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Motivation: AM porosity and failure

» Additive manufacturing (AM)
allows design of components with more
complex structure than traditional
techniques.

» Often combined with topology
optimization to create optimally
performing components.

> AM parts typically suffer from porosity
issues that induce failure in a complex
manner.

> How to address this issue with
measurement and/or modeling
techniques?
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Goal: predicting failure locations
» Tools exist for measuring porosity in AM materials like Computed
Tomography (CT) but failure highly sensitive to void locations.

» Want: model for reliably predicting failure from porosity. Accurate
DNS models exist but are expensive:

» Neural networks have been used successfully as surrogates for a
number of physical problems.

%%%%

» Goal: train (CNN) on DNS failure
model.
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Failure model: overview
DNS model
» Calibrated plasticity model of AM 17-4 PH stainless steel to model
material behavior affected by accumulation of damage.
» Stress linear, elastic o = (1 — ¢)C(e — €,), with C isotropic elastic
modulus tensor, € total strain, €, plastic strain, ¢ void fraction.

> ¢, €, evolve according to complex system of ODEs modeling failure
process.

Pores in blue

Porosity realizations

» Small pores are implicit in constitutive
model.

> Large pores generated on mesh through
process with
=~ 12,000 modes & power-exponential
correlation function fit via CT scans.

» Many modes needed for high frequencies
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Failure model: phenomenology & sensitivity to pores

Damage evolution - representative example
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Neural network surrogate failure model

Machine learning model objectives
1. Construct CNN to predict failure locations.

2. Build comparative Bayesian CNN (BCNN) model to capture
uncertainty and/or sensitivities.
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CNN model setup

Goal: Binary classification of failure ®(X) given porosity ¢(X).
Issue: Failed to not-failed ratio ~ 1 : 10* — Class Imbalance.
Initial regularization of classification problem by

> Recasting as regression of damage field ¢(X, traj) at time of failure
with data D = {¢j, ¢;} and MSE loss.

» Transforming damage ¢’ = o o g(¢®) where o softmax and g
Gaussian filter.

Smoothing emphasizes low-freq. content consistent with latent space
while softmax empha5|zes high- damage reglons of interest:

‘ﬂ.v:{
I ) I

pores damage ﬁeld transformed damage field
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Dimensionality reduction & network architecture

Various aspects of model motivate low-dimensional latent space:
CNN architecture

> expansion represents process with
= 12,000 linear modes.

» Motivates initial linear
encoder-decoder structure
¢ = W2W1§0 + b
» Can further reduce number of modes
through

» Spatial smoothing via
layers reduces high-freq. content.

» Results in architecture
with intermediate low-dimensional
latent space layer of smaller dimension
than output space.

‘ microstructure V = (X;) ‘

|

Y

V = Conv(V,K)

V = Pool(V)

V = Conv(V, K)

V = Pool(V)

V = Conv(V,K)

V = UpSample(V)

V = Conv(V,K)

V = UpSample(V)

V = Conv(V,K)

¥

|

damage ¢(X7) =V
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Class imbalance & loss re-weighting

» MSE loss ﬁ ZQ’;l s — ds||? in context of class-imbalance

1 212 212
| 2 les=ddPE D0 liei—
bs,PsEDiow ®1,91€Dhigh
where |Diy| > |Dhign| are partioned sets of low and high damage
data.
» Optimizer tends to find poor local minimum.

» Re-weight loss function to address class imbalance

1 & A
N N Z||¢S _¢SH2 W(¢5)
viVs '

where w(¢) is the per-voxel weighting function of true damage
values ¢
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Loss re-weighting effect on optimizer solution

Average SE
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Overall network performance via overlap metrics
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CNN reflects sensitivity of physics
» CNN learns sensitivity, i.e., alternate failure locations, in addition to

main failure location via false positives:
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Figure: CNN prediction of four realizations.Red: true damage, blue: CNN
prediction, :failure locations from the sensitivity analysis, gray: pore
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Bayesian Convolutional Neural Network (BCNN)

Why consider a Bayesian neural network model?

> in the sense of capturing data
sufficiency and (possibly) sensitivities.
> provided by the Bayesian prior distribution.
UQ with Bayesian inference
» UQ by treating model parameters as RVs whose distributions are
calibrated to training data.
» Model NN (), parameters w, data D = {¢;, ¢;}, then
¢ = NNy () + € where € ~ N(0,0?) captures model discrepancy.
» Posterior probability of parameters w given D provided by Baye's
rule:
py_ PP W)p(w)

plw p(D)

13/17



Approximate posteriors with variational inference (VI)

Posterior is so we seek approximation gg (often mean-field
Gaussian) from known parametric family minimizing

g6 = min Dk (qe(w) || p(w | D))
qecf
recast as minimizing negative Evidence Lower Bound (ELBO)

—L(0) = Di(go(w) || p(W)) — Eqgo(w) [log p(D [ w)]

usually through a type of gradient descent.
Challenge with VI: non-convexity

> of ELBO loss leads to multiple local minima. Also
reported in literature, addressed with strategies like annealing.

» Observed poor local minima from MSE, i.e., see similar
poor solution in deterministic CNN.

> Avoid by means of params w from CNN solution.
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Relationship between Bayesian and deterministic

BCNN has same network architecture as CNN but convolutional layers
replaced by layers with random parameters. What's the difference?

> Likelihood loss component resembles MSE'
—Egg(w) [log p(D | w)] = 2 =5 Eqe(w) Z (s — NNw ()1
» If NNw(x) = Wx linear, mean(W) = pq, var(W) = X, ELBO is
2L = (Y~ ugX)T (Y — X))+ (b1p — 1) Z5 (i~ 11g)

_ _ 1
+ logdet(X ' X,) +tr(X,'Xg) + i tr{VXXT}

which takes the form of in means pg with quadratic
regularization. Variance X balanced between prior X, and 0.

Non-linear case: view likelihood componentas as with
Gaussian: 2’\’2 (w]0,Xg) * MSE(wW))(pq) =
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Mean predictions and uncertainty distribution

» Uncertainty in parameters pushed forward through model to get

pushed forward posterior (PFP) distribution over outputs.

» Mean, variance of PFP estimated through Monte Carlo sampling.

Recall (left) and precision
(right) of mean BCNN
predictions in orange.
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Distribution of variance
w.r.t. damage value
(left) and frequency w.r.t.
damage value (right).

Uncertainty dist. reflects
data sparsity. Consistent
with Bayesian behavior.
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Leveraging uncertainty to rank damage clusters

» Compute empirical CDF to
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measure probability mass
above a threshold and use
this to rank clusters.

Ranking reflects actual
failure location and
alternative locations via
sensitivity analysis.
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Red-high rank, blue-low rank, -failures.
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