

# Enabling and interpreting hyper-differential sensitivity analysis for Bayesian inverse problems

Joseph Hart<sup>†</sup>  
with Bart van Bloemen Waanders<sup>†</sup>

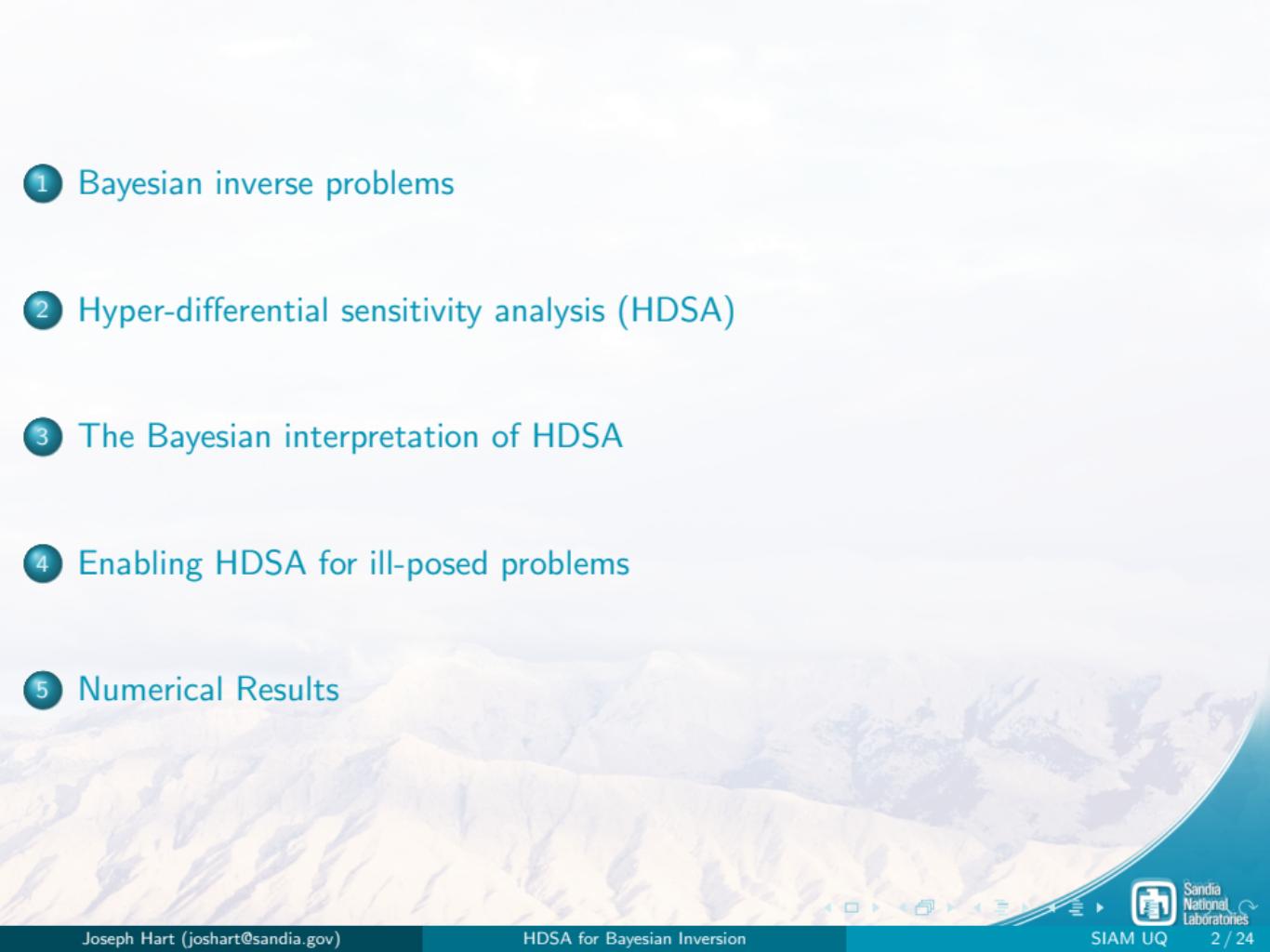
<sup>†</sup> Sandia National Laboratories<sup>1</sup>  
Center for Computing Research  
Department for Scientific Machine Learning

SIAM Conference on Uncertainty Quantification

---

<sup>1</sup> Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under

boratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Joseph Hart (joshhart@sandia.gov)

- 
- 1 Bayesian inverse problems
  - 2 Hyper-differential sensitivity analysis (HDSA)
  - 3 The Bayesian interpretation of HDSA
  - 4 Enabling HDSA for ill-posed problems
  - 5 Numerical Results

- 
- 1 Bayesian inverse problems
  - 2 Hyper-differential sensitivity analysis (HDSA)
  - 3 The Bayesian interpretation of HDSA
  - 4 Enabling HDSA for ill-posed problems
  - 5 Numerical Results

