

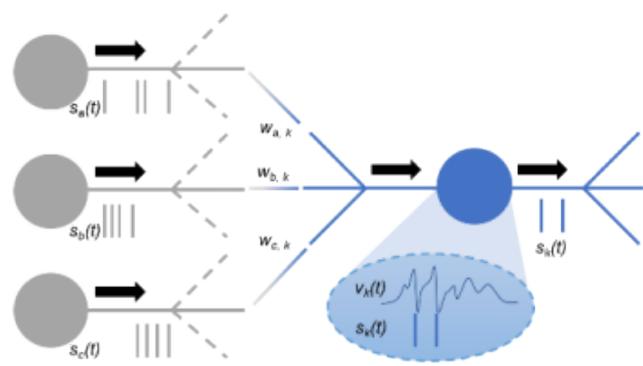
COINFLIPS: CO-designed Improved Neural Foundations Leveraging Inherent Physics Stochasticity

Brad Aimone

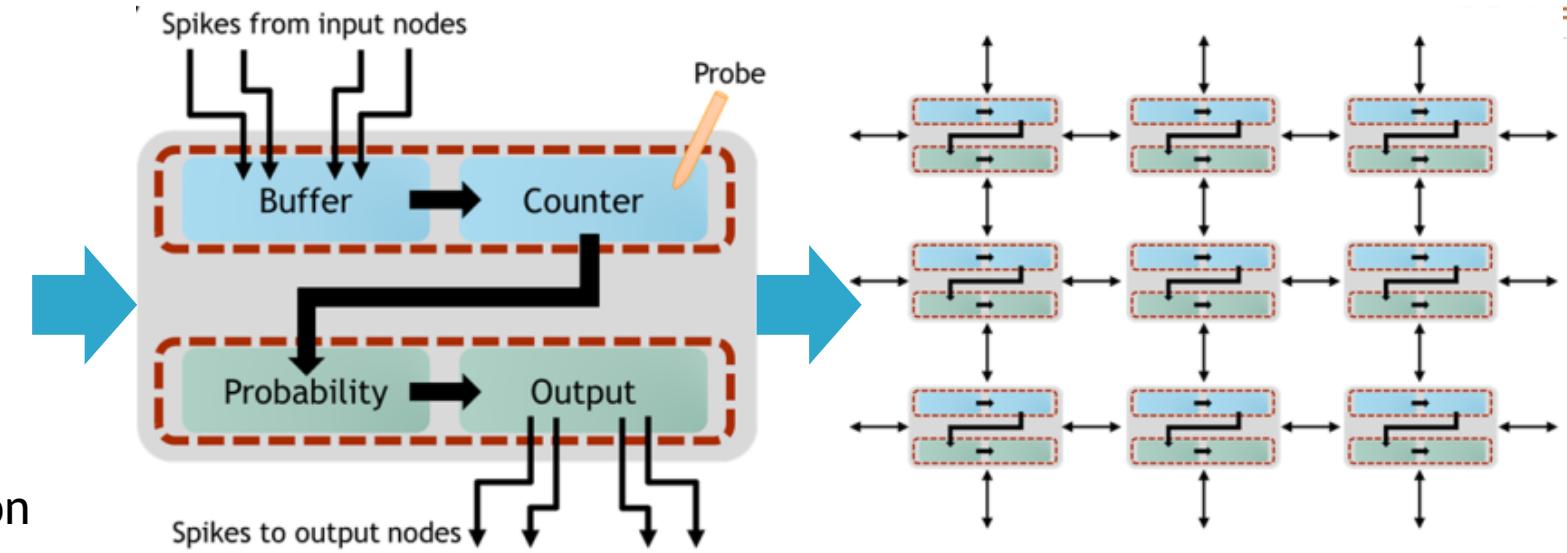
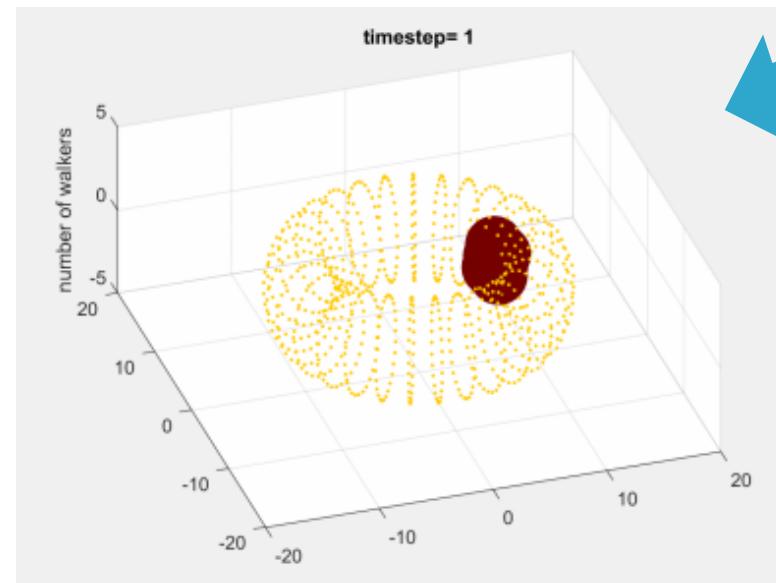
jbaimon@sandia.gov

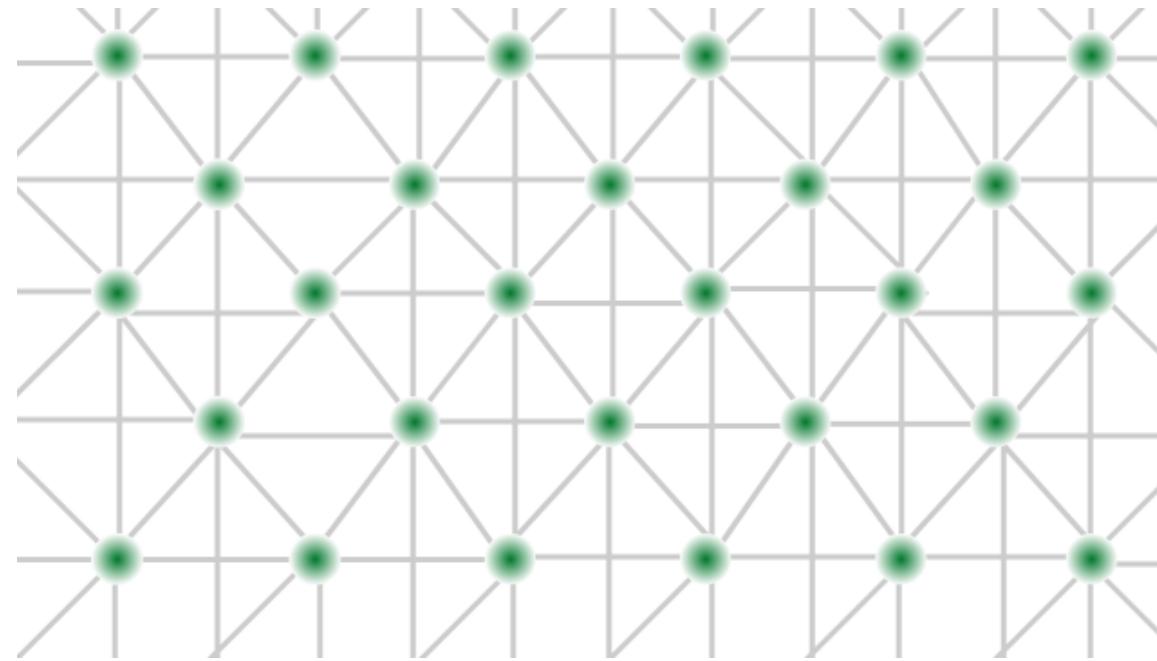
Neuromorphic hardware is advantageous on
probabilistic algorithms

Neuromorphic algorithm can simulate random walks



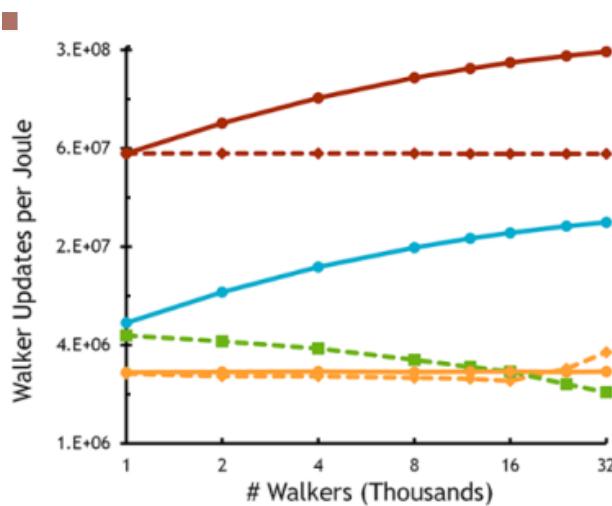
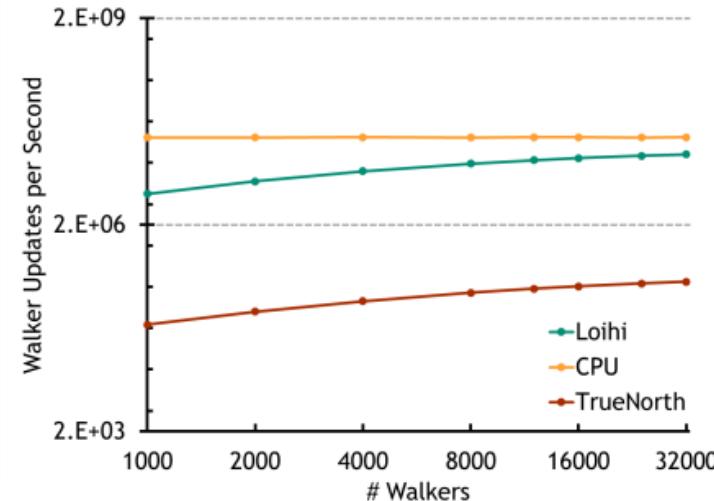
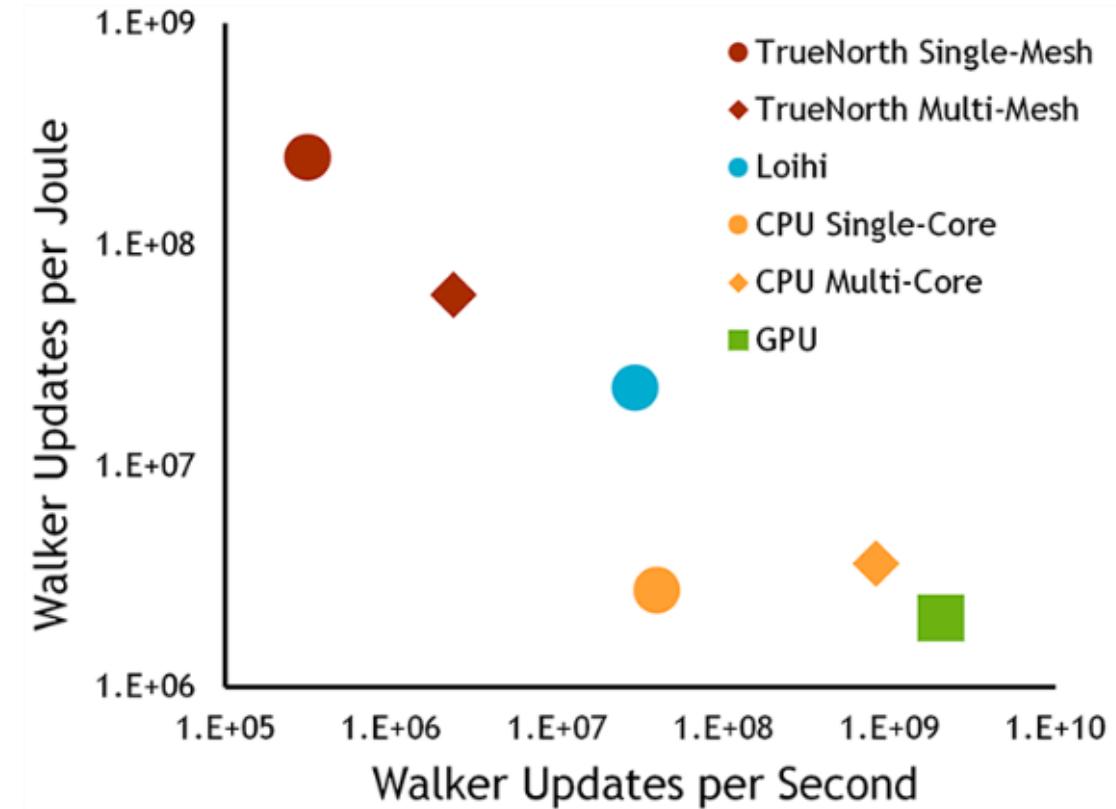
Leaky Integrate and Fire Neuron





