
1. INTRODUCTION

Matrix diffusion coupled with sorption is currently 
considered one of the most important radionuclide 
retardation mechanisms in fractured crystalline host rock 
(SKBF 1983). One way of modeling diffusive transport 
between a rock matrix and fractures is by representing the 
phenomenon as a Fickian diffusion process over a dual 
porosity (dual continuum) system. This stands in contrast 
to traditional discrete fracture models used to simulate 
matrix diffusion, which can be computationally expensive 
due to the need for fine meshes and are applicable only to 
simplified solute transport problems. Upscaling to a 
continuum model can reduce computational burden, but 
models based on only a single continuum neglect fracture-
matrix interaction. 

PFLOTRAN, a subsurface flow and reactive transport 
code, simulates a secondary continuum (matrix) coupled 
to the primary continuum (fracture) modeled as a 
disconnected one-dimensional domain using a method 
known as the Dual Continuum Disconnected Matrix 
(DCDM) model (Lichtner, 2000). Since secondary 
continua are isolated from one another, the formulation 

for the secondary continuum equations is embarrassingly 
parallel, making PFLOTRAN’s DCDM model ideal for 
complex full-scale crystalline repositories using high 
performance computing. In this work, we test 
PFLOTRAN’s DCDM model to represent fracture-matrix 
interactions against several analytical solutions and 
benchmarks and then apply the model to a problem 
considering radionuclide transport in a large-scale 
fractured rock domain.

2. MODELING APPROACH
The DCDM model in PFLOTRAN solves equations for a 
primary and secondary continuum in a fully coupled 
implementation. The primary continuum is modeled via 
(Eq. 1): 
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where f and m denote the fracture and matrix continua, 
respectively, 𝜖𝑓 is the fracture volume fraction,  is 
porosity, 𝛹𝑓

𝑗  is the total component concentration 
(includes aqueous complexes) in the fracture of species j, 
𝛺𝑓

𝑗  is total solute flux in the fracture, 𝛺𝑓𝑚
𝑗  is total solute 

flux between the fracture and matrix, 𝐴𝑓𝑚 is the fracture-
matrix interfacial area, 𝜈𝑗𝑘 is the stoichiometric 
coefficient, 𝛤𝑓

𝑘 is the mineral reaction, and 𝑆𝑓
𝑗  is the 

sorption isotherm. Advection and dispersion are allowed 
in the primary continuum, and in the secondary 
continuum transport occurs through diffusion only. The 
secondary continuum is modeled as a one-dimensional 
domain where diffusive fluxes occur perpendicular to the 
fracture wall (Eq. 2): 
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where the gradient operator ∇𝜉 refers to the effective one-
dimensional secondary continuum geometry. Each 
primary continuum cell has a corresponding set of 
secondary continuum cells attached to it. The secondary 
cells cannot interact with secondary cells associated with 
other primary cells. The equations for the primary and 
secondary continuum are solved separately and coupled 
together by the mass exchange flux (Eq. 3) assuming 
symmetry along the axis dividing them (Iraola et al., 
2019):

𝛺𝑓𝑚
𝑗 (𝑥,𝑡) =  𝛺𝑚

𝑗  𝜉𝑓𝑚,𝑥│𝑟  #(3)

where x is a point in the primary continuum, t is time and 
𝜉𝑓𝑚 is the outer boundary of the secondary continuum. In 
this approach a backward solve is first performed on the 
secondary continuum to eliminate coupling to the 
fracture, followed by solving the primary continuum 
equations (Lichtner and Karra, 2014). The solution is 
completed with a forward solve of the secondary 
continuum. This contrasts with the Multiple Interacting 
Continua (MINC) dual continuum approach used in the 
flow and reactive transport simulator TOUGH, where the 
secondary and primary are treated as a single system 
solved simultaneously. Since the primary and secondary 
continua are decoupled, this makes the DCDM approach 
in PFLOTRAN ideal for complex and challenging 
transport problems.

3. BENCHMARK RESULTS
Several different benchmark problems were performed to 
validate the DCDM model in PFLOTRAN.

3.1. Tang et al., 1981
The first benchmark test is based on the analytical 
solution by Tang et al., 1981 for the problem of transport 

of a radionuclide in a single fixed-aperture fracture with 
diffusion into the rock matrix, where the rock matrix is 
assumed to be infinite. Parameters used for this 
comparison can be found in Table 1. A Dirichlet boundary 
condition was assumed at the inlet and modeled to 10,000 
days. 100 cells were used to model the primary continuum 
where each cell had 100 secondary cells. Normalized 
concentration along the fracture and concentration into 
the matrix at 100, 1,000, and 10,000 days can be seen in 
Figure 1 where the DCDM model shows excellent 
agreement with the analytical solution in the fracture and 
matrix.

