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Inverse problems

Find parameters (z , θ) such that

F (z , θ) = Q(u(z , θ)) ≈ d

where

• d are sparse and noisy observations of a state variable u(z , θ).

• u(z , θ) is the solution of a PDE and Q is the observation operator.

Joseph Hart (joshart@sandia.gov) HDSA for Bayesian Inversion SIAM UQ 4 / 24



The joint Bayesian formulation

• Assume a prior distribution for (z ,θ) ∼ N((zprior,θprior), Γprior) .

• Assume that d = F (z?,θ?) + ε where ε ∼ N(0, Γnoise).

• The joint posterior probability density function (PDF) is

πpost(z ,θ) ∝ πlike(d |z ,θ)πprior(z ,θ)

where

• πlike is the likelihood function,

• πprior is the prior PDF.

Analyzing properties of πpost(z ,θ) provide a wealth of information, but may be
computationally intractable.
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The conditional Bayesian formulation

• The posterior probability density function (PDF) for z given θ = θprior is

πpost(z |θprior) ∝ πlike(d |z ,θprior)πprior(z ,θprior).

• The maximum a posteriori probability (MAP) point(s) for πpost(z |θprior) are
local minima of

min
z∈Rm

J(z ;θprior) := M(z ,θprior) + R(z ,θprior)

where M(z ,θprior) and R(z ,θprior) are the negative log likelihood and prior.

• How does fixing θ = θprior influence the analysis for z?
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Post optimality sensitivity analysis

min
z∈Rm

J(z ;θprior) := M(z ,θprior) + R(z ,θprior)

• Let z? denote a local minimum when θ = θprior is fixed,

∇zJ(z?,θprior) = 0 and ∇z,zJ(z?,θprior) � 0

• The implicit function theorem gives

G : N (θprior)→ N (z?),

defined on neighborhoods of θprior and z?, such that

∇zJ(G(θ),θ) = 0 ∀θ ∈ N (θprior)
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Post optimality sensitivity analysis

G : N (θprior)→ N (z?)

• G associates parameters θ with the corresponding MAP points for z given θ

• Further, G is differentiable at θprior and its Jacobian is given by

G′(θprior) = −H−1B ∈ Rm×n

• H = ∇z,zJ and B = ∇z,θJ are second derivatives of the objective J(z ,θ)

• G′(θprior) is a Newton step updating the MAP point given a perturbation of θ.

• HDSA efficiently interrogates G′(θprior) using adjoint-based derivative
calculations and matrix-free linear algebra.

1. What is the Bayesian interpretation of G′(θprior)?

2. Can I still compute/interpret G′(θprior) for ill-posed problems where the
optimizer may struggle to solve the MAP point estimation problem to
optimality (satisfaction of the first order optimality condition)?
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The linear case

Theorem

If F (z ,θ) = Az + Bθ then the posterior is Gaussian with covariance

Σpost =

(
Σz,z Σz,θ
Σθ,z Σθ,θ

)
and the post-optimality sensitivity is given by

G′(θprior) = Σz,θΣ−1
θ,θ.

• The post-optimality sensitivity is a correlation between z and θ.
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Handling ill-posedness

• For ill-posed inverse problems, H may be ill-conditioned yielding high
sensitivity as a result of lacking information/data.

• Analyzing G′(θprior) results in sensitivities dominated by what the data does
not tell you.

Proposed Approach: Compute sensitivities

PG′(θprior) = −PH−1B

where P projects onto the likelihood informed subspace 2 defined by the leading
eigenvectors of

HMvj = λjHRvj .

The eigenvalues

λj =
vT
j HMvj

vT
j HRvj

measure the ratio of the likelihood and prior in the direction of vj .

2T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini, Likelihood-informed
dimension reduction for nonlinear inverse problems, Inverse Problems, 30 (2014), pp. 1– 28.
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Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem

min
z∈Rm

J(z ;θprior) := M(z ,θprior) + R(z ,θprior)

to optimality if ill-conditioning yields slow convergence.

• Early iterations refine features which are well informed by the data.

• Ill-conditioning may yield slow convergence in the uniformed subspace.

Question: HDSA assumes satisfaction of the optimality criteria. What can I do
when converging the optimization is impractical/unnecessary?
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.

• Assume that z? is an approximation of the MAP point but

∇zJ(z?,θprior) 6= 0.

• Find a minimum norm perturbation R̃ so that ∇zJ(z?;θprior) +∇z R̃(z?) = 0,

min
R̃∈Q
||R̃||L1(µ)

s.t. ∇z R̃(z?) = −∇zJ(z?;θprior)

• Judicious linear algebra gives a closed form solution

R̃(z) =
α

2
||g ||2 − (z − z?)Tg +

1

2
(z − z?)T

1

α||g ||2
ggT (z − z?),

where g = ∇zJ(z?;θprior).
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The perturbed MAP point problem

min
z∈Rm

J(z ;θprior) + R̃(z)

• z? satisfies the first order optimality condition.

• Post-optimality sensitivities are well defined for this perturbed problem.

Some important questions:

• What is the Bayesian interpretation of R̃?

• How does the perturbation influence the sensitivities?
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A perturbed Gaussian prior

• What is the Bayesian interpretation of R̃?

• How does the perturbation influence the sensitivities?

Theorem
The perturbed inverse problem has a Gaussian prior with mean

z̃prior = zprior +
α− (z? − zprior)T s

α− vT s
v

and covariance

Γ̃prior = Γprior −
1

||g ||2
1

α− vT s
vvT

where

g = ∇zJ(z?;θprior), s = − g
||g ||2

, and v = Γpriorg .

The perturbation shifts the mean and reduces uncertainty in the direction v .
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Difference in sensitivities

• What is the Bayesian interpretation of R̃?

• How does the perturbation influence the sensitivities?

Theorem
The quantities

S(θ) =
∣∣∣∣PH−1Bθ

∣∣∣∣
WZ

and S̃(θ) =
∣∣∣∣PH̃−1B̃θ

∣∣∣∣
WZ

satisfy

|S̃(θ)− S(θ)|∣∣∣∣H−1Bθ
∣∣∣∣
WZ

≤ ||Pn||WZ

sTn + α
,

where

g = ∇zJ(z?;θprior), s = − g
||g ||2

, and n = −H−1g .
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Subsurface permeability inversion

−∇ · (eκ∇p) = 0 in Ω

ct −∇ ·
(
ε(θ)∇c

)
+∇ ·

(
− eκ∇pc

)
= g(θ) in [0,T ]× Ω

p = p1(θ) on Γ1

p = p2(θ) on Γ3

eκ∇p · n = 0 on Γ0 ∪ Γ2

∇c · n = 0 on [0,T ]× {Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3}
c(0, x) = 0 in Ω
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Sensitivities
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Summary

• Established the Bayesian interpretation of post-optimality sensitivity analysis.

• Addressed ill-posedness by projecting on likelihood informed subspaces.

• Theoretically justified HDSA when optimization fails to converge.

• Provided strong error bounds establishing the robust of the analysis.

Joseph Hart, Sandia National Laboratories
joshart@sandia.gov
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