We can identify a neuromorphic advantage for simulating random walks

We define a *neuromorphic advantage* as an algorithm that shows a demonstrable advantage in terms of one resource (e.g., energy) while exhibiting comparable scaling in other resources (e.g., time).



Where does this advantage come from?

- Extreme parallelism of neuromorphic hardware
plus
Embarrassingly parallel nature of Monte Carlo random walks
- Many simple calculations in parallel
vs
Single complex calculation
- Limiting factor going forward will likely be probabilistic component
 - Quality and form of random numbers
 - Quantity and location of random number generation

What happens if we build a neuromorphic chip
centered on probabilistic sampling?

What constitutes brain inspiration?

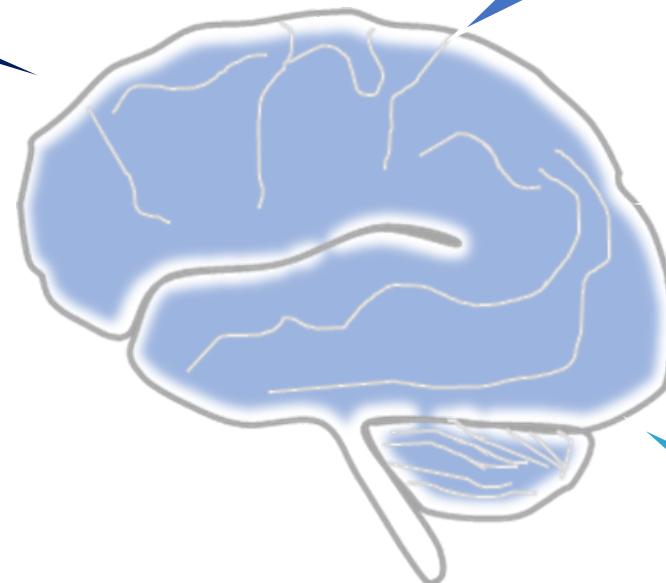
Analog computing!

High fan-in connectivity!

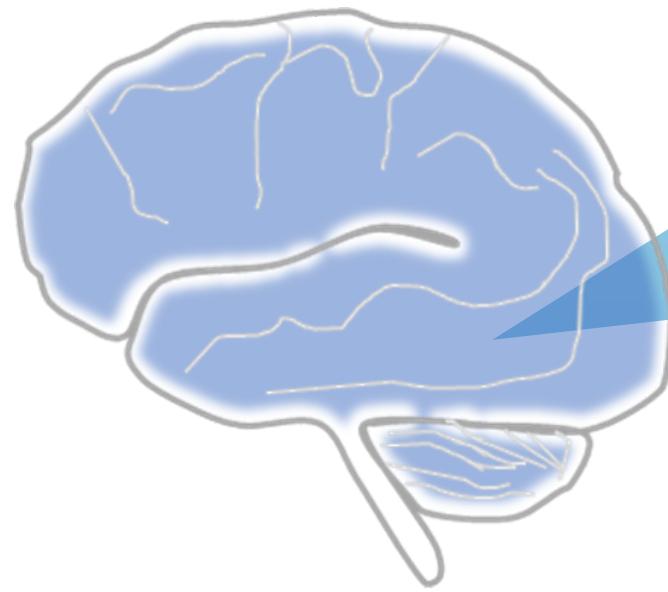
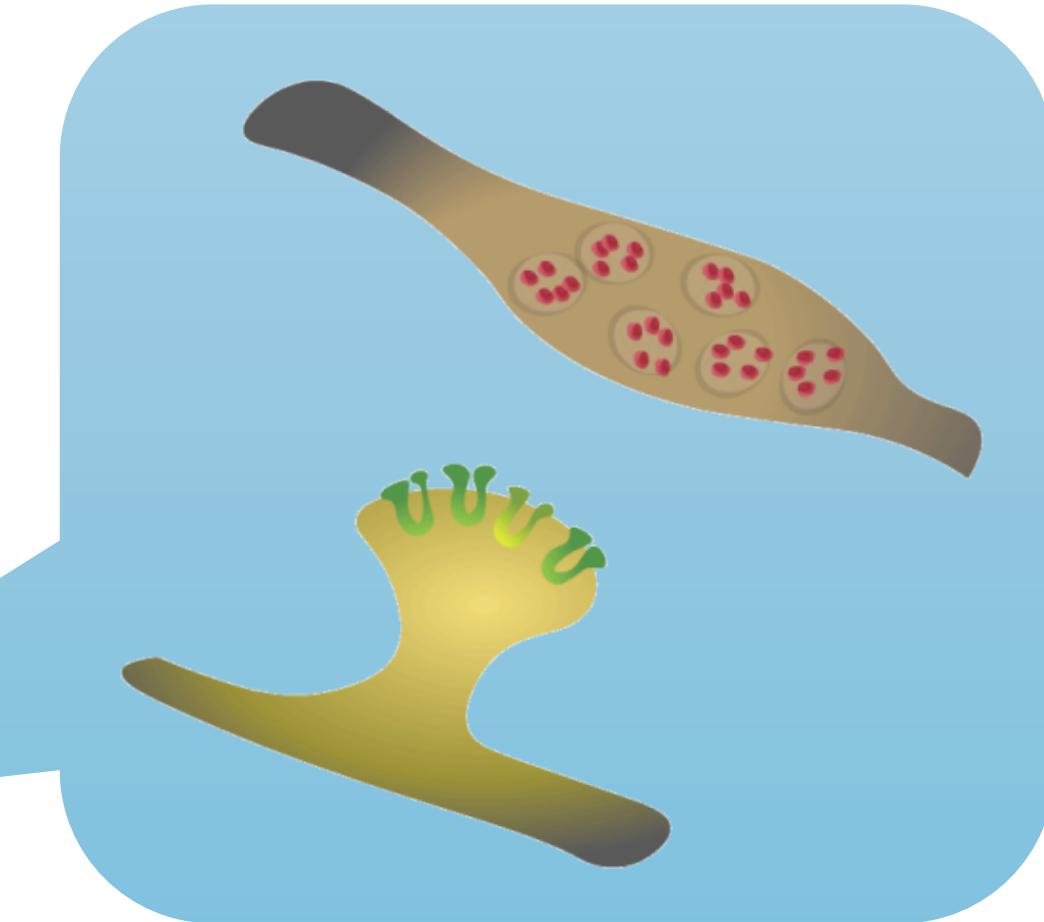
Spiking!

Learning!

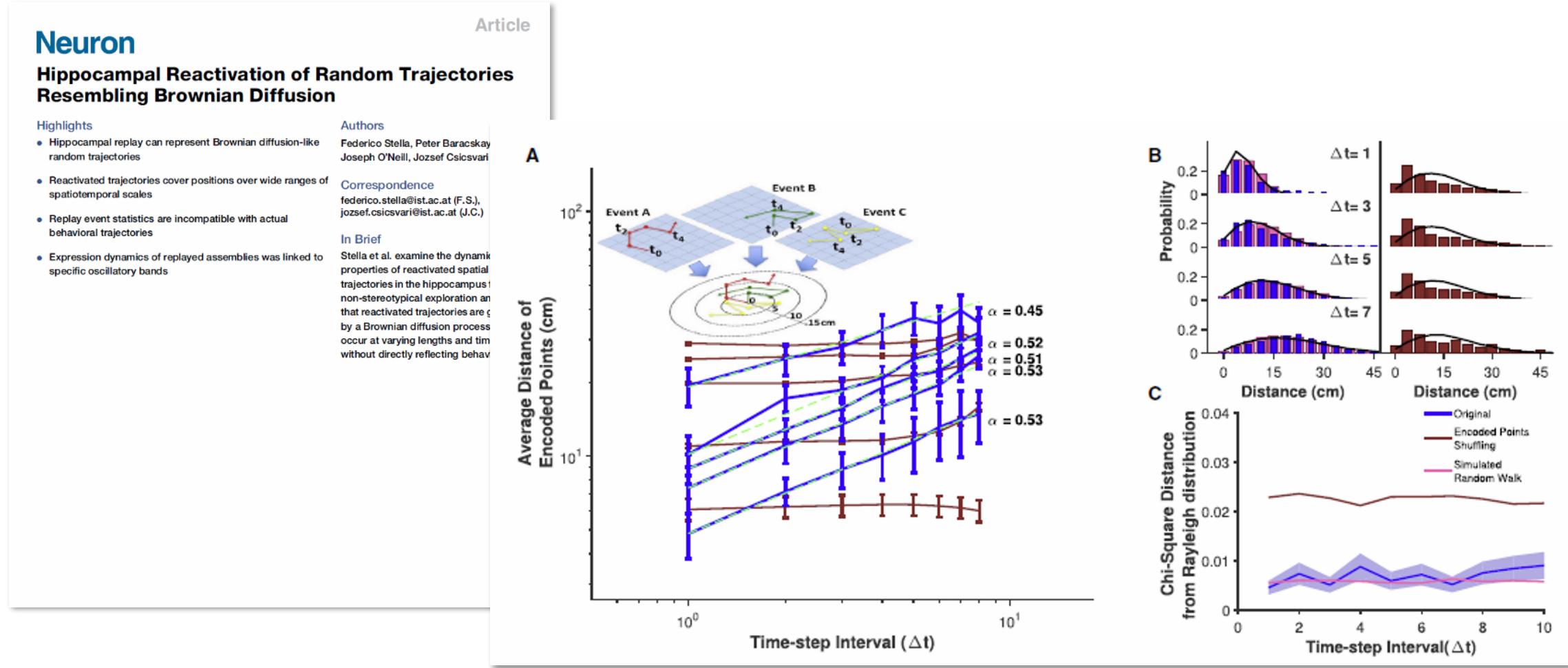
Stochasticity!



