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@ Bayesian inverse problems
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Inverse problems

Find parameters (z,0) such that
F(z,0) = O(u(z,0)) ~d

where
e d are sparse and noisy observations of a state variable u(z,6).

e u(z,0) is the solution of a PDE and Q is the observation operator.

F(z,0)

Forward PDE solve

(z,0)

F~1(z,0)

Inverse problem
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The joint Bayesian formulation

o Assume a prior distribution for (z,8) ~ N((Zprior, Oprior); [prior) -
e Assume that d = F(z*,0*) + € where € ~ N(0, [oise)-
e The joint posterior probability density function (PDF) is

Wpost(zv 0) X 7T|ike(d|zy e)ﬂprior(za 0)

where
e Tiike IS the likelihood function,

® Torior 1S the prior PDF.

Analyzing properties of mpest(2,8) provide a wealth of information, but may be
computationally intractable.
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The conditional Bayesian formulation

o The posterior probability density function (PDF) for z given 8 = Opiqr is
7"'post(zleprior) X Wlike(d|za eprior)ﬂ-prior(za 0prior)~

o The maximum a posteriori probability (MAP) point(s) for mpost(Z|@prior) are
local minima of

rgﬁ{ln J(Z; Oprior) = M(Z, eprior) + R(Z, Oprior)

where M(z, Opior) and R(z, Orior) are the negative log likelihood and prior.
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The conditional Bayesian formulation

o The posterior probability density function (PDF) for z given 8 = Opiqr is
7"'post(zleprior) X Wlike(d|za eprior)ﬂ-prior(za 0prior)~

o The maximum a posteriori probability (MAP) point(s) for mpost(Z|@prior) are
local minima of

rgﬁ{ln J(Z; Oprior) = M(Z, eprior) + R(Z, Oprior)

where M(z, Opior) and R(z, Orior) are the negative log likelihood and prior.
e How does fixing 8 = Oyyior influence the analysis for z?
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© Hyper-differential sensitivity analysis (HDSA)
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Post optimality sensitivity analysis

@]'Rr:'" J(Z; 0prior) = M(27 Bprior) S R(Zu aprior)

o Let z* denote a local minimum when 8 = 8, is fixed,

V,J(2*, Oprior) =0 and V2,2d(2*, Opior) = 0
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Post optimality sensitivity analysis

ng]er)" J(Z; 0prior) = M(27 eprior) S R(Zu aprior)

o Let z* denote a local minimum when 8 = 8, is fixed,

V,J(2*, Oprior) =0 and V2,2d(2*, Opior) = 0

e The implicit function theorem gives
G : N(Oprior) = N(27),
defined on neighborhoods of ,ior and z*, such that

V.J(G(6),0) =0 VO € N(Oprior)
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Post optimality sensitivity analysis

g : N(Bprior) s N(Z*)
e § associates parameters 6 with the corresponding MAP points for z given 6
o Further, G is differentiable at @gior and its Jacobian is given by

gl(eprior) e _H—IB c Rmxn

e H=V,,Jand B=V,gJ are second derivatives of the objective J(z,8)
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Post optimality sensitivity analysis

g : N(oprior) s N(Z*)
e § associates parameters 6 with the corresponding MAP points for z given 6
o Further, G is differentiable at @gior and its Jacobian is given by

gl(eprior) e _H_lB c Rmxn
e H=V,,Jand B=V,gJ are second derivatives of the objective J(z,8)

o G'(Bprior) is @ Newton step updating the MAP point given a perturbation of 6.

o HDSA efficiently interrogates G'(@pyrior) using adjoint-based derivative
calculations and matrix-free linear algebra.
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Post optimality sensitivity analysis

g : N(oprior) s N(Z*)
e § associates parameters 6 with the corresponding MAP points for z given 6
o Further, G is differentiable at @gior and its Jacobian is given by

gl(eprior) e _H_lB c Rmxn

e H=V,,Jand B=V,gJ are second derivatives of the objective J(z,8)

o G'(Bprior) is @ Newton step updating the MAP point given a perturbation of 6.

o HDSA efficiently interrogates G'(@pyrior) using adjoint-based derivative
calculations and matrix-free linear algebra.

1. What is the Bayesian interpretation of G'(Oprior)?
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Post optimality sensitivity analysis

g : N(oprior) s N(Z*)
e § associates parameters 6 with the corresponding MAP points for z given 6
o Further, G is differentiable at @gior and its Jacobian is given by

gl(eprior) e _H_lB c Rmxn
e H=V,,Jand B=V,gJ are second derivatives of the objective J(z,8)

o G'(Bprior) is @ Newton step updating the MAP point given a perturbation of 6.

o HDSA efficiently interrogates G'(@pyrior) using adjoint-based derivative
calculations and matrix-free linear algebra.

1. What is the Bayesian interpretation of G'(Oprior)?

2. Can | still compute/interpret G'(@prior) for ill-posed problems where the
optimizer may struggle to solve the MAP point estimation prob|ey/

optimality (satisfaction of the first order optimality condition)? Sncia
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© The Bayesian interpretation of HDSA
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The linear case

If F(z,0) = Az + B@ then the posterior is Gaussian with covariance
s _ zz,z zz,B
e Yo, Yo,
and the post-optimality sensitivity is given by

gl(epn’or) - Z27925710 .

e The post-optimality sensitivity is a correlation between z and 6.