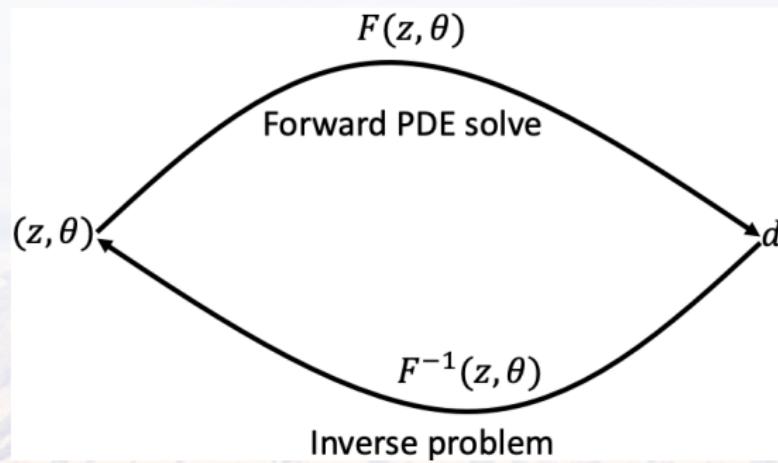
# Inverse problems

Find parameters  $(z, \theta)$  such that

$$F(z, \theta) = \mathcal{Q}(u(z, \theta)) \approx \mathbf{d}$$

where

- $\mathbf{d}$  are sparse and noisy observations of a state variable  $u(z, \theta)$ .
- $u(z, \theta)$  is the solution of a PDE and  $\mathcal{Q}$  is the observation operator.



# The joint Bayesian formulation

- Assume a prior distribution for  $(\mathbf{z}, \boldsymbol{\theta}) \sim N((\mathbf{z}_{\text{prior}}, \boldsymbol{\theta}_{\text{prior}}), \boldsymbol{\Gamma}_{\text{prior}})$  .
- Assume that  $\mathbf{d} = F(\mathbf{z}^*, \boldsymbol{\theta}^*) + \boldsymbol{\epsilon}$  where  $\boldsymbol{\epsilon} \sim N(0, \boldsymbol{\Gamma}_{\text{noise}})$ .
- The joint posterior probability density function (PDF) is

$$\pi_{\text{post}}(\mathbf{z}, \boldsymbol{\theta}) \propto \pi_{\text{like}}(\mathbf{d} | \mathbf{z}, \boldsymbol{\theta}) \pi_{\text{prior}}(\mathbf{z}, \boldsymbol{\theta})$$

where

- $\pi_{\text{like}}$  is the likelihood function,
- $\pi_{\text{prior}}$  is the prior PDF.

Analyzing properties of  $\pi_{\text{post}}(\mathbf{z}, \boldsymbol{\theta})$  provide a wealth of information, but may be computationally intractable.

# The conditional Bayesian formulation

- The posterior probability density function (PDF) for  $z$  given  $\theta = \theta_{\text{prior}}$  is

$$\pi_{\text{post}}(z|\theta_{\text{prior}}) \propto \pi_{\text{like}}(\mathbf{d}|z, \theta_{\text{prior}}) \pi_{\text{prior}}(z, \theta_{\text{prior}}).$$

- The maximum a posteriori probability (MAP) point(s) for  $\pi_{\text{post}}(z|\theta_{\text{prior}})$  are local minima of

$$\min_{z \in \mathbb{R}^m} J(z; \theta_{\text{prior}}) := M(z, \theta_{\text{prior}}) + R(z, \theta_{\text{prior}})$$

where  $M(z, \theta_{\text{prior}})$  and  $R(z, \theta_{\text{prior}})$  are the negative log likelihood and prior.

# The conditional Bayesian formulation

- The posterior probability density function (PDF) for  $z$  given  $\theta = \theta_{\text{prior}}$  is