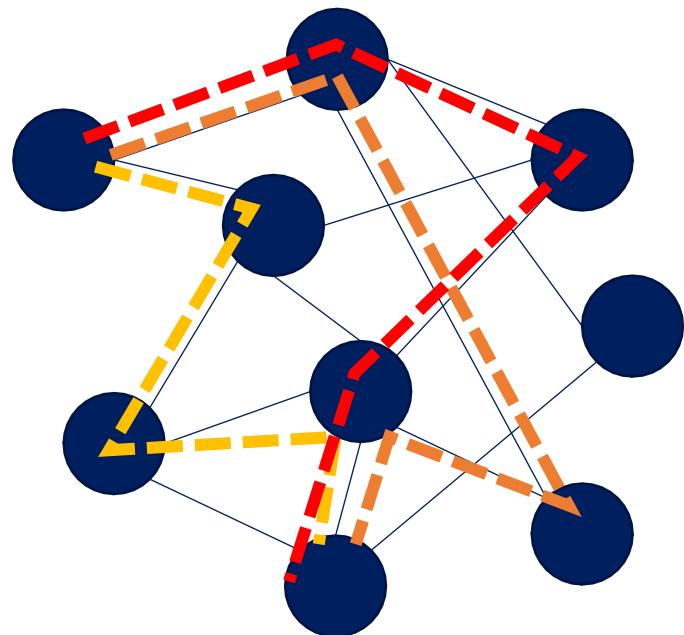
The brain's trillions of synapses exhibit considerable stochasticity



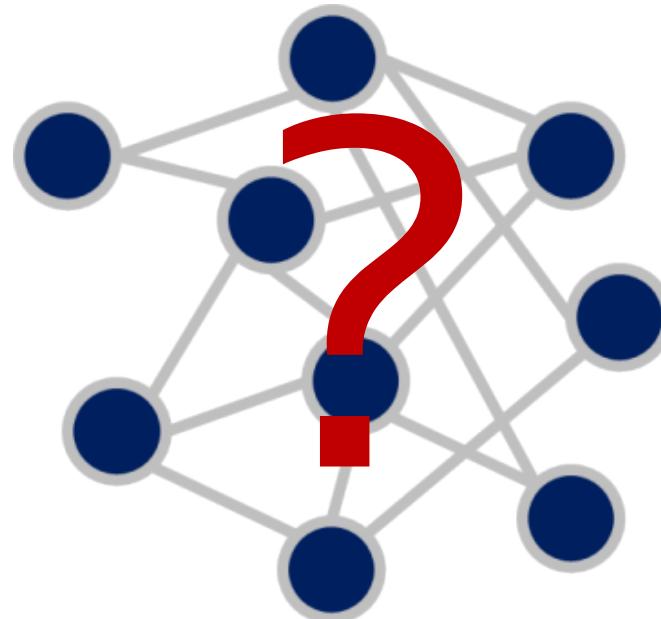
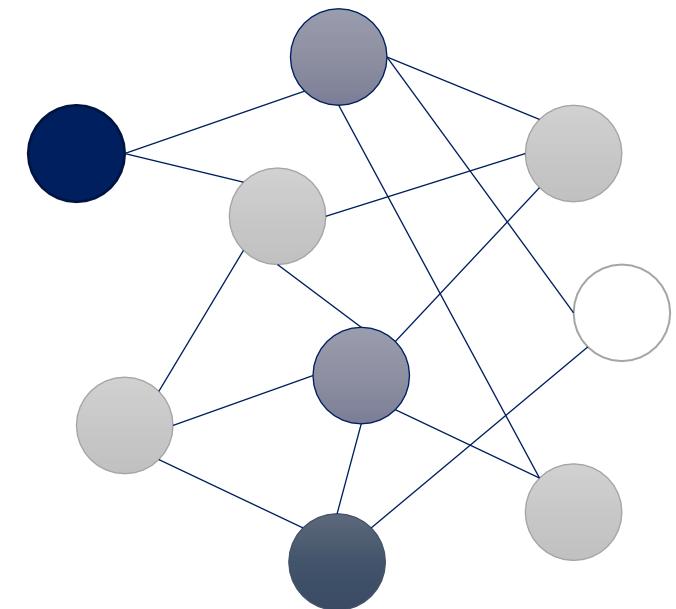
The brain appears to use probabilistic sampling of populations



How does brain use this ubiquitous stochasticity?



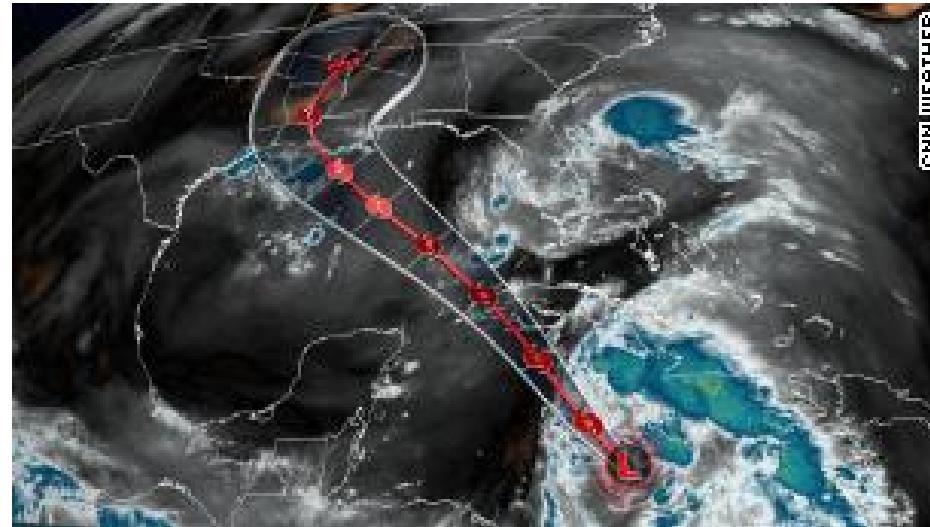
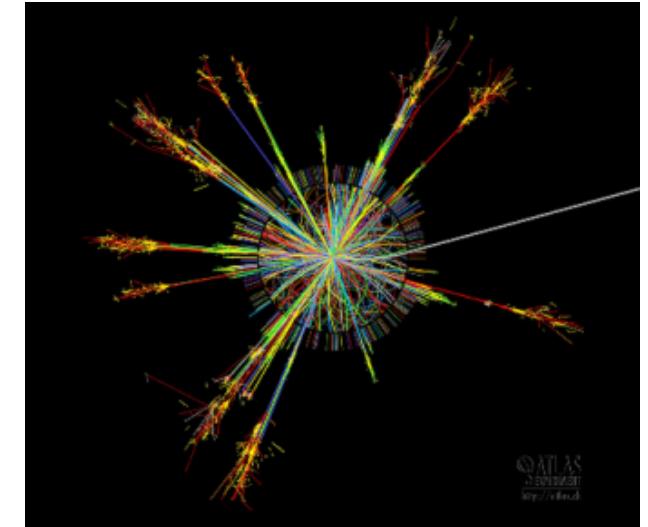
DTMC random walks
(sampling network)



Expected value
(average over stochasticity)

Many applications of computing have inherent uncertainty

Many applications of computing have inherent uncertainty



Two main use cases:

- ❖ Mod-Sim --- Generating the random number *you need*
- ❖ Artificial Intelligence --- Effective and efficient sampling of algorithms

So what would a probabilistic neuromorphic computer look like?