Sandia

['ﬂﬂy‘lk.@
Z aboratories
Joseph Hart (joshart@sandia.gov) HDSA for Bayesian Inversion SIAM UQ 11/24




The linear case

If F(z,0) = Az + B0 then the posterior is Gaussian with covariance

5 _ Zz,z Zz,t9
e 292 20,0

and the post-optimality sensitivity is given by

g/(eprior) = zz,eza}g .

e The post-optimality sensitivity is a correlation between z and 6.

e Connection between optimization/analysis and Bayesian statistics.
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The linear case

If F(z,0) = Az + B0 then the posterior is Gaussian with covariance

5 _ Zz,z Zz,t9
e 292 20,0

and the post-optimality sensitivity is given by

g/(eprior) = zz,eza}g .

e The post-optimality sensitivity is a correlation between z and 6.
e Connection between optimization/analysis and Bayesian statistics.

e Local correlation for nonlinear inverse problems (Laplace approximation).
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@ Enabling HDSA for ill-posed problems
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Handling ill-posedness

e For ill-posed inverse problems, H may be ill-conditioned yielding high
sensitivity as a result of lacking information/data.

o Analyzing G'(Oprior) results in sensitivities dominated by what the data does
not tell you.

2T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini, Likelihood-inf o
dimension reduction for nonlinear inverse problems, Inverse Problems, 30 (2014 =5 [lafﬂyrg‘l}mgsv
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Handling ill-posedness

e For ill-posed inverse problems, H may be ill-conditioned yielding high
sensitivity as a result of lacking information/data.

o Analyzing G'(Oprior) results in sensitivities dominated by what the data does
not tell you.

Proposed Approach: Compute sensitivities
PG (Oprior) = —PH'B

where P projects onto the likelihood informed subspace 2 defined by the leading
eigenvectors of

7‘[/\//Vj = )\j'HRVj.
The eigenvalues

T ;
)\__VJ-HMVJ
j = e

T :
v Hry,

measure the ratio of the likelihood and prior in the direction of v;.

2T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini, Likelihood-info .
dimension reduction for nonlinear inverse problems, Inverse Problems, 30 (201 ). ] opal,
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Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem
znglger)n J(z: Oprior) := M(2, Oprior) + R(2, Bprior)

to optimality if ill-conditioning yields slow convergence.

e Early iterations refine features which are well informed by the data.
o |ll-conditioning may yield slow convergence in the uniformed subspace.
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Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem

ngﬁ%r"l" J(Z; aprior) e M(27 eprior) + R(Z, eprior)

to optimality if ill-conditioning yields slow convergence.

e Early iterations refine features which are well informed by the data.

o |ll-conditioning may yield slow convergence in the uniformed subspace.

Question: HDSA assumes satisfaction of the optimality criteria. What can | do
when converging the optimization is impractical /unnecessary?
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.
e Assume that z* is an approximation of the MAP point but

V2 J(2", Onrior) 7 0.
e Find a minimum norm perturbation R so that Y 2l (32 ) +Vzl§(z*) =0,
min || R|| 1
min 1Rl

s.t. VZR'(Z*) = —sz(z*; oprior)
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.
e Assume that z* is an approximation of the MAP point but

V2 H(2*, Oprior) # 0.

e Find a minimum norm perturbation R so that Y 2l (32 ) +Vzl§(z*) =0,
min || R|| 1
min 1Rl
s.t. VZR'(Z*) = —sz(z*; oprior)
e Judicious linear algebra gives a closed form solution

3 « L 1
R(z) = = _ (z=20g & —(z 25— (T
(2) = Sllell — (z— =) & + 52— 2) e (2 — =)

where g = VZJ(Z*§ oprior)-
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The perturbed MAP point problem

an]g)" J(z; Oprior) + f\’(z)

e z* satisfies the first order optimality condition.
e Post-optimality sensitivities are well defined for this perturbed problem.
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The perturbed MAP point problem

an]g)" J(Z; 0pior) + R(2)

e z* satisfies the first order optimality condition.
e Post-optimality sensitivities are well defined for this perturbed problem.

Some important questions:
e What is the Bayesian interpretation of R?
e How does the perturbation influence the sensitivities?
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A perturbed Gaussian prior

e What is the Bayesian interpretation of R?
e How does the perturbation influence the sensitivities?

Theorem

The perturbed inverse problem has a Gaussian prior with mean

o — (Z* = Zp,,'o,-) TS v

Zprior = Zprior +

a—vls
and covariance
[ prior = T prior — ﬁ ﬁ vv’
where
g = VJ(Z%; 0prior), s=— ||gg||2, and vV ="Tpix8.

The perturbation shifts the mean and reduces uncertainty in the direction v.
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Difference in sensitivities

o What is the Bayesian interpretation of R?

e How does the perturbation influence the sensitivities?

Theorem
The quantities
S(0) = ||7>’H‘1B§||WZ and 5(0) = HP?—Z‘lB’EHWZ
satisfy
15(6) — 5(8)| IIPnlle
|[H-188)|,, ~ = sThta
where
g = VJ(Z%; 0prior), s = —i, and n=—-Hlg.
Tellz 4
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© Numerical Results
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Subsurface permeability inversion

Cpncentration at time t = 0.1 Cqneentration at time t = 0.25
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Subsurface permeability inversion

Cqncentration at time t = 0.01 Cpncentration at time t = 0.1 Cqneentration at time t = 0.25
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Sensitivities
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Established the Bayesian interpretation of post-optimality sensitivity analysis.

Addressed ill-posedness by projecting on likelihood informed subspaces.

Theoretically justified HDSA when optimization fails to converge.

Provided strong error bounds establishing the robust of the analysis.

Joseph Hart, Sandia National Laboratories
joshart@sandia.gov
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