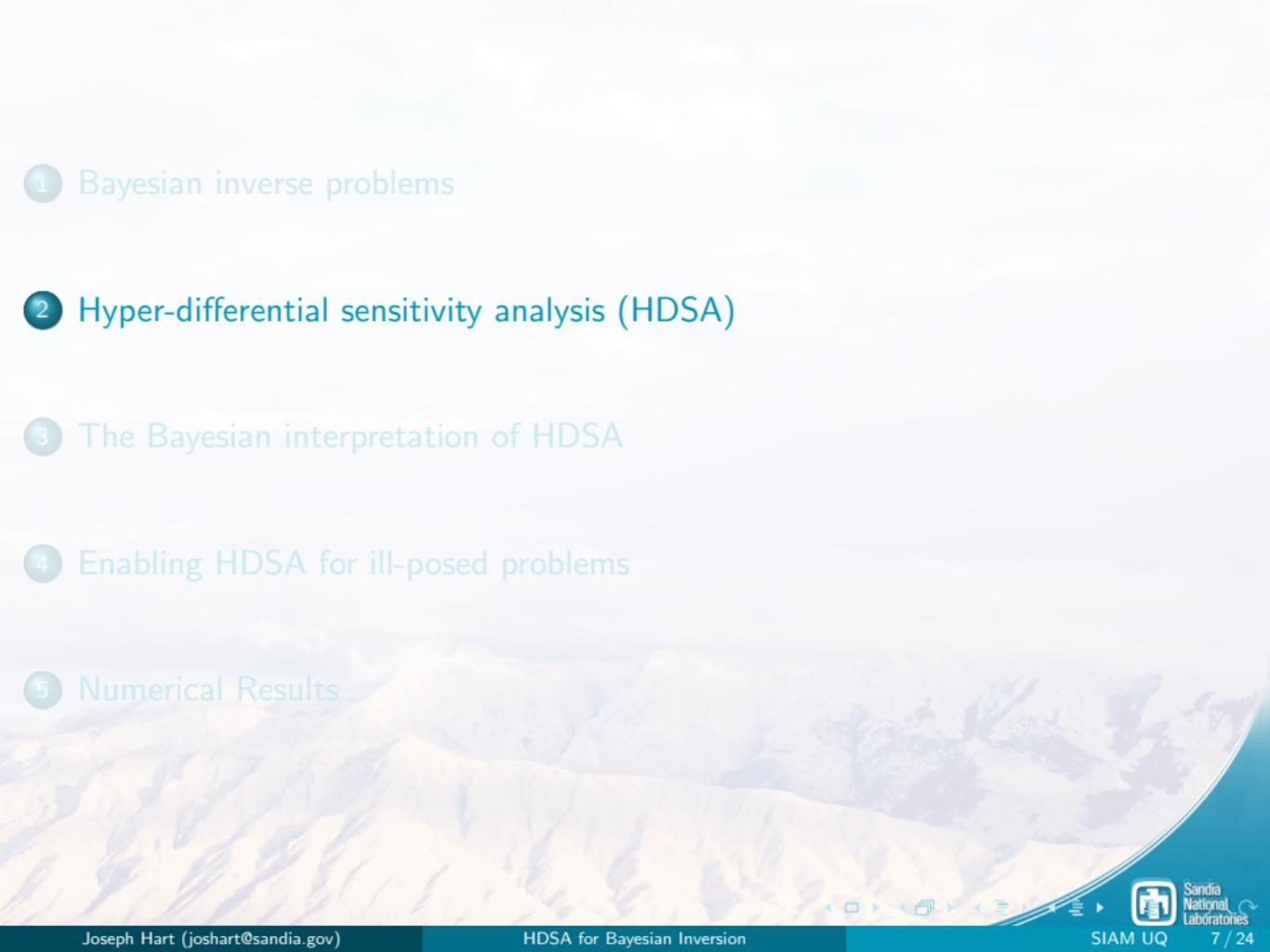
$$\pi_{\text{post}}(z|\theta_{\text{prior}}) \propto \pi_{\text{like}}(d|z, \theta_{\text{prior}}) \pi_{\text{prior}}(z, \theta_{\text{prior}}).$$

- The maximum a posteriori probability (MAP) point(s) for  $\pi_{\text{post}}(z|\theta_{\text{prior}})$  are local minima of

$$\min_{z \in \mathbb{R}^m} J(z; \theta_{\text{prior}}) := M(z, \theta_{\text{prior}}) + R(z, \theta_{\text{prior}})$$

where  $M(z, \theta_{\text{prior}})$  and  $R(z, \theta_{\text{prior}})$  are the negative log likelihood and prior.

- How does fixing  $\theta = \theta_{\text{prior}}$  influence the analysis for  $z$ ?

- 
- 1 Bayesian inverse problems
  - 2 Hyper-differential sensitivity analysis (HDSA)
  - 3 The Bayesian interpretation of HDSA
  - 4 Enabling HDSA for ill-posed problems
  - 5 Numerical Results

# Post optimality sensitivity analysis

$$\min_{\mathbf{z} \in \mathbb{R}^m} J(\mathbf{z}; \boldsymbol{\theta}_{\text{prior}}) := M(\mathbf{z}, \boldsymbol{\theta}_{\text{prior}}) + R(\mathbf{z}, \boldsymbol{\theta}_{\text{prior}})$$

- Let  $\mathbf{z}^*$  denote a local minimum when  $\boldsymbol{\theta} = \boldsymbol{\theta}_{\text{prior}}$  is fixed,

$$\nabla_{\mathbf{z}} J(\mathbf{z}^*, \boldsymbol{\theta}_{\text{prior}}) = 0 \quad \text{and} \quad \nabla_{\mathbf{z}, \mathbf{z}} J(\mathbf{z}^*, \boldsymbol{\theta}_{\text{prior}}) \succ 0$$