Table 1. Parameters used for Tang et al., 1981 benchmark

Parameter Value

Diffusion coefficient in water 1.6 x 10-9 m2/s

Tortuosity 0.1

Fracture width 10-4 m

Dispersivity 0.5 m

Half-life 12.35 y

Retardation factor in matrix (R′) 1.0

Retardation factor in fracture 1.0

Matrix Porosity 0.01

Concentration, (z=0) 1.0 M

Average linear velocity in fracture 0.01 m/d

Fig. 1. Comparisons for concentration along fracture (top) and 
into the matrix (bottom) at z = 2 m down fracture.

This benchmark case was then expanded to test 
retardation factors in the matrix (R′) of 2, 5, and 10. The 
results can be seen in Figure 2 at a time of 1,000 days. 



These comparisons expand on Iraola et al., 2019 by 
adding in dispersion and retardation in the fracture and 
matrix.

Fig. 2. Comparisons at 1,000 days for various retardation factor 
along the fracture (top) and into the matrix (bottom) at a 
location of 2 m down the fracture.

3.2. Sudicky and Frind, 1982
The work by Sudicky and Frind, 1982 describes an 
extension of Tang et al., 1981 of transport in discrete 
parallel fractures connected to a finite matrix domain. A 
benchmark case was developed using the same 
parameters in Table 1, but with two different finite matrix 
lengths. A small matrix size of 0.05 m and a larger matrix 
of 0.25 m were tested. The results are shown in Figure 3, 
where observation points are plotted along distances of 1, 
2, and 3 m down the fracture.

Fig. 3. Breakthrough curves for small matrix of 0.05 m (top) 
and large matrix size of 0.25 m (bottom). Z values represent 
meters down the fracture. Solid lines represent the analytical 
solution and dotted lines represent the PFLOTRAN solution.

3.3. 4-Fracture DFN
A four-fracture test problem was developed to 
demonstrate the capability in PFLOTRAN’s DCDM 
model of defining spatially varying fracture properties 
across a domain. The problem (built based on an example 
provided with dfnWorks [Hyman et al., 2015]) models 
advection and diffusion of a conservative tracer through 
four fractures within a cubic domain with diffusion into 
the rock matrix. Groundwater flow is simulated by a 
steady (saturated, single-phase) pressure gradient along 
the x-axis (Figure 4). Constant pressure (Dirichlet) 
boundary conditions were applied on the inflow and 
outflow faces. An initial pulse of tracer was inserted 
uniformly along the fractures on the west face (x = -500) 
of the domain at time zero; the concentration at the west 
face was set to zero for all other times. The tracer exits the 
domain through the fractures on the east face (x = 500). 
All other faces were assigned no flow boundary 
conditions. Diffusion into the matrix occurs along the 
fractures.
Table 2. Parameters used for four-fracture benchmark.

Parameter Value

Pressure (inlet x = -500) 1.001 x 106 Pa 

Pressure (outlet, x = 500) 1.0 x 106 Pa

Porosity in fracture 1.0

Tortuosity in fracture 1.0

Matrix porosity 0.005

Matrix permeability 10-18 m2

Matrix diffusion coefficient 1.6 x 10-10 m2/s

ECPM cell size 20 m



Fig. 4a. Four-fracture pressure solution for ECPM

Fig. 4b. Four-fracture pressure solution for DFN

The tracer was modeled using two different methods. The 
first method used LANL dfnTrans particle tracking 
software (Lagrangian reference frame). Matrix diffusion 
is simulated via a time domain random walk approach and 
Darcy velocities were calculated from the DFN steady 
state flow solution simulated in PFLOTRAN. The second 
method used PFLOTRAN’s reactive transport mode 
(Eulerian reference frame) with the DCDM model. To 
simulate transport in PFLOTRAN, the fractures were 
upscaled to an Equivalent Continuous Porous Medium 
(ECPM) via a Python script mapDFN (Stein et al., 2017). 
dfnWorks outputs apertures, permeabilities, radii, the 
vector defining the unit normal to the fractures, and 
coordinates of the fracture center. These files along with 
parameters defining the domain and grid cell size for the 
ECPM were used as input for mapDFN. Upscaled 
anisotropic permeability, porosity, and tortuosity were 
then outputted based on the intersection of fractures 
within grid cells. The porosity values for the ECPM were 
then used as input into the DCDM model to define 
fracture volume fraction. The matrix length for each grid 
cell was specified as (1 – porosity in grid cell) x 20 m.

Normalized breakthrough curves (total mass that has 
crossed the east face divided by the initial mass at the west 
face) were generated at the outflow face (Figure 5). Both 
transport methods were also applied on the system 
without matrix diffusion. The DCDM model and DFN 
show comparable results. The models with and without 
matrix diffusion show similar results at the beginning of 
the simulation and then verge at later times as tracer 
diffuses into the rock matrix. Differences in results may 
be due to grid discretization, upscaling methods and 
fracture characterization. The DCDM modeled in 

PFLOTRAN may also experience more numerical 
dispersion than the DFN particle tracking results.

