.

	σ	i	t	g
id	—	—	—	—
IH	- - -	—	—	—
IH_{pr}	- - -	- - -	—	—

CNN reflects sensitivity of physics

- CNN learns sensitivity, i.e., alternate failure locations, in addition to main failure location via **false positives**:

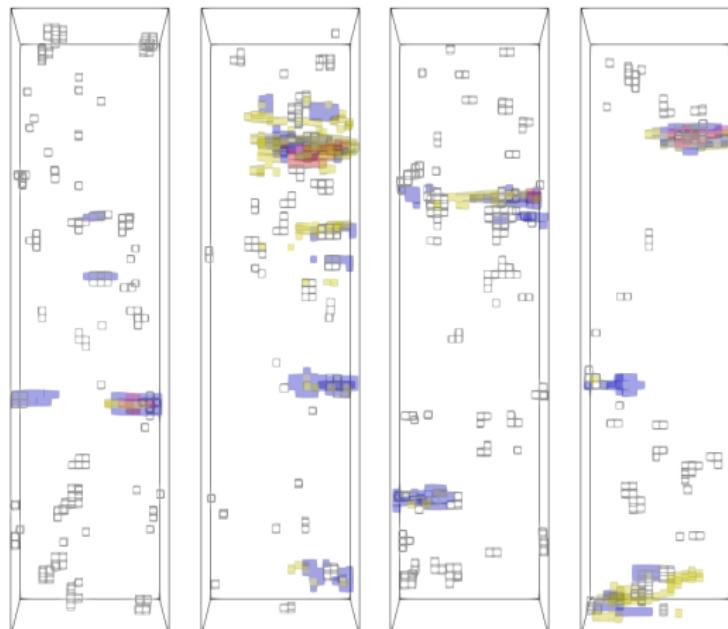


Figure: CNN prediction of four realizations. **Red**: true damage, **blue**: CNN prediction, **yellow**: failure locations from the sensitivity analysis, **gray**: pore location.

Bayesian Convolutional Neural Network (BCNN)

Why consider a Bayesian neural network model?

- ▶ **Uncertainty Quantification (UQ)** in the sense of capturing data sufficiency and (possibly) sensitivities.
- ▶ **Regularization** provided by the Bayesian prior distribution.

UQ with Bayesian inference

- ▶ UQ by treating model parameters as RVs whose distributions are calibrated to training data.
- ▶ Model $\text{NN}_w(\varphi)$, parameters w , data $\mathcal{D} = \{\varphi_i, \phi_i\}$, then $\phi = \text{NN}_w(\varphi) + \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ captures model discrepancy.
- ▶ Posterior probability of parameters w given \mathcal{D} provided by Baye's rule:

$$p(w | \mathcal{D}) = \frac{p(\mathcal{D} | w)p(w)}{p(\mathcal{D})}$$

Approximate posteriors with variational inference (VI)

Posterior is **intractable** so we seek approximation q_{θ} (often mean-field Gaussian) from known parametric family minimizing **KL-divergence**

$$q_{\theta} = \min_{q_{\theta} \in \mathcal{F}} D_{\text{KL}}(q_{\theta}(\mathbf{w}) \parallel p(\mathbf{w} \mid \mathcal{D}))$$

recast as minimizing negative **Evidence Lower Bound** (ELBO)

$$-\mathcal{L}(\theta) = D_{\text{KL}}(q_{\theta}(\mathbf{w}) \parallel p(\mathbf{w})) - \mathbb{E}_{q_{\theta}(\mathbf{w})} [\log p(\mathcal{D} \mid \mathbf{w})]$$

usually through a type of gradient descent.

Challenge with VI: non-convexity

- ▶ **Non-convexity** of ELBO loss leads to multiple local minima. Also reported in literature, addressed with strategies like annealing.
- ▶ Observed poor local minima **inherited** from MSE, i.e., see similar poor solution in deterministic CNN.
- ▶ Avoid by **warm-starting** means of params \mathbf{w} from CNN solution.

Relationship between Bayesian and deterministic

BCNN has same network architecture as CNN but convolutional layers replaced by layers with random parameters. [What's the difference?](#)

- ▶ Likelihood loss component resembles MSE:

$$-\mathbb{E}_{q_{\theta}(\mathbf{w})} [\log p(\mathcal{D} | \mathbf{w})] = c + \frac{1}{2\sigma^2} \mathbb{E}_{q_{\theta}(\mathbf{w})} \left[\sum_{s=1}^{N_s} \|(\phi_s - \mathbb{N}\mathbb{N}_{\mathbf{w}}(\varphi_s))\|^2 \right]$$

- ▶ If $\mathbb{N}\mathbb{N}_{\mathbf{w}}(\mathbf{x}) = \mathbf{Wx}$ linear, $\text{mean}(\mathbf{W}) = \boldsymbol{\mu}_q$, $\text{var}(\mathbf{W}) = \boldsymbol{\Sigma}_q$, ELBO is

$$\begin{aligned} -2\mathcal{L}_{\theta} = & \frac{1}{\sigma^2} \text{tr}\{(\mathbf{Y} - \boldsymbol{\mu}_q \mathbf{X})^T (\mathbf{Y} - \boldsymbol{\mu}_q \mathbf{X})\} + (\boldsymbol{\mu}_p - \boldsymbol{\mu}_q)^T \boldsymbol{\Sigma}_p^{-1} (\boldsymbol{\mu}_p - \boldsymbol{\mu}_q) \\ & + \log \det(\boldsymbol{\Sigma}_q^{-1} \boldsymbol{\Sigma}_p) + \text{tr}(\boldsymbol{\Sigma}_p^{-1} \boldsymbol{\Sigma}_q) + \frac{1}{\sigma^2} \text{tr}\{\mathbf{V} \mathbf{X} \mathbf{X}^T\} \end{aligned}$$