# Post optimality sensitivity analysis

$$\min_{z \in \mathbb{R}^m} J(z; \theta_{\text{prior}}) := M(z, \theta_{\text{prior}}) + R(z, \theta_{\text{prior}})$$

- Let  $z^*$  denote a local minimum when  $\theta = \theta_{\text{prior}}$  is fixed,

$$\nabla_z J(z^*, \theta_{\text{prior}}) = 0 \quad \text{and} \quad \nabla_{z,z} J(z^*, \theta_{\text{prior}}) \succ 0$$

- The implicit function theorem gives

$$\mathcal{G} : \mathcal{N}(\theta_{\text{prior}}) \rightarrow \mathcal{N}(z^*),$$

defined on neighborhoods of  $\theta_{\text{prior}}$  and  $z^*$ , such that

$$\nabla_z J(\mathcal{G}(\theta), \theta) = 0 \quad \forall \theta \in \mathcal{N}(\theta_{\text{prior}})$$

# Post optimality sensitivity analysis

$$\mathcal{G} : \mathcal{N}(\boldsymbol{\theta}_{\text{prior}}) \rightarrow \mathcal{N}(\mathbf{z}^*)$$

- $\mathcal{G}$  associates parameters  $\boldsymbol{\theta}$  with the corresponding MAP points for  $\mathbf{z}$  given  $\boldsymbol{\theta}$
- Further,  $\mathcal{G}$  is differentiable at  $\boldsymbol{\theta}_{\text{prior}}$  and its Jacobian is given by

$$\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}}) = -\mathcal{H}^{-1}\mathcal{B} \in \mathbb{R}^{m \times n}$$

- $\mathcal{H} = \nabla_{\mathbf{z}, \mathbf{z}} J$  and  $\mathcal{B} = \nabla_{\mathbf{z}, \boldsymbol{\theta}} J$  are second derivatives of the objective  $J(\mathbf{z}, \boldsymbol{\theta})$

# Post optimality sensitivity analysis

$$\mathcal{G} : \mathcal{N}(\boldsymbol{\theta}_{\text{prior}}) \rightarrow \mathcal{N}(\mathbf{z}^*)$$

- $\mathcal{G}$  associates parameters  $\boldsymbol{\theta}$  with the corresponding MAP points for  $\mathbf{z}$  given  $\boldsymbol{\theta}$
- Further,  $\mathcal{G}$  is differentiable at  $\boldsymbol{\theta}_{\text{prior}}$  and its Jacobian is given by

$$\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}}) = -\mathcal{H}^{-1}\mathcal{B} \in \mathbb{R}^{m \times n}$$

- $\mathcal{H} = \nabla_{\mathbf{z}, \mathbf{z}} J$  and  $\mathcal{B} = \nabla_{\mathbf{z}, \boldsymbol{\theta}} J$  are second derivatives of the objective  $J(\mathbf{z}, \boldsymbol{\theta})$
- $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$  is a Newton step updating the MAP point given a perturbation of  $\boldsymbol{\theta}$ .
- HDSA efficiently interrogates  $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$  using adjoint-based derivative calculations and matrix-free linear algebra.

# Post optimality sensitivity analysis

$$\mathcal{G} : \mathcal{N}(\boldsymbol{\theta}_{\text{prior}}) \rightarrow \mathcal{N}(\mathbf{z}^*)$$

- $\mathcal{G}$  associates parameters  $\boldsymbol{\theta}$  with the corresponding MAP points for  $\mathbf{z}$  given  $\boldsymbol{\theta}$
- Further,  $\mathcal{G}$  is differentiable at  $\boldsymbol{\theta}_{\text{prior}}$  and its Jacobian is given by

$$\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}}) = -\mathcal{H}^{-1}\mathcal{B} \in \mathbb{R}^{m \times n}$$

- $\mathcal{H} = \nabla_{\mathbf{z}, \mathbf{z}} J$  and  $\mathcal{B} = \nabla_{\mathbf{z}, \boldsymbol{\theta}} J$  are second derivatives of the objective  $J(\mathbf{z}, \boldsymbol{\theta})$
- $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$  is a Newton step updating the MAP point given a perturbation of  $\boldsymbol{\theta}$ .
- HDSA efficiently interrogates  $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$  using adjoint-based derivative calculations and matrix-free linear algebra.

1. What is the Bayesian interpretation of  $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$ ?

# Post optimality sensitivity analysis

$$\mathcal{G} : \mathcal{N}(\boldsymbol{\theta}_{\text{prior}}) \rightarrow \mathcal{N}(\mathbf{z}^*)$$

- $\mathcal{G}$  associates parameters  $\boldsymbol{\theta}$  with the corresponding MAP points for  $\mathbf{z}$  given  $\boldsymbol{\theta}$
- Further,  $\mathcal{G}$  is differentiable at  $\boldsymbol{\theta}_{\text{prior}}$  and its Jacobian is given by

$$\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}}) = -\mathcal{H}^{-1}\mathcal{B} \in \mathbb{R}^{m \times n}$$

- $\mathcal{H} = \nabla_{\mathbf{z}, \mathbf{z}} J$  and  $\mathcal{B} = \nabla_{\mathbf{z}, \boldsymbol{\theta}} J$  are second derivatives of the objective  $J(\mathbf{z}, \boldsymbol{\theta})$
- $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$  is a Newton step updating the MAP point given a perturbation of  $\boldsymbol{\theta}$ .
- HDSA efficiently interrogates  $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$  using adjoint-based derivative calculations and matrix-free linear algebra.

