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ABSTRACT: Traditional discrete fracture models implementing matrix diffusion can be computationally expensive and only
applicable to simplified transport problems. Upscaling to a continuum model can reduce computational burden, but models based
on only a primary continuum neglect fracture-matrix interaction. PFELOTRAN, a subsurface flow and reactive transport code,
simulates a secondary continuum (matrix) coupled to the primary continuum (fracture) modeled as a disconnected one-dimensional
domain using a method known as the Dual Continuum Disconnected Matrix (DCDM) model. This work presents several
benchmarks to compare PFLOTRAN’s DCDM model to analytical solutions and a large-scale test problem in a one cubic km
fractured domain modeling a conservative tracer with diffusion of the tracer into the rock matrix. The tracer was modeled using two
different methods: first, with a Discrete Fracture Network (DFN) representation, and second, using the DCDM in PFLOTRAN. We
find that the DCDM representation of the upscaled fracture network produces results comparable to the DFN and analytical
solutions where available, verifying this method. We then apply the DCDM model to a fractured domain considering radionuclide
isotope sorption, partitioning, decay, and ingrowth and find that radionuclide retardation is enhanced when considering these

additional mechanisms.

1. INTRODUCTION

Matrix diffusion coupled with sorption is currently
considered one of the most important radionuclide
retardation mechanisms in fractured crystalline host rock
(SKBF 1983). One way of modeling diffusive transport
between a rock matrix and fractures is by representing the
phenomenon as a Fickian diffusion process over a dual
porosity (dual continuum) system. This stands in contrast
to traditional discrete fracture models used to simulate
matrix diffusion, which can be computationally expensive
due to the need for fine meshes and are applicable only to
simplified solute transport problems. Upscaling to a
continuum model can reduce computational burden, but
models based on only a single continuum neglect fracture-
matrix interaction.

PFLOTRAN, a subsurface flow and reactive transport
code, simulates a secondary continuum (matrix) coupled
to the primary continuum (fracture) modeled as a
disconnected one-dimensional domain using a method
known as the Dual Continuum Disconnected Matrix
(DCDM) model (Lichtner, 2000). Since secondary
continua are isolated from one another, the formulation

for the secondary continuum equations is embarrassingly
parallel, making PFLOTRAN’s DCDM model ideal for
complex full-scale crystalline repositories using high
performance computing. In this work, we test
PFLOTRAN’s DCDM model to represent fracture-matrix
interactions against several analytical solutions and
benchmarks and then apply the model to a problem
considering radionuclide transport in a large-scale
fractured rock domain.

2. MODELING APPROACH

The DCDM model in PFLOTRAN solves equations for a
primary and secondary continuum in a fully coupled
implementation. The primary continuum is modeled via

(Eq. 1):
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where f and m denote the fracture and matrix continua,
respectively, €7 is the fracture volume fraction, ¢ is

porosity, ‘P}( is the total component concentration
(includes aqueous complexes) in the fracture of species j,
.(2}-r is total solute flux in the fracture, .(2{ ™ is total solute
flux between the fracture and matrix, A¢m is the fracture-
matrix interfacial area, vj is the stoichiometric

coefficient, I },: is the mineral reaction, and S{ is the
sorption isotherm. Advection and dispersion are allowed
in the primary continuum, and in the secondary
continuum transport occurs through diffusion only. The
secondary continuum is modeled as a one-dimensional
domain where diffusive fluxes occur perpendicular to the
fracture wall (Eq. 2):

k

where the gradient operator V¢ refers to the effective one-
dimensional secondary continuum geometry. Each
primary continuum cell has a corresponding set of
secondary continuum cells attached to it. The secondary
cells cannot interact with secondary cells associated with
other primary cells. The equations for the primary and
secondary continuum are solved separately and coupled
together by the mass exchange flux (Eq. 3) assuming
symmetry along the axis dividing them (Iraola et al.,
2019):

2"t = 0 (§gmx | 1) #(3)

where x is a point in the primary continuum, # is time and
¢ rm 1s the outer boundary of the secondary continuum. In
this approach a backward solve is first performed on the
secondary continuum to eliminate coupling to the
fracture, followed by solving the primary continuum
equations (Lichtner and Karra, 2014). The solution is
completed with a forward solve of the secondary
continuum. This contrasts with the Multiple Interacting
Continua (MINC) dual continuum approach used in the
flow and reactive transport simulator TOUGH, where the
secondary and primary are treated as a single system
solved simultaneously. Since the primary and secondary
continua are decoupled, this makes the DCDM approach
in PFLOTRAN ideal for complex and challenging
transport problems.

3. BENCHMARK RESULTS

Several different benchmark problems were performed to
validate the DCDM model in PFLOTRAN.

