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Neuromorphic hardware is advantageous on

probabilistic algoritinms




Neuromorphic algorithm can simulate random walks
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Walker Updates per Joule

We can identify a neuromorphic advantage for simulating random walks
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Where does this advantage come from?

® Extreme parallelism of neuromorphic hardware

plus

Embarrassingly parallel nature of Monte Carlo random walks

¢ Many simple calculations in parallel
VS

Single complex calculation

® Limiting factor going forward will likely be probabilistic component
® Quality and form of random numbers

® (Quantity and location of random number generation
g

@

COINFLIPS



What happens if we build a neuromorphic chip

centered on probabilistic sampling?




What constitutes brain inspiration? @
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High fan-in
connectivity!

Analog
computing!




The brain’s trillions of synapses exhibit considerable stochasticity @
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The brain appears to use probabilistic sampling of populations

Neuron

Hippocampal Reactivation of Random Trajectories
Resembling Brownian Diffusion

Highlights

Hippocampal replay can represent Brownian diffusion-like
random trajectories.

Reactivated trajectories cover positions over wide ranges of
spatiotemporal scales

Replay event statistics are incompatible with actual
behavioral trajectories

Expression dynamics of replayed assemblies was linked to
specific oscillatory bands
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In Brief

Stella et al. examine the dynamic
properties of reactivated spatial
trajectories in the hippocampus {
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that reactivated trajectories are ¢
by a Brownian diffusion process
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How does brain use this ubiquitous stochasticity? @

COINFLIPS

DTMC random walks Expected value
(sampling network) (average over stochasticity)



Many apphcatlons of computlng have inherent uncertamty ““,r
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Many applications of computing have inherent uncertainty (r
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Two main use cases:
*¢ Mod-Sim --- Generating the random number you need
» Artificial Intelligence --- Effective and efficient sampling of algorithms
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So what would a probabilistic neuromorphic computer look like? @

COINFLIPS

Goal: 1 billion RNs per microsecond

® _lell neurons x le4 synapses / neuron x 1 Hz = 1e15 RNs per second in human

Why?
® Numerical computing

® Artificial Inteﬂigence

How?

® Stochastic devices

® Neuromorphic architecture

14




One possibility is to inject ubiquitous stochasticity into existing @

neuromorphic technoiogies

COINFLIPS
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Algorithms Algorithms

Algorithms

Hybrid Unknown Future
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Making stochasticity ubiquitous may require that we revisit how we

design neuromorphic hardware
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CO—designed Improved Neural Foundations Leveraging Inherent Physics
Stochasticity (COINFLIPS)

COINFLIPS
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Every synapse in the brain is a e o
tic “coinflip” :
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Tunable RNG — magnetic tunnel junctions & tunnel diodes @
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Tunable random number generator Why did we pick the devices we picked?
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H : ‘-’ilf__; heads
50:50 | —
me () f‘—_:—d:_: _Ea_js
20:80 !

Il. Tunnel diodes

|. Magnetic tunnel junctions

‘Word line

L4

P-drain N-source

Implant

Jean Anne Andy Kent

Incorvia Shashank Misra & Tzu-Ming Lu 19



Jet detection in particle physics @
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Opportunities for probabilistic neuromorphic computing in physics jet @

identification
COINFLIPS

Mante Carlo mmulatmns
Improved model generation of
: : ,* ** artificial data to train ML model

Candidate
Distributions

How likely is jet an
event of interest?

Real-time (<microsecond) Bayesian
neural network identification of
events

Experiment ' COINFLIPS
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How do we use coinfl

Biased random source to
approximate uniform
random numbers

Some literature
here
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Uniform random numbers to

arbitrary distributions
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Random numbers are a non-trivial computational cost today @

COINFLIPS

We want a RN pulled from some physics distribution

1 Software uses pseudo-RNG to pull uniform random number

- This is simple, but can be costly for volume and quality
RNG

T Numerical methods convert uniform RN to desired distribution
- Some distributions are easy (simple inverse CDF)

- Some distributions are challenging
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It is possible to generate a random number from a desired statistical

distribution

Expand Boolean tree of PDF and flip many coins for

all branches in parallel
— If(C,=T, p,=0.8) If(C,=H, p,=0.6)
5 4's Place

I Y N VR o O
1 o o 1

s Place

Draw uniform
RNG

0 1's Place

Convert to * Worst case, this is a exponentially large number of coins
desired PDF * PDFs have structure and redundancies that can be leveraged

Darby Smith

@
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* Correlations from devices or built into neural circuits can similarly compress tree
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A potential COINFLIPS architecture for generating random numbers @

COINFLIPS
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Establish a paradigm of computation around synaptic sampling @

Deterministic Stochastic Stochastic COINFLIPS
Simulation Neuron Synapse
Sampling Sampling
) - Edge Weights + - Edge Weights +
Edge Weights : Node Probabilities . Edge Probabilities

Can novel neural
sampling algorithms be
leveraged to provide
more efficient and more
powerful Al capabilities?
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Sampling ANNs with stochastic synapses provides estimate of

uncertainty COINFLIPS
T s [ ]
10 l.ﬂ 17
> Approach - .4 o

> Train simple neural network with only minor modificatic

> Simple network can achieve decent performance q ‘
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Sampling ANNs with stochastic synapses provides estimate of

uncertamty - INFLIPS

(weighted coinflips)

> Sample network to identify what classes 784 X 400

> Approach

> Train simple neural network with only minor
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2™ Choice of stochastic sampled networks is often the ‘right’ answer for f;_-
\ Y

COINFLIPS
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Sampling ANNSs with stochastic synapses is robust to low precision

syna SES

COINFLIPS

8-bit randomness [ 6-bit randomness

Full Precision
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Next step: using Al to guide COINFLIPS neural circuit design ( -

Data and Models

* Data Sweeps
e Device Models
e ASIC behavior models

Topological Analysis
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Vector Matrix Multiplier

e Sjze constraints
* Discover novel circuit
topologies

Neuvral
Circuits & Architectures

i

Machine Learning

T | Reward |
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1?\, }? S ! - o %ot Take_[Environment o
e R R R s | .
=RRRARRR AR s — .
Game Theory Reinforcement .

Learning

Our Al-enhanced framework would need inputs from algorithms,
devices, architectures and ML-based hyper-parameters. The
framework will enable new capabilities.

v
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Hyper Parameters

* Learning Rate

* # of Epochs

 Hardware based constraints
in architecture search

Device and Architectural
Constraints

Charge time

Energy efficiency

SWaP

Connectivity

Extreme Temperature environments

Katie Schuman (Tenn)
Suma Cardwell (Sandia)
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COINFLIPS presents an opportunity to develop a ( ';_

Commum't)/ of interest to create a new computing paradigm
COINFLIPS

Jointly develop a programming
model and theoretical framework
with an emerging technology

Opportunity for computing to
prioritize impact on
different classes of applications
Factor in integration and system
design from the onset
of a new approach

Optimize non-CMOS devices for

g
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scalability and cost of reliability
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Thanks!
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