1. What is the Bayesian interpretation of  $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$ ?

2. Can I still compute/interpret  $\mathcal{G}'(\boldsymbol{\theta}_{\text{prior}})$  for ill-posed problems where the optimizer may struggle to solve the MAP point estimation problem to optimality (satisfaction of the first order optimality condition)?

- 
- 1 Bayesian inverse problems
  - 2 Hyper-differential sensitivity analysis (HDSA)
  - 3 The Bayesian interpretation of HDSA
  - 4 Enabling HDSA for ill-posed problems
  - 5 Numerical Results

# The linear case

## Theorem

If  $F(z, \theta) = Az + B\theta$  then the posterior is Gaussian with covariance

$$\Sigma_{post} = \begin{pmatrix} \Sigma_{z,z} & \Sigma_{z,\theta} \\ \Sigma_{\theta,z} & \Sigma_{\theta,\theta} \end{pmatrix}$$

and the post-optimality sensitivity is given by

$$\mathcal{G}'(\theta_{prior}) = \Sigma_{z,\theta} \Sigma_{\theta,\theta}^{-1}.$$

- The post-optimality sensitivity is a correlation between  $z$  and  $\theta$ .

# The linear case

## Theorem

If  $F(\mathbf{z}, \boldsymbol{\theta}) = \mathbf{A}\mathbf{z} + \mathbf{B}\boldsymbol{\theta}$  then the posterior is Gaussian with covariance

$$\Sigma_{post} = \begin{pmatrix} \Sigma_{\mathbf{z}, \mathbf{z}} & \Sigma_{\mathbf{z}, \boldsymbol{\theta}} \\ \Sigma_{\boldsymbol{\theta}, \mathbf{z}} & \Sigma_{\boldsymbol{\theta}, \boldsymbol{\theta}} \end{pmatrix}$$

and the post-optimality sensitivity is given by

$$\mathcal{G}'(\boldsymbol{\theta}_{prior}) = \Sigma_{\mathbf{z}, \boldsymbol{\theta}} \Sigma_{\boldsymbol{\theta}, \boldsymbol{\theta}}^{-1}.$$

- The post-optimality sensitivity is a correlation between  $\mathbf{z}$  and  $\boldsymbol{\theta}$ .
- Connection between **optimization/analysis** and **Bayesian statistics**.

# The linear case

## Theorem

If  $F(\mathbf{z}, \boldsymbol{\theta}) = \mathbf{A}\mathbf{z} + \mathbf{B}\boldsymbol{\theta}$  then the posterior is Gaussian with covariance

$$\Sigma_{post} = \begin{pmatrix} \Sigma_{\mathbf{z}, \mathbf{z}} & \Sigma_{\mathbf{z}, \boldsymbol{\theta}} \\ \Sigma_{\boldsymbol{\theta}, \mathbf{z}} & \Sigma_{\boldsymbol{\theta}, \boldsymbol{\theta}} \end{pmatrix}$$

and the post-optimality sensitivity is given by

$$\mathcal{G}'(\boldsymbol{\theta}_{prior}) = \Sigma_{\mathbf{z}, \boldsymbol{\theta}} \Sigma_{\boldsymbol{\theta}, \boldsymbol{\theta}}^{-1}.$$

- The post-optimality sensitivity is a correlation between  $\mathbf{z}$  and  $\boldsymbol{\theta}$ .
- Connection between **optimization/analysis** and **Bayesian statistics**.
- Local correlation for nonlinear inverse problems (Laplace approximation).

- 
- 1 Bayesian inverse problems
  - 2 Hyper-differential sensitivity analysis (HDSA)
  - 3 The Bayesian interpretation of HDSA
  - 4 Enabling HDSA for ill-posed problems
  - 5 Numerical Results

# Handling ill-posedness

- For ill-posed inverse problems,  $\mathcal{H}$  may be ill-conditioned yielding high sensitivity as a result of lacking information/data.
- Analyzing  $\mathcal{G}'(\theta_{\text{prior}})$  results in sensitivities dominated by what the data does not tell you.

---

<sup>2</sup>T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini, Likelihood-informed dimension reduction for nonlinear inverse problems, *Inverse Problems*, 30 (2014), pp. 1–28

# Handling ill-posedness

- For ill-posed inverse problems,  $\mathcal{H}$  may be ill-conditioned yielding high sensitivity as a result of lacking information/data.
- Analyzing  $\mathcal{G}'(\theta_{\text{prior}})$  results in sensitivities dominated by what the data does not tell you.