Goal: *1 billion RNs per microsecond*

- $\sim 10^{11}$ neurons $\times 10^4$ synapses / neuron $\times 1$ Hz = 10^{15} RNs per second in human

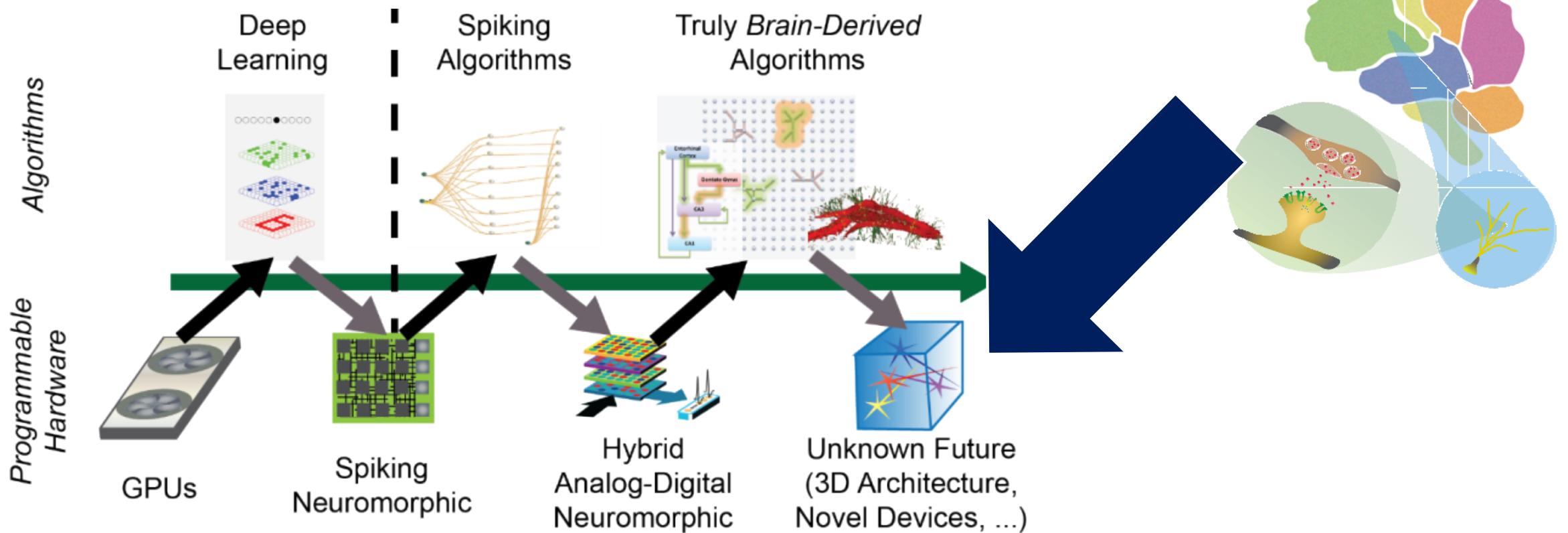
Why?

- Numerical computing
- Artificial Intelligence

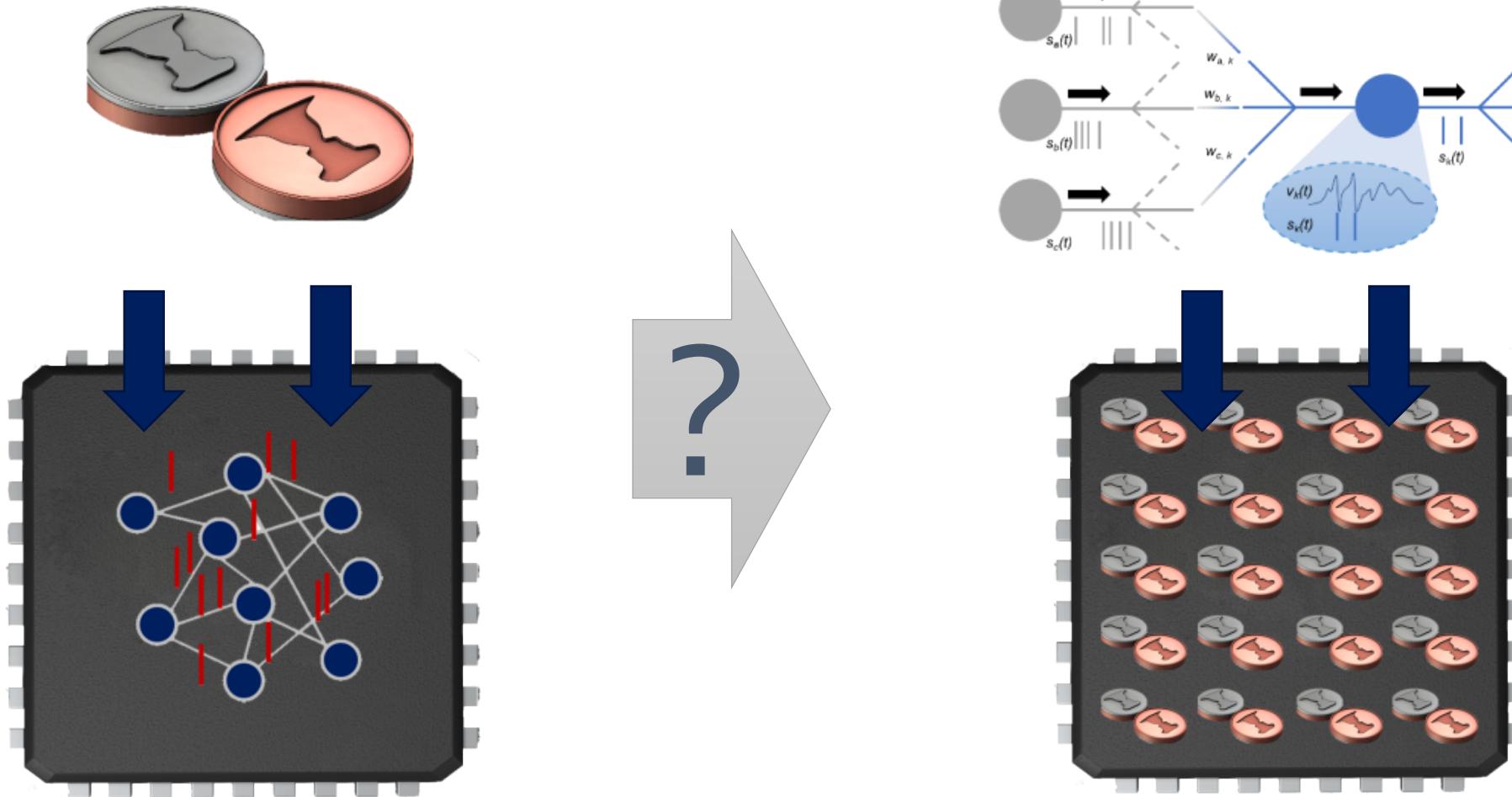
How?

- Stochastic devices
- Neuromorphic architecture

One possibility is to inject ubiquitous stochasticity into existing neuromorphic technologies

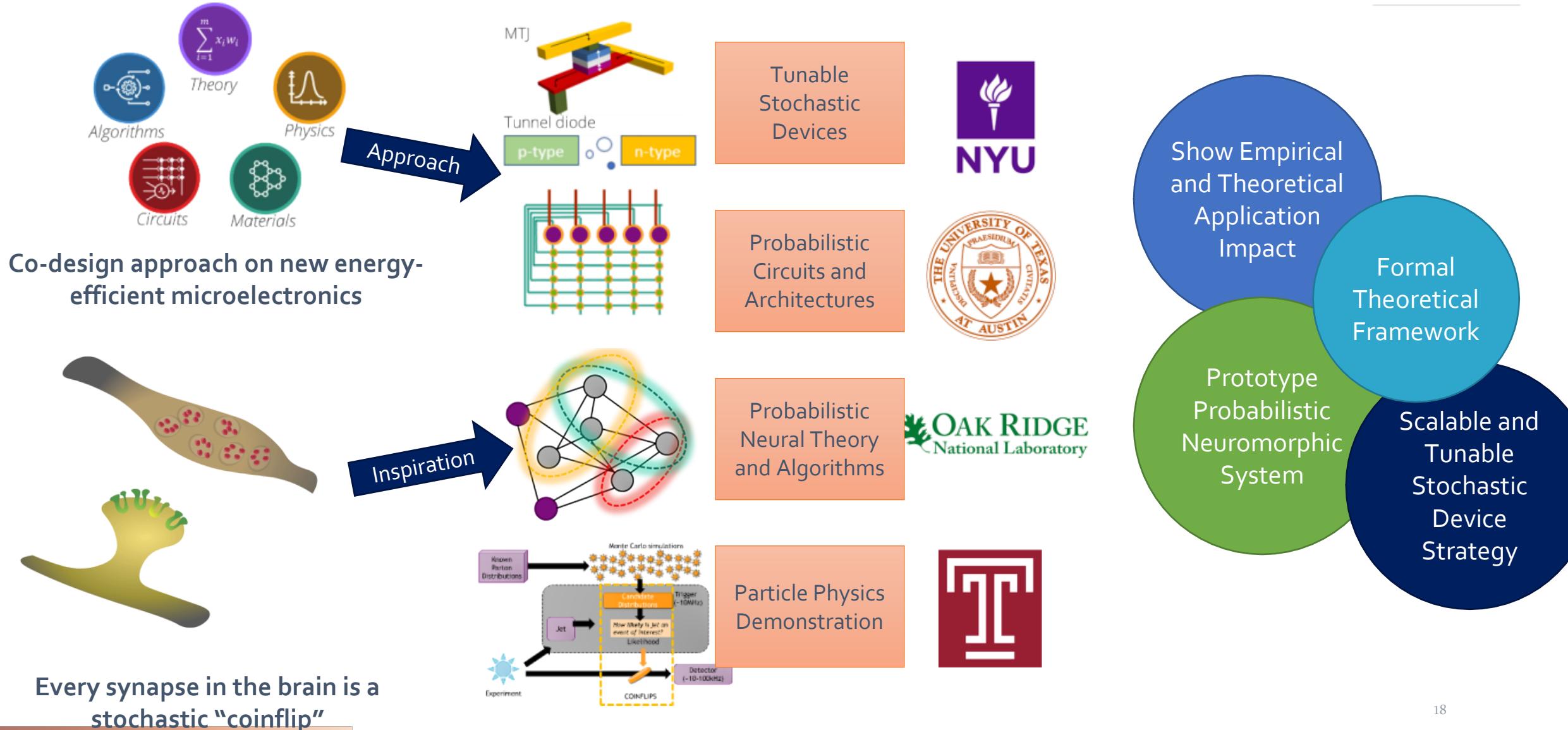


Making stochasticity ubiquitous may require that we revisit how we design neuromorphic hardware



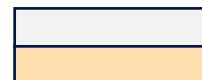
COINFLIPS

CO-designed Improved Neural Foundations Leveraging Inherent Physics Stochasticity (COINFLIPS)



Tunable RNG – magnetic tunnel junctions & tunnel diodes

Tunable random number generator

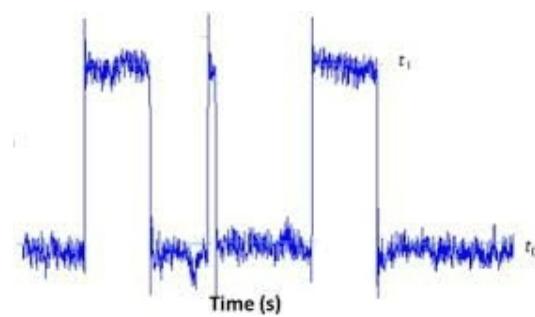


50:50

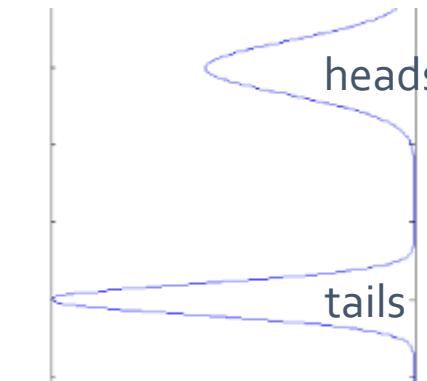
20:80

Why did we pick the devices we picked?