Fig. 5. Breakthrough curves for 4-Fracture Benchmark

3.4. 4-Fracture plus Stochastic Fractures DFN
The four-fracture benchmark case was expanded on by 
adding stochastic fractures in the domain. The stochastic 
fractures were generated based on Central Hydraulic Unit 
West (CHUW) Case A distributions from Posiva WR 
2012-42 (Hartley et al., 2013, Table D-4) corresponding 
to Depth Zone 4, which applies at repository depth 
(Hartley et al., 2016, Table 3-1). Figures 6 shows the 
steady-state fracture domain pressure solution used for 
the transport simulations.

 

Fig. 6a. Four-fracture plus stochastic fractures pressure solution 
for the ECPM.



Fig. 6b. Four-fracture pressure solution plus stochastic fractures 
for DFN 

Table 3 shows material and fluid properties that were 
altered in the model from the four-fracture case to reduce 
breakthrough time. Breakthrough curves generated at the 
outflow (east face) for the two methods were plotted over 
1,000,000 years (Figure 7). The results again show 
comparable results with similar breakthrough times. In 
this scenario, the addition of matrix diffusion significantly 
retards the tracer and breakthrough occurs much later. In 
the simulations with matrix diffusion the DFN shows 
breakthrough first but then takes longer than 1,000,000 
years for all particles to pass through.

Table 3. Four-fracture plus stochastic fractures parameter 
values

Parameter Value

Pressure (inlet x = -500) 1.1 x 106 Pa

Pressure (outlet, x = 500) 1.0 x 106 Pa

Matrix diffusion coefficient 1.6 x 10-12 m2/s

Fig. 7. Breakthrough curves for four-fracture plus stochastic 
fractures with and without matrix diffusion

4. UFD DECAY
The Used Fuel Disposition (UFD) Decay Process Model 
in PFLOTRAN models radionuclide isotope decay, 
ingrowth, and phase partitioning and was created for use 
as part of the Geologic Disposal Safety Assessment 
(GDSA) Framework. The model is called at each 
transport time step where the total mass of each isotope is 
summed based on the mass in the aqueous, sorbed, and 
precipitated phase. The total mass then decays according 
to the Bateman Equations. Afterwards, the total mass is 
partitioned back into aqueous, sorbed, and precipitated 
phases and isotope concentrations are calculated from the 
isotope mole fraction and elemental concentrations.

A single decay chain was modeled using the UFD decay 
model and applied to the single fracture problem 
considering the isotope 241Am decaying to 237Np versus a 
non-decaying tracer diffusing into the matrix. Solubility, 
distribution coefficients, and decay rates were taken from 
Mariner et al., 2011 and are listed in Table 4. 
Table 4. UFD Decay test problem values

Parameter Value

Inlet concentration 241Am 4 x10-7 mol/kg

Inlet concentration 237Np 1 x 10-12 mol/kg
241Am Solubility 4 x 10-7 mol/L
237Np Solubility 4 x 10-9 mol/L
241Am Matrix Kd 0.04 m3/kg
237Np Matrix Kd 0.2 m3/kg
241Am Decay Rate 5.08 x 10-11 1/s
237Np Decay Rate 1.03 x 10-14 1/s

The concentration in the fracture and matrix can be seen 
in Figure 8 and 9 respectively at 1,000 and 5,000 days. 
Tracer can be seen as far as ~4 m at 5,000 days in the non-
decaying tracer scenario. In the decaying isotope 
scenario, the isotope travels less than 2 m down the 
fracture at 5,000 days. The results show increase in 
radionuclide retardation when considering decay in a 
fractured system.

The test problem was then applied to the 4-fracture 
network considering an inlet pulse of 241Am decaying to 
237Np. Figure 10 shows the mean concentration of each 
isotope in the entire system and Figure 11 shows moles of 
each isotope passing through the outflow boundary (x = 
500 m) with time. The mean concentration of 237Np 
increases once 241Am decays and then decreases again 
around ~1,000 years.



Fig. 8. Concentration in the fracture with a decaying isotope 
(dotted line) versus non decaying tracer (solid line)

Fig. 9. Concentration in the matrix with a decaying isotope 
(dotted line) versus non decaying tracer (single line)

Fig. 10. Mean concentration of isotopes in the entire system

Fig. 11. Moles of each isotope passing through outflow

5. CONCLUSIONS
The DCDM model in PFLOTRAN allows for 
representation of fracture-matrix interactions in large 
scaled fractured rock, and it has recently been updated to 
model advanced radionuclide transport via the UFD 
Decay process model. In this work, we present 
verification of the multiple continuum model in 
PFLOTRAN against two single-fracture analytical 
solutions and a numerical DFN particle tracking example 
in several multi-fracture domains. The DCDM model in 
PFLOTRAN produces results comparable to the DFN 
particle tracking, while allowing for advanced solute 
transport. Furthermore, the tests demonstrate that matrix 
diffusion can in fact have a significant impact on solute 
transport simulations.

Lastly, a test case was developed considering 
radionuclide isotope sorption, partitioning, and decay of 
two different isotopes. This analysis demonstrates the 
ability of PFLOTRAN’s DCDM model to be used as part 
of a full-scale performance assessment of a deep 
geological repository in fractured crystalline rock. 
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