**Proposed Approach:** Compute sensitivities

$$\mathcal{P}\mathcal{G}'(\theta_{\text{prior}}) = -\mathcal{P}\mathcal{H}^{-1}\mathcal{B}$$

where  $\mathcal{P}$  projects onto the likelihood informed subspace <sup>2</sup> defined by the leading eigenvectors of

$$\mathcal{H}_M \mathbf{v}_j = \lambda_j \mathcal{H}_R \mathbf{v}_j.$$

The eigenvalues

$$\lambda_j = \frac{\mathbf{v}_j^T \mathcal{H}_M \mathbf{v}_j}{\mathbf{v}_j^T \mathcal{H}_R \mathbf{v}_j}$$

measure the ratio of the likelihood and prior in the direction of  $\mathbf{v}_j$ .

---

<sup>2</sup>T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini, Likelihood-informed dimension reduction for nonlinear inverse problems, *Inverse Problems*, 30 (2014), pp. 1–28

# Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} J(\mathbf{z}; \boldsymbol{\theta}_{\text{prior}}) := M(\mathbf{z}, \boldsymbol{\theta}_{\text{prior}}) + R(\mathbf{z}, \boldsymbol{\theta}_{\text{prior}})$$

to optimality if ill-conditioning yields slow convergence.

- Early iterations refine features which are well informed by the data.
- Ill-conditioning may yield slow convergence in the uniformed subspace.

# Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} J(\mathbf{z}; \boldsymbol{\theta}_{\text{prior}}) := M(\mathbf{z}, \boldsymbol{\theta}_{\text{prior}}) + R(\mathbf{z}, \boldsymbol{\theta}_{\text{prior}})$$

to optimality if ill-conditioning yields slow convergence.

- Early iterations refine features which are well informed by the data.
- Ill-conditioning may yield slow convergence in the uniformed subspace.

**Question:** HDSA assumes satisfaction of the optimality criteria. What can I do when converging the optimization is impractical/unnecessary?

# Failure to satisfy the first order optimality condition?

**Idea:** Compute sensitivities of a nearby problem which is solved to optimality.

# Failure to satisfy the first order optimality condition?

**Idea:** Compute sensitivities of a nearby problem which is solved to optimality.

- Assume that  $z^*$  is an approximation of the MAP point but

$$\nabla_z J(z^*, \theta_{\text{prior}}) \neq 0.$$

- Find a minimum norm perturbation  $\tilde{R}$  so that  $\nabla_z J(z^*; \theta_{\text{prior}}) + \nabla_z \tilde{R}(z^*) = 0$ ,

$$\min_{\tilde{R} \in Q} \|\tilde{R}\|_{L^1(\mu)}$$

$$\text{s.t. } \nabla_z \tilde{R}(z^*) = -\nabla_z J(z^*; \theta_{\text{prior}})$$

# Failure to satisfy the first order optimality condition?

**Idea:** Compute sensitivities of a nearby problem which is solved to optimality.

- Assume that  $\mathbf{z}^*$  is an approximation of the MAP point but

$$\nabla_{\mathbf{z}} J(\mathbf{z}^*, \theta_{\text{prior}}) \neq 0.$$

- Find a minimum norm perturbation  $\tilde{R}$  so that  $\nabla_{\mathbf{z}} J(\mathbf{z}^*; \theta_{\text{prior}}) + \nabla_{\mathbf{z}} \tilde{R}(\mathbf{z}^*) = 0$ ,

$$\min_{\tilde{R} \in Q} \|\tilde{R}\|_{L^1(\mu)}$$

$$\text{s.t. } \nabla_{\mathbf{z}} \tilde{R}(\mathbf{z}^*) = -\nabla_{\mathbf{z}} J(\mathbf{z}^*; \theta_{\text{prior}})$$

- Judicious linear algebra gives a closed form solution

$$\tilde{R}(\mathbf{z}) = \frac{\alpha}{2} \|\mathbf{g}\|_2 - (\mathbf{z} - \mathbf{z}^*)^T \mathbf{g} + \frac{1}{2} (\mathbf{z} - \mathbf{z}^*)^T \frac{1}{\alpha \|\mathbf{g}\|_2} \mathbf{g} \mathbf{g}^T (\mathbf{z} - \mathbf{z}^*),$$

where  $\mathbf{g} = \nabla_{\mathbf{z}} J(\mathbf{z}^*; \theta_{\text{prior}})$ .

# The perturbed MAP point problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} J(\mathbf{z}; \boldsymbol{\theta}_{\text{prior}}) + \tilde{R}(\mathbf{z})$$

- $\mathbf{z}^*$  satisfies the first order optimality condition.
- Post-optimality sensitivities are well defined for this perturbed problem.