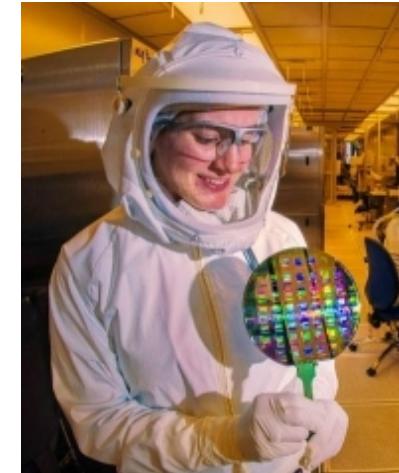
Large signals



Tunable



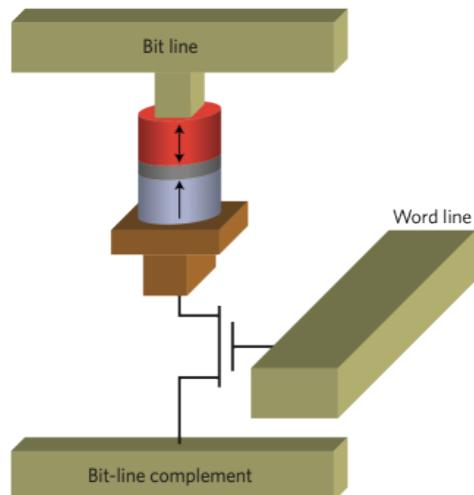
Integration



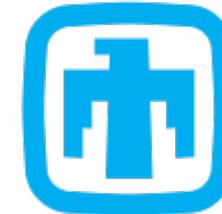
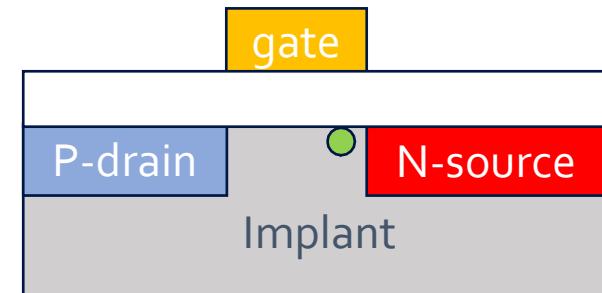
I. Magnetic tunnel junctions

Jean Anne
Incorvia

Andy Kent

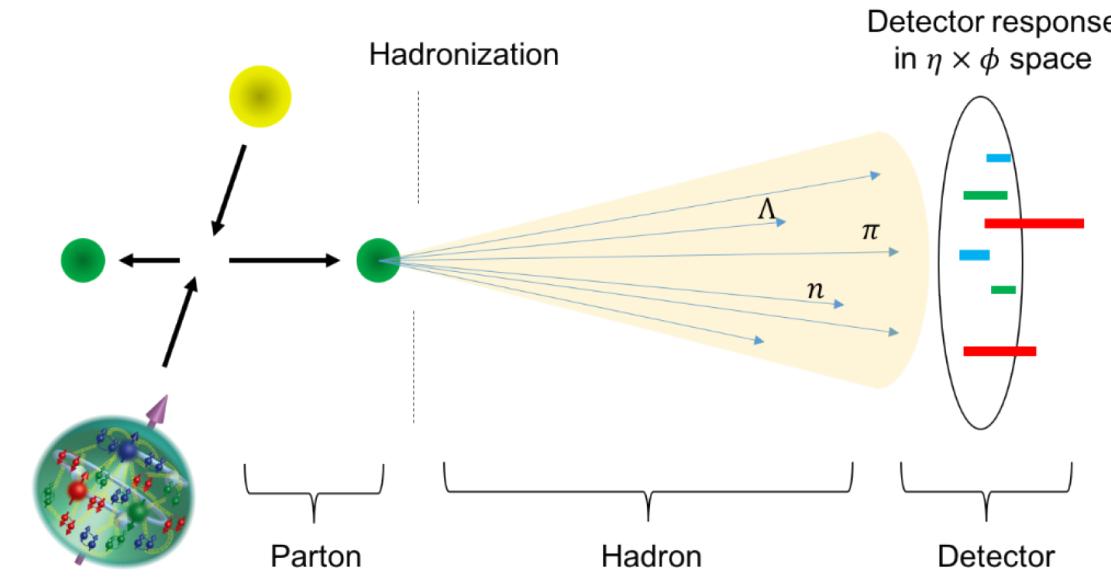
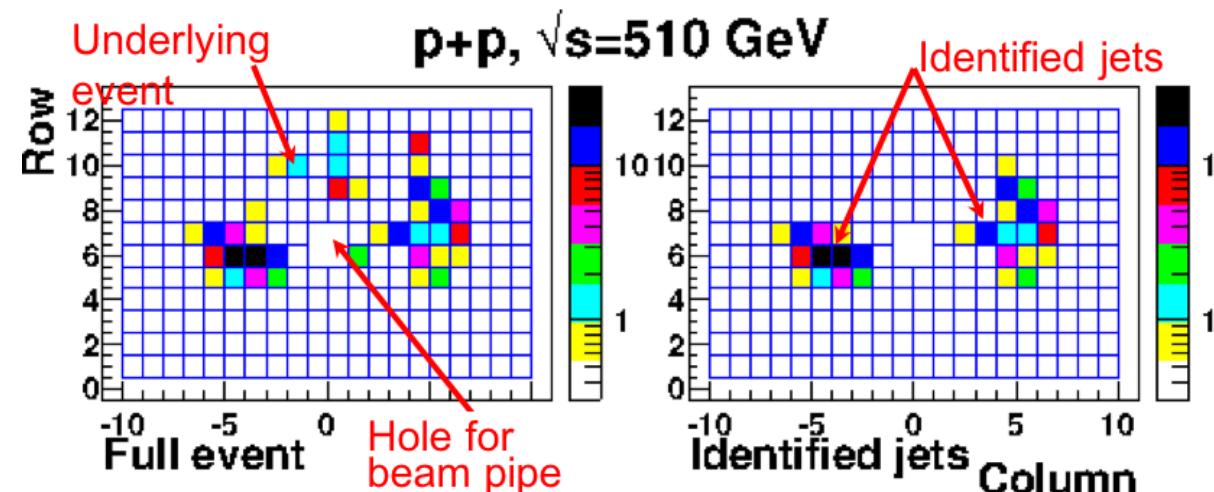
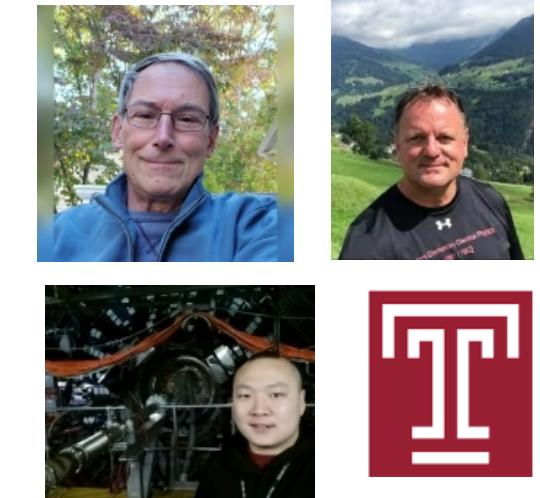


II. Tunnel diodes



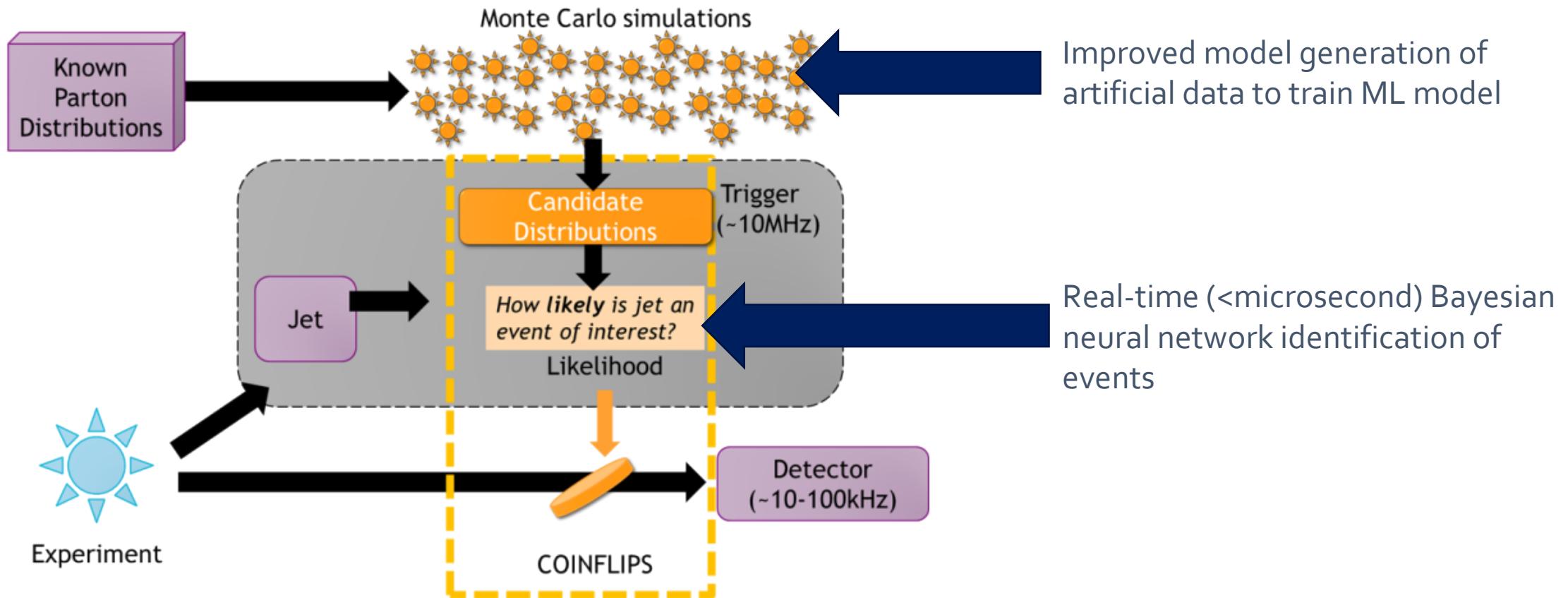
Shashank Misra & Tzu-Ming Lu

Jet detection in particle physics



Les Bland, Bernd Surrow, Jae Nam

Opportunities for probabilistic neuromorphic computing in physics jet identification



How do we use coinflips to sample from arbitrary distributions?