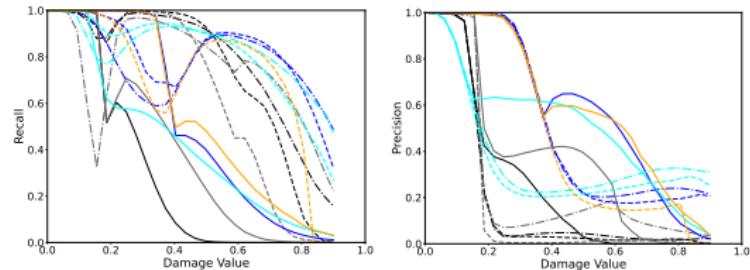
which takes the form of [least squares](#) in means $\boldsymbol{\mu}_q$ with [quadratic regularization](#). Variance $\boldsymbol{\Sigma}_q$ balanced between prior $\boldsymbol{\Sigma}_p$ and $\mathbf{0}$.

Non-linear case: view likelihood component as [convolution](#) with Gaussian: $\frac{N_s}{2\sigma^2} (\mathcal{N}(\mathbf{w} | \mathbf{0}, \boldsymbol{\Sigma}_q) * \text{MSE}(\mathbf{w}))(\boldsymbol{\mu}_q) \Rightarrow$ [inherit MSE local min.](#)

Mean predictions and uncertainty distribution

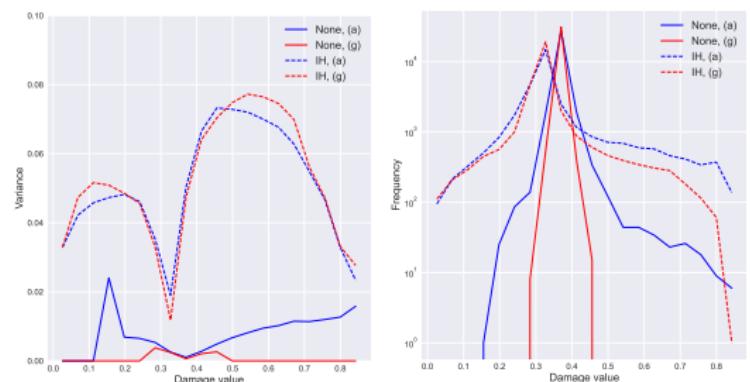
- ▶ Uncertainty in parameters pushed forward through model to get **pushed forward posterior (PFP)** distribution over outputs.
- ▶ Mean, variance of PFP estimated through Monte Carlo sampling.

Recall (left) and precision (right) of mean BCNN predictions in **orange**.



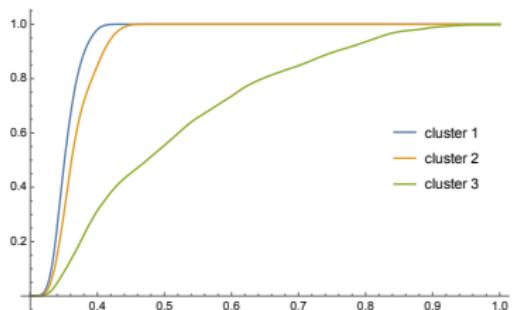
Distribution of **variance** w.r.t. damage value (left) and **frequency** w.r.t. damage value (right).

Uncertainty dist. reflects data sparsity. Consistent with Bayesian behavior.

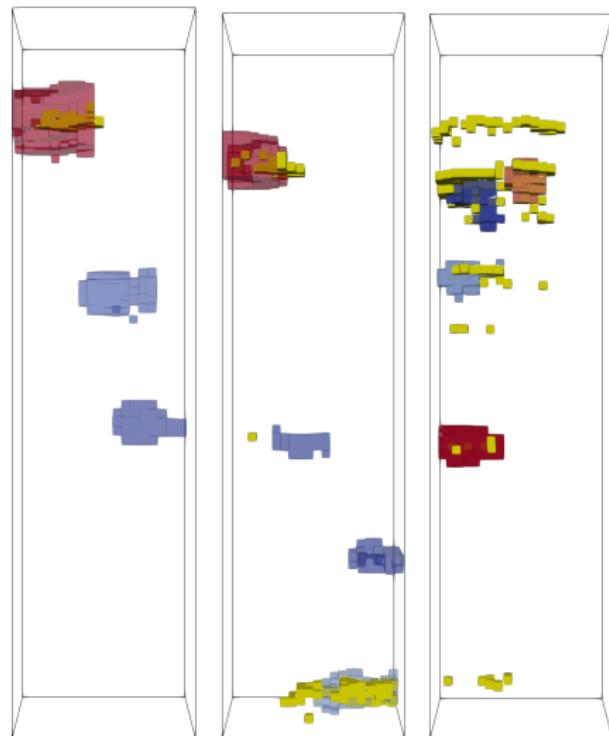


Leveraging uncertainty to rank damage clusters

- ▶ Compute empirical CDF to measure probability **mass above a threshold** and use this to rank clusters.
- ▶ Ranking reflects actual failure location and alternative locations via sensitivity analysis.



Empirical CDFs for 3 clusters



Red-high rank, blue-low rank, yellow-failures.