3.1. Tangetal., 1981
The first benchmark test is based on the analytical
solution by Tang et al., 1981 for the problem of transport

of a radionuclide in a single fixed-aperture fracture with
diffusion into the rock matrix, where the rock matrix is
assumed to be infinite. Parameters used for this
comparison can be found in Table 1. A Dirichlet boundary
condition was assumed at the inlet and modeled to 10,000
days. 100 cells were used to model the primary continuum
where each cell had 100 secondary cells. Normalized
concentration along the fracture and concentration into
the matrix at 100, 1,000, and 10,000 days can be seen in
Figure 1 where the DCDM model shows excellent
agreement with the analytical solution in the fracture and
matrix.

Table 1. Parameters used for Tang et al., 1981 benchmark
Value
1.6 x 10°m?/s

Parameter

Diffusion coefficient in water

Tortuosity 0.1
Fracture width 104 m
Dispersivity 0.5m
Half-life 1235y
Retardation factor in matrix (R') 1.0
Retardation factor in fracture 1.0
Matrix Porosity 0.01
Concentration, (z=0) 1.0M
Average linear velocity in fracture 0.01 m/d
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Fig. 1. Comparisons for concentration along fracture (top) and
into the matrix (bottom) at z =2 m down fracture.

This benchmark case was then expanded to test
retardation factors in the matrix (R') of 2, 5, and 10. The
results can be seen in Figure 2 at a time of 1,000 days.



These comparisons expand on Iraola et al., 2019 by
adding in dispersion and retardation in the fracture and
matrix.
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Fig. 2. Comparisons at 1,000 days for various retardation factor
along the fracture (top) and into the matrix (bottom) at a
location of 2 m down the fracture.

3.2. Sudicky and Frind, 1982

The work by Sudicky and Frind, 1982 describes an
extension of Tang et al., 1981 of transport in discrete
parallel fractures connected to a finite matrix domain. A
benchmark case was developed using the same
parameters in Table 1, but with two different finite matrix
lengths. A small matrix size of 0.05 m and a larger matrix
of 0.25 m were tested. The results are shown in Figure 3,
where observation points are plotted along distances of 1,
2, and 3 m down the fracture.
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Fig. 3. Breakthrough curves for small matrix of 0.05 m (top)
and large matrix size of 0.25 m (bottom). Z values represent
meters down the fracture. Solid lines represent the analytical
solution and dotted lines represent the PFLOTRAN solution.

3.3. 4-Fracture DFN

A four-fracture test problem was developed to
demonstrate the capability in PFLOTRAN’s DCDM
model of defining spatially varying fracture properties
across a domain. The problem (built based on an example
provided with dfnWorks [Hyman et al., 2015]) models
advection and diffusion of a conservative tracer through
four fractures within a cubic domain with diffusion into
the rock matrix. Groundwater flow is simulated by a
steady (saturated, single-phase) pressure gradient along
the x-axis (Figure 4). Constant pressure (Dirichlet)
boundary conditions were applied on the inflow and
outflow faces. An initial pulse of tracer was inserted
uniformly along the fractures on the west face (x = -500)
of the domain at time zero; the concentration at the west
face was set to zero for all other times. The tracer exits the
domain through the fractures on the east face (x = 500).
All other faces were assigned no flow boundary
conditions. Diffusion into the matrix occurs along the
fractures.

Table 2. Parameters used for four-fracture benchmark.

Parameter Value
Pressure (inlet x = -500) 1.001 x 10° Pa
Pressure (outlet, x = 500) 1.0 x 10° Pa
Porosity in fracture 1.0

Tortuosity in fracture 1.0

Matrix porosity 0.005

Matrix permeability 1018 m?
Matrix diffusion coefficient 1.6 x 1071 m?%/s
ECPM cell size 20 m
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Fig. 4a. Four-fracture pressure solution for ECPM
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Fig. 4b. Four-fracture pressure solution for DFN

The tracer was modeled using two different methods. The
first method used LANL dfnTrans particle tracking
software (Lagrangian reference frame). Matrix diffusion
is simulated via a time domain random walk approach and
Darcy velocities were calculated from the DFN steady
state flow solution simulated in PFLOTRAN. The second
method used PFLOTRAN’s reactive transport mode
(Eulerian reference frame) with the DCDM model. To
simulate transport in PFLOTRAN, the fractures were
upscaled to an Equivalent Continuous Porous Medium
(ECPM) via a Python script mapDFN (Stein et al., 2017).
dfnWorks outputs apertures, permeabilities, radii, the
vector defining the unit normal to the fractures, and
coordinates of the fracture center. These files along with
parameters defining the domain and grid cell size for the
ECPM were used as input for mapDFN. Upscaled
anisotropic permeability, porosity, and tortuosity were
then outputted based on the intersection of fractures
within grid cells. The porosity values for the ECPM were
then used as input into the DCDM model to define
fracture volume fraction. The matrix length for each grid
cell was specified as (1 — porosity in grid cell) x 20 m.