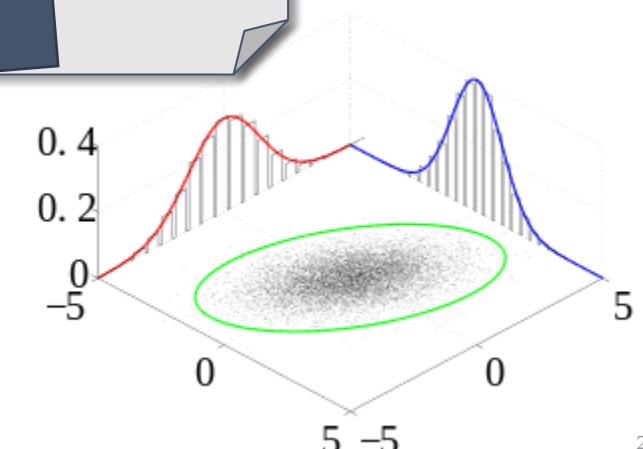
Biased random source to
approximate uniform
random numbers

Some literature
here

Biased random source to
sample an arbitrary
probability distribution

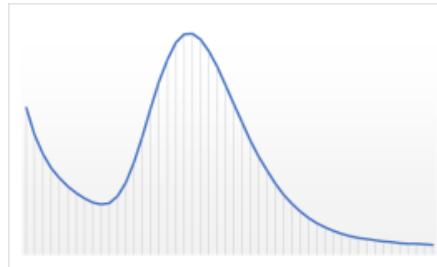
Relatively unexplored

Uniform random numbers to
arbitrary distributions



A major focus of
numerical methods
community

Random numbers are a non-trivial computational cost today



Draw uniform
RNG

Convert to
desired PDF

We want a RN pulled from some physics distribution

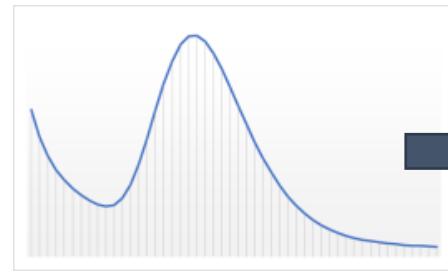
Software uses pseudo-RNG to pull uniform random number

- This is simple, but can be costly for volume and quality

Numerical methods convert uniform RN to desired distribution

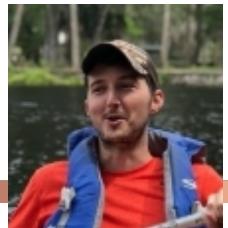
- Some distributions are easy (simple inverse CDF)
- Some distributions are challenging

It is possible to generate a random number from a desired statistical distribution



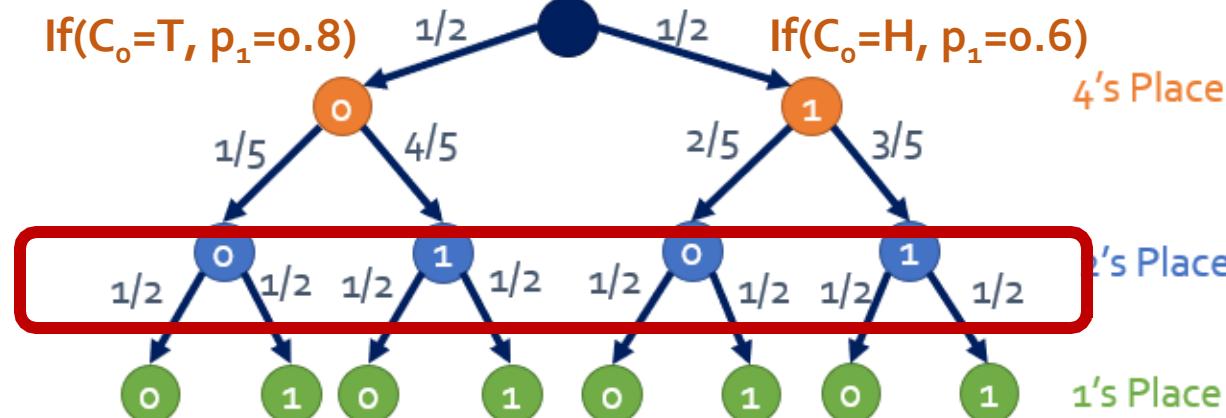
Draw uniform RNG

Convert to desired PDF



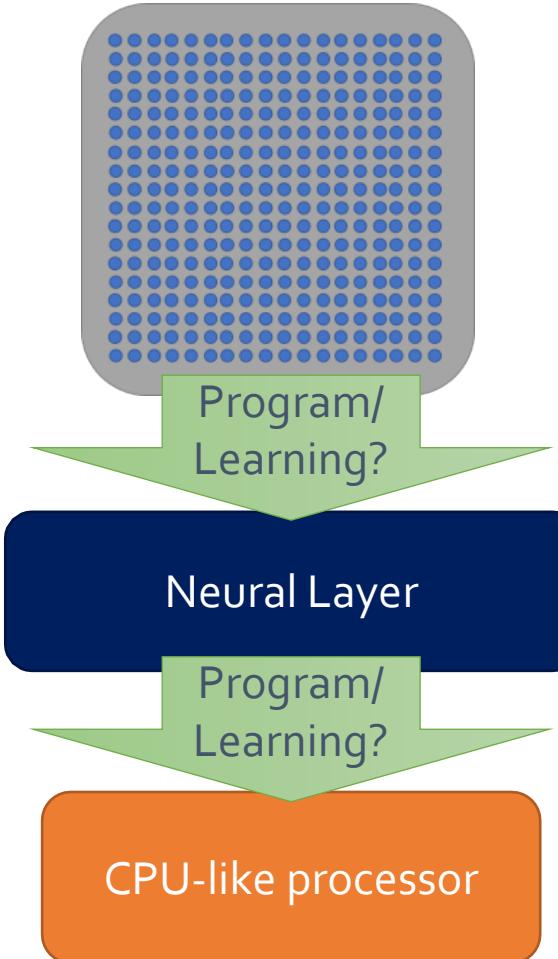
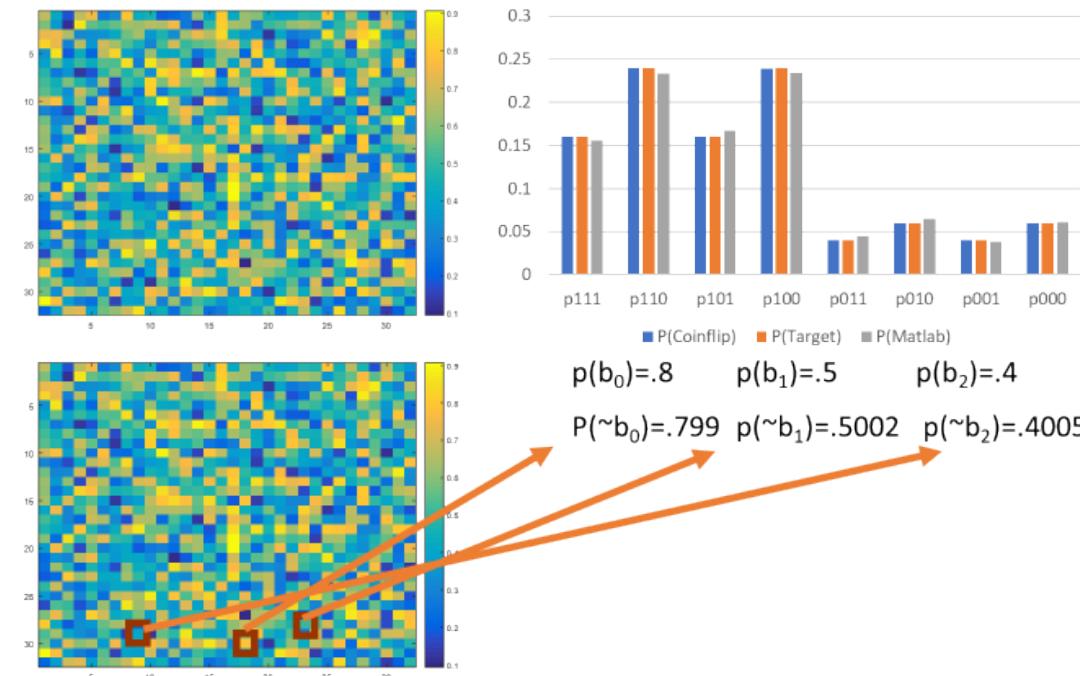
Darby Smith