# The perturbed MAP point problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} J(\mathbf{z}; \boldsymbol{\theta}_{\text{prior}}) + \tilde{R}(\mathbf{z})$$

- $\mathbf{z}^*$  satisfies the first order optimality condition.
- Post-optimality sensitivities are well defined for this perturbed problem.

Some important questions:

- What is the Bayesian interpretation of  $\tilde{R}$ ?
- How does the perturbation influence the sensitivities?

# A perturbed Gaussian prior

- What is the Bayesian interpretation of  $\tilde{R}$ ?
- How does the perturbation influence the sensitivities?

## Theorem

The perturbed inverse problem has a Gaussian prior with mean

$$\tilde{\mathbf{z}}_{prior} = \mathbf{z}_{prior} + \frac{\alpha - (\mathbf{z}^* - \mathbf{z}_{prior})^T \mathbf{s}}{\alpha - \mathbf{v}^T \mathbf{s}} \mathbf{v}$$

and covariance

$$\tilde{\Gamma}_{prior} = \Gamma_{prior} - \frac{1}{\|\mathbf{g}\|_2} \frac{1}{\alpha - \mathbf{v}^T \mathbf{s}} \mathbf{v} \mathbf{v}^T$$

where

$$\mathbf{g} = \nabla_{\mathbf{z}} J(\mathbf{z}^*; \theta_{prior}), \quad \mathbf{s} = -\frac{\mathbf{g}}{\|\mathbf{g}\|_2}, \quad \text{and} \quad \mathbf{v} = \Gamma_{prior} \mathbf{g}.$$

The perturbation shifts the mean and reduces uncertainty in the direction  $\mathbf{v}$ .

# Difference in sensitivities

- What is the Bayesian interpretation of  $\tilde{R}$ ?
- How does the perturbation influence the sensitivities?

## Theorem

*The quantities*

$$S(\bar{\theta}) = \|\mathcal{P}\mathcal{H}^{-1}\mathcal{B}\bar{\theta}\|_{W_z} \quad \text{and} \quad \tilde{S}(\bar{\theta}) = \|\mathcal{P}\tilde{\mathcal{H}}^{-1}\tilde{\mathcal{B}}\bar{\theta}\|_{W_z}$$

*satisfy*

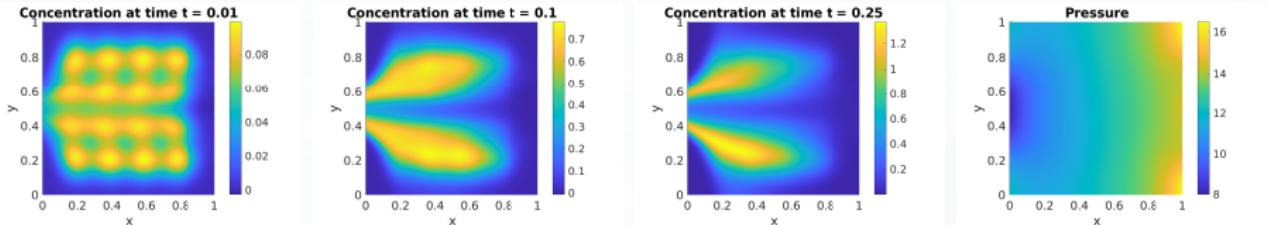
$$\frac{|\tilde{S}(\bar{\theta}) - S(\bar{\theta})|}{\|\mathcal{H}^{-1}\mathcal{B}\bar{\theta}\|_{W_z}} \leq \frac{\|\mathcal{P}\mathbf{n}\|_{W_z}}{\mathbf{s}^T \mathbf{n} + \alpha},$$

*where*

$$\mathbf{g} = \nabla_z J(\mathbf{z}^*; \theta_{prior}), \quad \mathbf{s} = -\frac{\mathbf{g}}{\|\mathbf{g}\|_2}, \quad \text{and} \quad \mathbf{n} = -\mathcal{H}^{-1}\mathbf{g}.$$

- 
- 1 Bayesian inverse problems
  - 2 Hyper-differential sensitivity analysis (HDSA)
  - 3 The Bayesian interpretation of HDSA
  - 4 Enabling HDSA for ill-posed problems
  - 5 Numerical Results