Normalized breakthrough curves (total mass that has
crossed the east face divided by the initial mass at the west
face) were generated at the outflow face (Figure 5). Both
transport methods were also applied on the system
without matrix diffusion. The DCDM model and DFN
show comparable results. The models with and without
matrix diffusion show similar results at the beginning of
the simulation and then verge at later times as tracer
diffuses into the rock matrix. Differences in results may
be due to grid discretization, upscaling methods and
fracture characterization. The DCDM modeled in

PFLOTRAN may also experience more numerical
dispersion than the DFN particle tracking results.
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Fig. 5. Breakthrough curves for 4-Fracture Benchmark

3.4.  4-Fracture plus Stochastic Fractures DFN
The four-fracture benchmark case was expanded on by
adding stochastic fractures in the domain. The stochastic
fractures were generated based on Central Hydraulic Unit
West (CHUW) Case A distributions from Posiva WR
2012-42 (Hartley et al., 2013, Table D-4) corresponding
to Depth Zone 4, which applies at repository depth
(Hartley et al., 2016, Table 3-1). Figures 6 shows the
steady-state fracture domain pressure solution used for
the transport simulations.
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Fig. 6a. Four-fracture plus stochastic fractures pressure solution
for the ECPM.



Fig. 6b. Four-fracture pressure solution plus stochastic fractures
for DFN

Table 3 shows material and fluid properties that were
altered in the model from the four-fracture case to reduce
breakthrough time. Breakthrough curves generated at the
outflow (east face) for the two methods were plotted over
1,000,000 years (Figure 7). The results again show
comparable results with similar breakthrough times. In
this scenario, the addition of matrix diffusion significantly
retards the tracer and breakthrough occurs much later. In
the simulations with matrix diffusion the DFN shows
breakthrough first but then takes longer than 1,000,000
years for all particles to pass through.

Table 3. Four-fracture plus stochastic fractures parameter
values

Parameter Value
Pressure (inlet x = -500) 1.1 x 10°Pa
Pressure (outlet, x = 500) 1.0 x 10°Pa

Matrix diffusion coefficient 1.6 x 1012 m?%/s
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Fig. 7. Breakthrough curves for four-fracture plus stochastic
fractures with and without matrix diffusion

4. UFD DECAY

The Used Fuel Disposition (UFD) Decay Process Model
in PFLOTRAN models radionuclide isotope decay,
ingrowth, and phase partitioning and was created for use
as part of the Geologic Disposal Safety Assessment
(GDSA) Framework. The model is called at each
transport time step where the total mass of each isotope is
summed based on the mass in the aqueous, sorbed, and
precipitated phase. The total mass then decays according
to the Bateman Equations. Afterwards, the total mass is
partitioned back into aqueous, sorbed, and precipitated
phases and isotope concentrations are calculated from the
isotope mole fraction and elemental concentrations.

A single decay chain was modeled using the UFD decay
model and applied to the single fracture problem
considering the isotope **! Am decaying to ’Np versus a
non-decaying tracer diffusing into the matrix. Solubility,
distribution coefficients, and decay rates were taken from
Mariner et al., 2011 and are listed in Table 4.

Table 4. UFD Decay test problem values

Parameter

Value

Inlet concentration 24'Am

4 x107 mol/kg

Inlet concentration 2>’Np

1 x 102 mol/kg

241 Am Solubility

4 x 107 mol/L

23"Np Solubility 4 x 10° mol/L
241 Am Matrix Ky 0.04 m¥/kg
23’Np Matrix K4 0.2 m¥/kg

241 Am Decay Rate 5.08x 10-'1 1/s

23"Np Decay Rate

1.03x 1014 1/s

The concentration in the fracture and matrix can be seen
in Figure 8 and 9 respectively at 1,000 and 5,000 days.
Tracer can be seen as far as ~4 m at 5,000 days in the non-
decaying tracer scenario. In the decaying isotope
scenario, the isotope travels less than 2 m down the
fracture at 5,000 days. The results show increase in
radionuclide retardation when considering decay in a
fractured system.

The test problem was then applied to the 4-fracture
network considering an inlet pulse of > Am decaying to
23'Np. Figure 10 shows the mean concentration of each
isotope in the entire system and Figure 11 shows moles of
each isotope passing through the outflow boundary (x =
500 m) with time. The mean concentration of 2’Np
increases once *'Am decays and then decreases again
around ~1,000 years.
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5. CONCLUSIONS

The DCDM model in PFLOTRAN allows for
representation of fracture-matrix interactions in large
scaled fractured rock, and it has recently been updated to
model advanced radionuclide transport via the UFD
Decay process model. In this work, we present
verification of the multiple continuum model in
PFLOTRAN against two single-fracture analytical
solutions and a numerical DFN particle tracking example
in several multi-fracture domains. The DCDM model in
PFLOTRAN produces results comparable to the DFN
particle tracking, while allowing for advanced solute
transport. Furthermore, the tests demonstrate that matrix
diffusion can in fact have a significant impact on solute
ansport simulations.

astly, a test case was developed considering
wdionuclide isotope sorption, partitioning, and decay of
vo different isotopes. This analysis demonstrates the
bility of PFLOTRAN’s DCDM model to be used as part
f a full-scale performance assessment of a deep
eological repository in fractured crystalline rock.
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