Expand Boolean tree of PDF and flip many coins for all branches in parallel



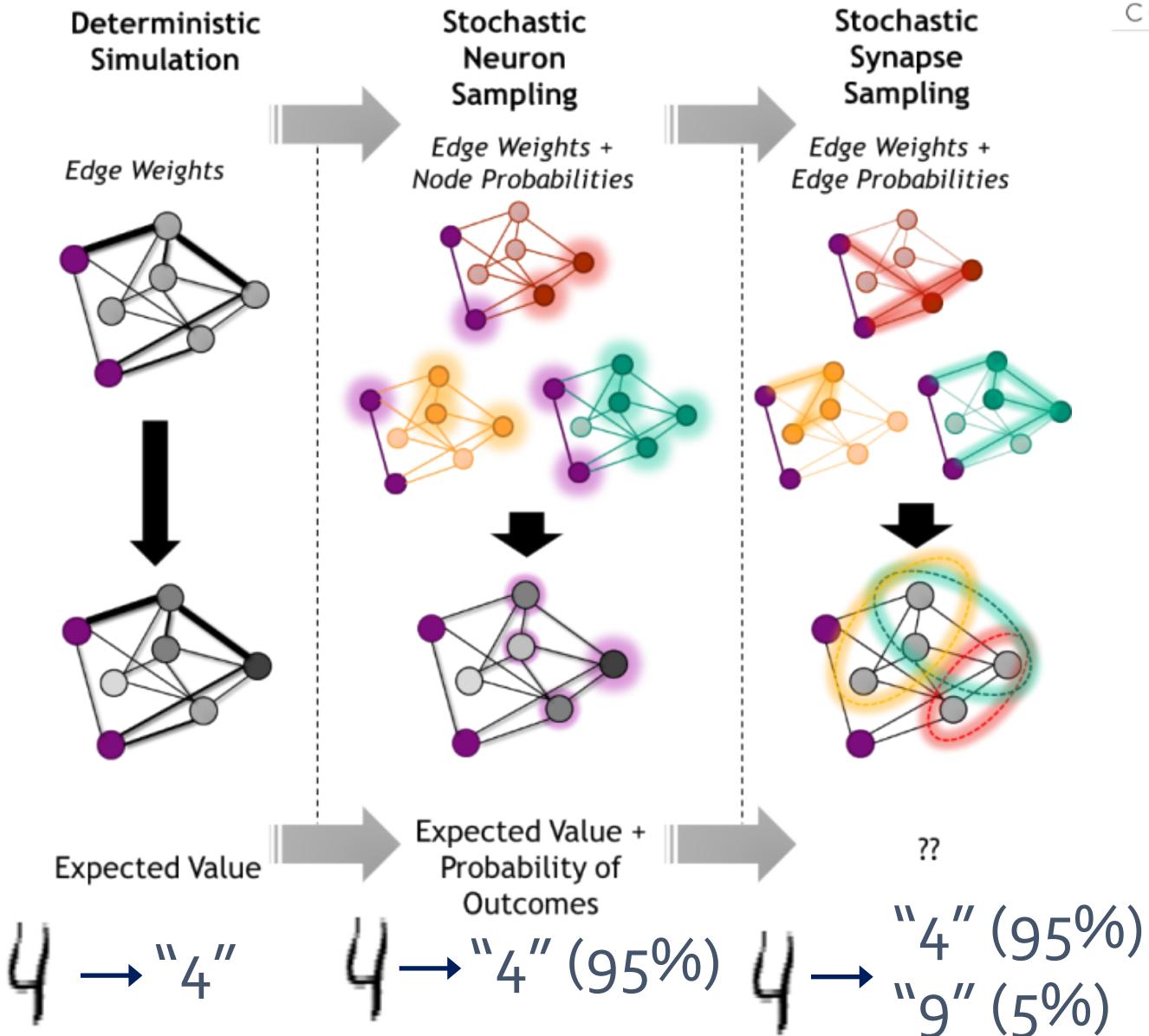
- Worst case, this is a exponentially large number of coins
- PDFs have structure and redundancies that can be leveraged
- Correlations from devices or built into neural circuits can similarly compress tree

A potential COINFLIPS architecture for generating random numbers



Establish a paradigm of computation around synaptic sampling

Can novel neural sampling algorithms be leveraged to provide more efficient and more powerful AI capabilities?



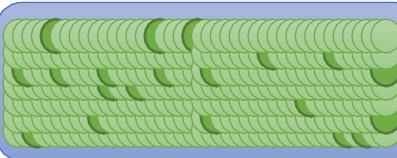
Sampling ANNs with stochastic synapses provides estimate of uncertainty

➤ Approach

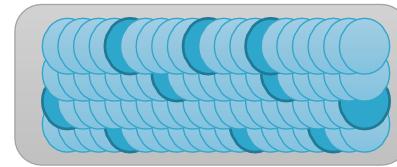
- Train simple neural network with only minor modifications
- Simple network can achieve decent performance



4

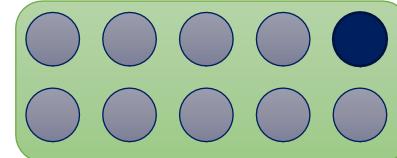


784 X 400

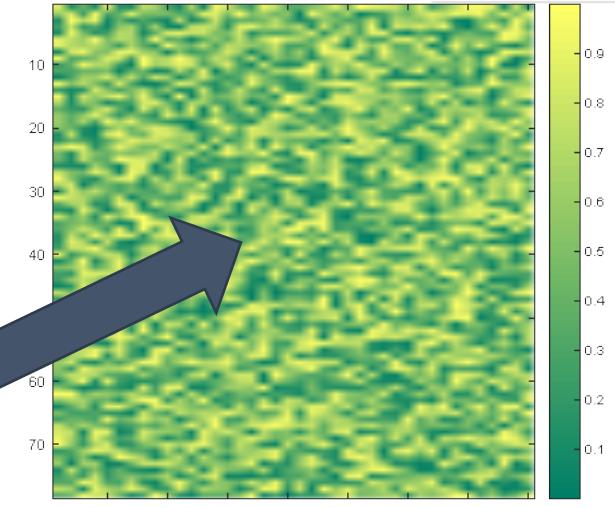
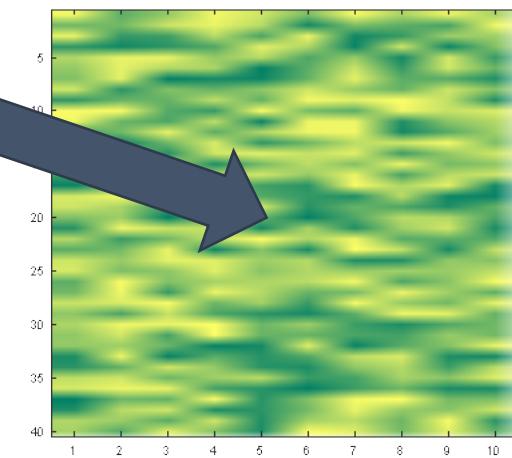


400 X 10

“4”



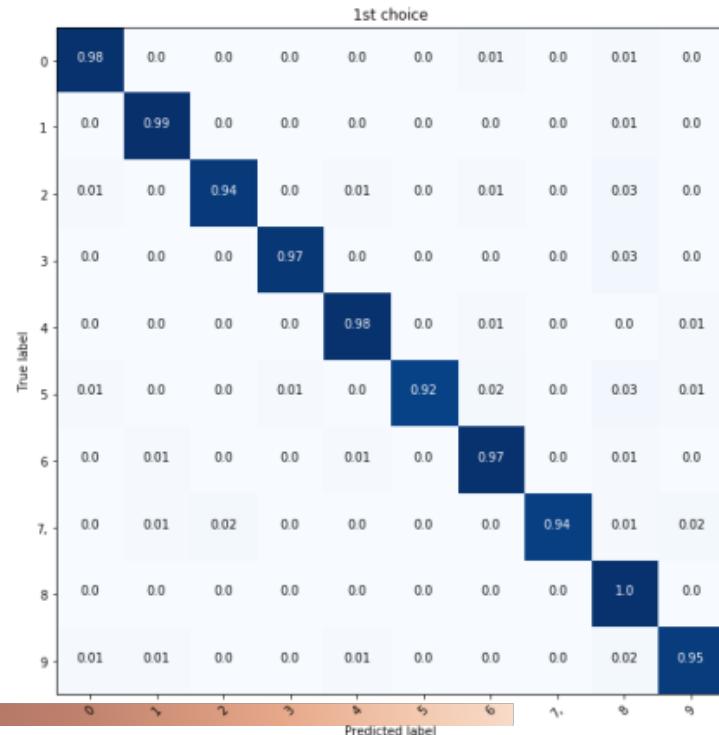
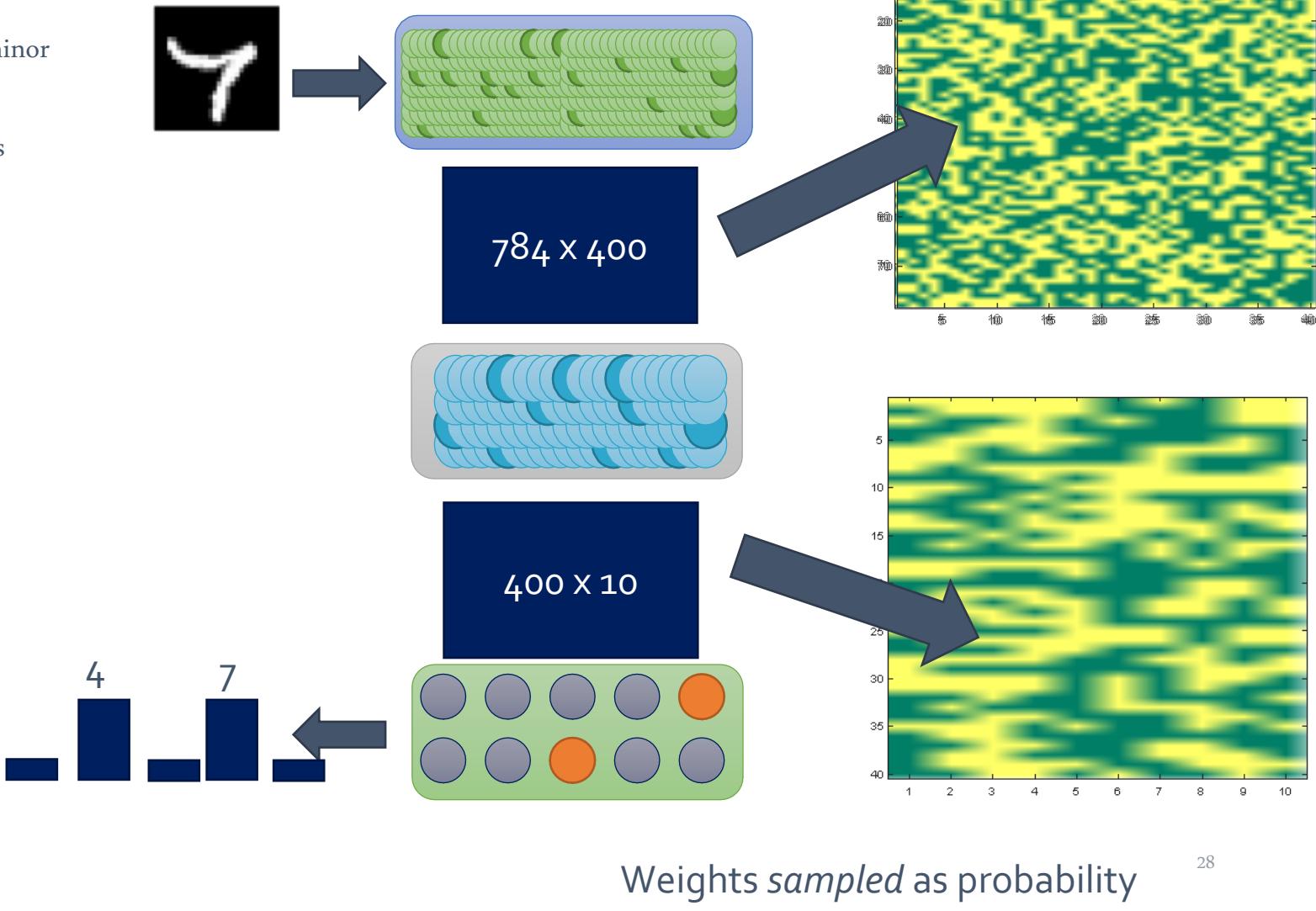
Weights continuous between 0 and 1