# Subsurface permeability inversion



$$-\nabla \cdot (e^\kappa \nabla p) = 0 \quad \text{in } \Omega$$

$$c_t - \nabla \cdot (\epsilon(\theta) \nabla c) + \nabla \cdot (-e^\kappa \nabla p c) = g(\theta) \quad \text{in } [0, T] \times \Omega$$

$$p = p_1(\theta) \quad \text{on } \Gamma_1$$

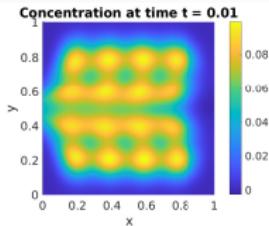
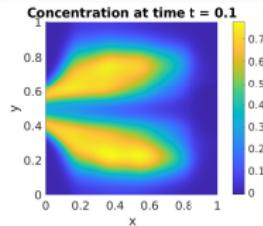
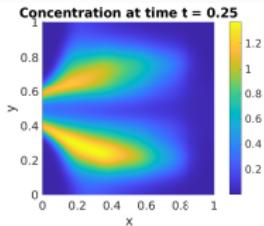
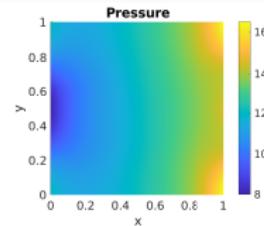
$$p = p_2(\theta) \quad \text{on } \Gamma_3$$

$$e^\kappa \nabla p \cdot n = 0 \quad \text{on } \Gamma_0 \cup \Gamma_2$$

$$\nabla c \cdot n = 0 \quad \text{on } [0, T] \times \{\Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup \Gamma_3\}$$

$$c(0, x) = 0 \quad \text{in } \Omega$$

# Subsurface permeability inversion



$$-\nabla \cdot (e^\kappa \nabla p) = 0 \quad \text{in } \Omega$$

$$c_t - \nabla \cdot (\epsilon(\theta) \nabla c) + \nabla \cdot (-e^\kappa \nabla p c) = g(\theta) \quad \text{in } [0, T] \times \Omega$$

$$p = p_1(\theta) \quad \text{on } \Gamma_1$$

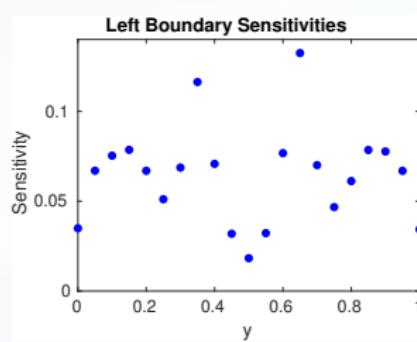
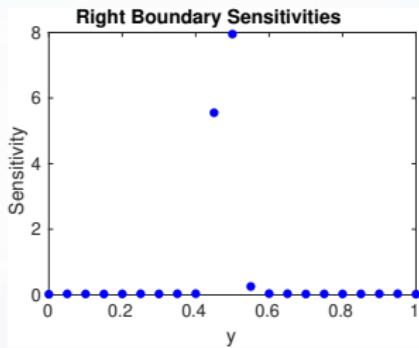
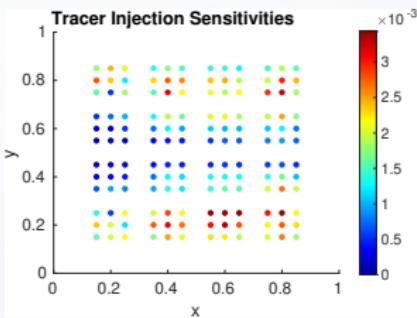
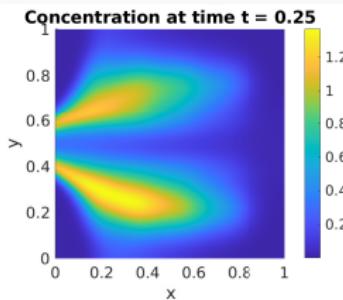
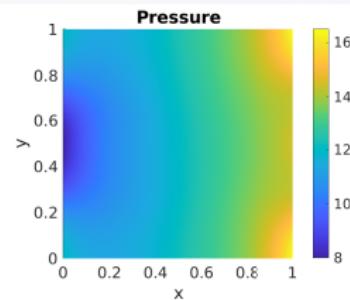
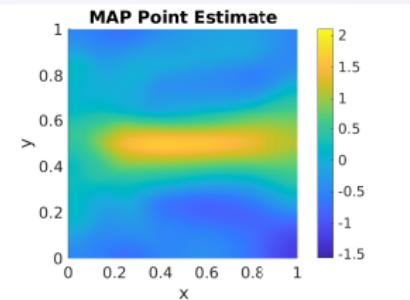
$$p = p_2(\theta) \quad \text{on } \Gamma_3$$

$$e^\kappa \nabla p \cdot n = 0 \quad \text{on } \Gamma_0 \cup \Gamma_2$$

$$\nabla c \cdot n = 0 \quad \text{on } [0, T] \times \{\Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup \Gamma_3\}$$

$$c(0, x) = 0 \quad \text{in } \Omega$$

# Sensitivities



# Summary

- Established the Bayesian interpretation of post-optimality sensitivity analysis.
- Addressed ill-posedness by projecting on likelihood informed subspaces.
- Theoretically justified HDSA when optimization fails to converge.
- Provided strong error bounds establishing the robust of the analysis.

Joseph Hart, Sandia National Laboratories  
joshart@sandia.gov