Sampling ANNs with stochastic synapses provides estimate of uncertainty

➤ Approach

- Train simple neural network with only minor modifications
- Convert weights to Bernoulli probabilities (weighted coinflips)
- Sample network to identify what classes



2nd choice of stochastic sampled networks is often the ‘right’ answer for misclassified results

6 – 0.38

5 – 0.17

9 – 0.31

4 – 0.28

4 – 0.36

7 – 0.35

9 – 0.26

2 – 0.20

3 – 0.23

9 – 0.20

6 – 0.26

2 – 0.25

0 – 0.39

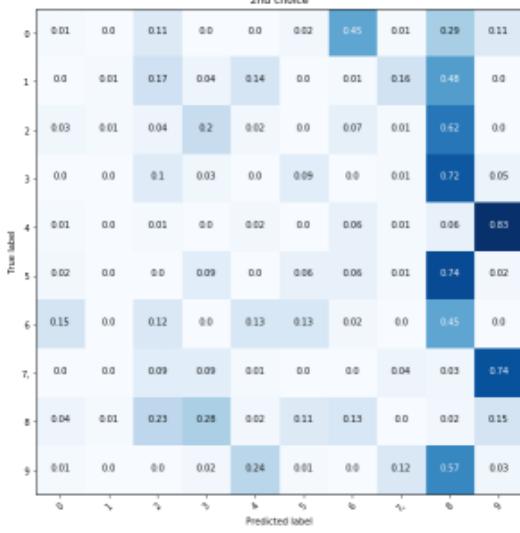
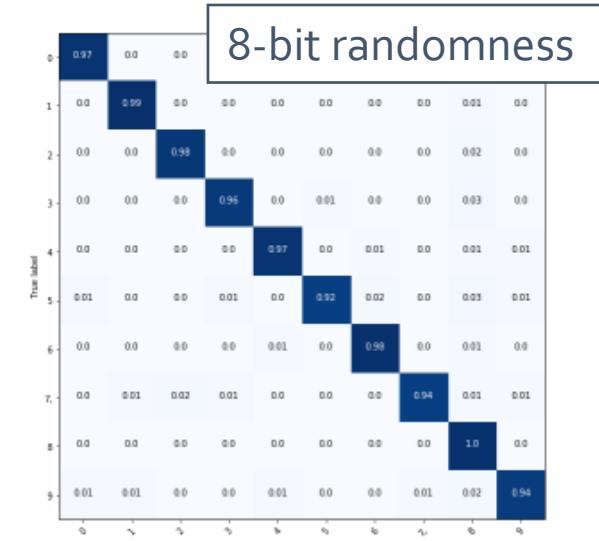
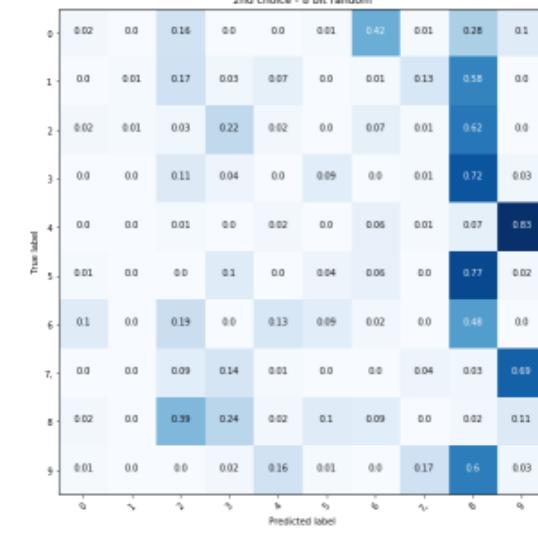
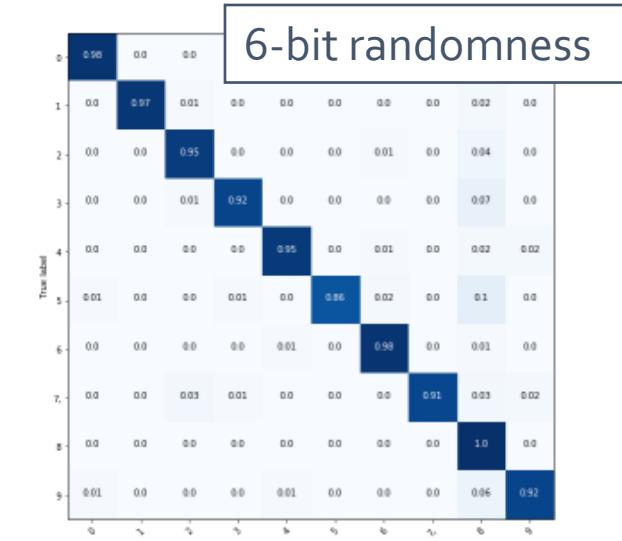
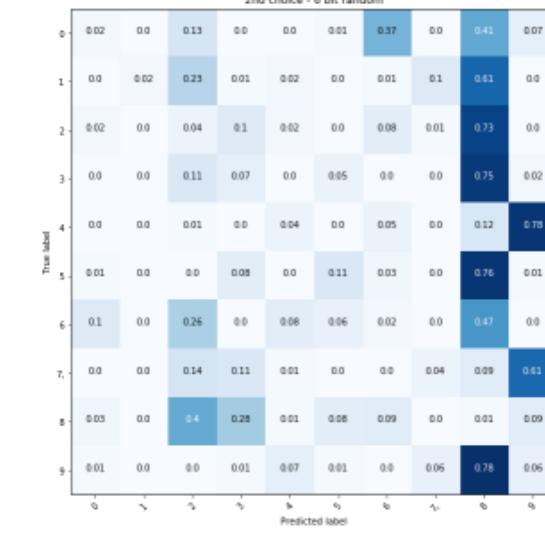
6 – 0.27

Sampling ANNs with stochastic synapses is robust to low precision synapses

1st
choice



2nd
choice

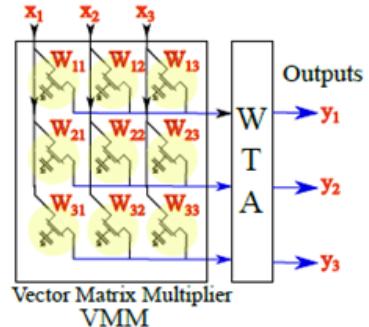


Next step: using AI to guide COINFLIPS neural circuit design

Data and Models

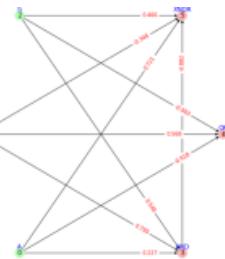
- Data Sweeps
- Device Models
- ASIC behavior models

Topological Analysis

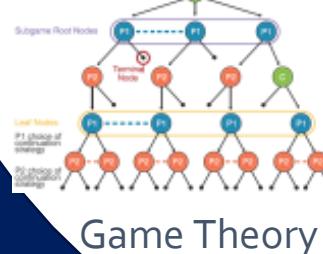


- Size constraints
- Discover novel circuit topologies

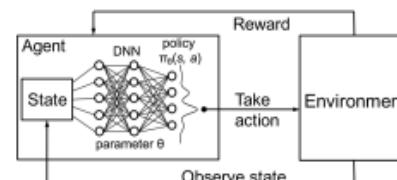
Neural Circuits & Architectures



Machine Learning



Game Theory



Reinforcement Learning

Hyper Parameters

- Learning Rate
- # of Epochs
- Hardware based constraints in architecture search

Device and Architectural Constraints

- Charge time
- Energy efficiency
- SWaP
- Connectivity
- Extreme Temperature environments

Our AI-enhanced framework would need inputs from algorithms, devices, architectures and ML-based hyper-parameters. The framework will enable new capabilities.

Katie Schuman (Tenn)
Suma Cardwell (Sandia)

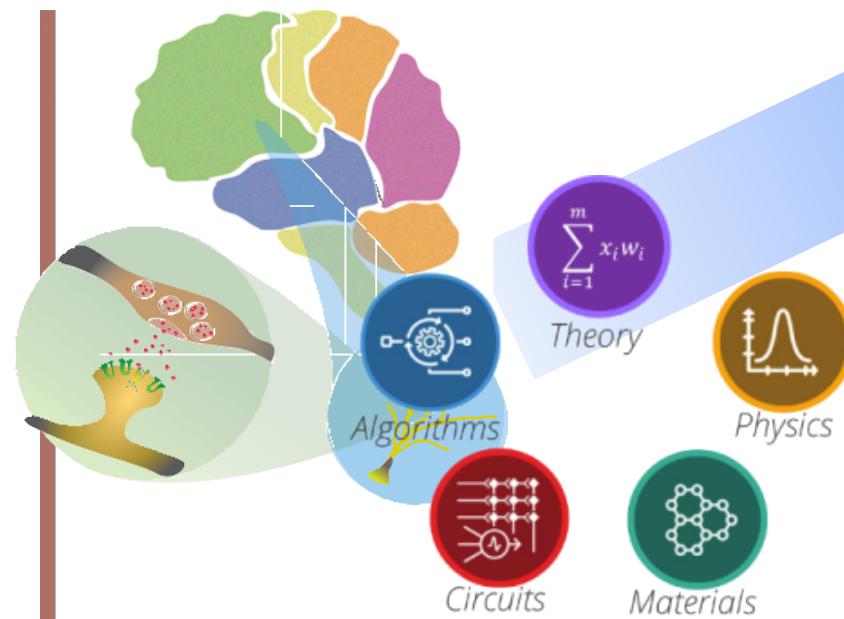
COINFLIPS presents an opportunity to develop a *community of interest* to create a new computing paradigm

Jointly develop a programming model and theoretical framework with an emerging technology

Opportunity for computing to prioritize impact on different classes of applications

Factor in integration and system design from the onset of a new approach

Optimize non-CMOS devices for scalability and cost of reliability



Thanks!

