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• The training, validation, and test data sets used to train and evaluate the models 
were constructed using a set of 3,188 high-SNR “signal” waveforms and 15,426 
“noise” waveforms recorded on UUSS stations. 

• Each of the data sets were constructed by adding each signal waveform with a 
random noise waveform. This was repeated 40 times to create the total 127,520 
waveforms where the signal and noise were pre-separated into sets using a 70-15-15 
convention,520   

• The “noisy waveforms” and each of the original signal and noise waveforms of the 
training and validation data sets are transformed into the time-frequency domain using 
the short-time Fourier transform (STFT), or the time-scale domain using the 
continuous wavelet transform (CWT) method and used as the input and label data for 
the model training, respectively.    

• To further evaluate the performance of the model we also gather a set of 5,525 raw 
60-sec waveform segments collected on a set of UUSS stations active from 
2009-2017 containing both earthquake and mining explosion data. The waveform 
were processed using the denoising approaches.

• The denoising models provide the signal and noise masks that represent time-
dependent filter operators. Examples of those masks are shown below.      

• The model evaluation on the test 
data sets shows that utilizing the CWTs
as inputs allows for better noise 
reconstruction. 

• All three models have similar 
performances on the signal waveforms.   

• Comparisons of SNR improvements 
between each of the denoising models 
and bandpass filtering show that the 
denoisers consistently outperform 
frequency filtering.

• The MWCNN model greatly 
outperforms the other two denoising 
models where the distribution of SNR 
improvements are more evenly 
distributed across greater values.    

Source: Tibi et al., 2021

Adapted From Liu et al., 2019

• The models are evaluated using the noise and signal constructed test dataset and a number of different criteria, including the 
ability of the denoising model to recover the original signal and noise waveforms. This ability is estimated by measuring the 
degree of similarity using cross correlation, and the degree of amplitude distortion using the signal-to-distortion ratio (SDR)
which we seek to maximize.

• The equation to calculate SDR is shown above with WGT being the original waveforms and W being the reconstructed waveform.     

• The models evaluate real-world non-constructed data collected from selected UUSS 
network stations where the main evaluation metric is the improvement in SNR of the 
denoised signal waveforms when compared to the raw waveforms and those that have 
been bandpass filtered.   
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• Architecture of the denoiser network used in the MWCNN version of the model, which combines a CNN 
approach with DWT and inverse wavelet transforms (IWT). Each box represents a layer; and processes taking 
place in each layer are described in the legend.  

• Advancements in the field of 
image denoising have shown 
the benefits of incorporating 
discrete wavelet transforms 
(DWT) into convolutional neural 
networks (CNN) to create multi-
level wavelet CNN (MWCNN) 
models. 

• The conventional pooling operation which down-
samples an input by using the maximum or average
values over a defined window leads to a loss of all 
high-frequency data causing poorer processing 
of feature maps. 
      

• Dilated filtering is a process where a feature map is decomposed into 
four sub-maps which are then processed through convolution using the
same parameters on each sub-map.   

• The DWT function is an expanded version of the standard pooling function, wherein 
we use fixed weights in the convolution process to keep high-frequency data.

• The IWT function reconstructs a feature map from the created sub-images as a type of 
dilated filtering which doesn’t suffer from gridding effects.
   

• Architecture of the fully convolutional network (FCN) used to build the STFT and CWT FCN versions of 
the model. Each box in the network represents a layer; and the processes taking place in each layer are 
described in the legend. ReLU stands for rectified linear unit. 

• Three denoising models were built using the same training data 
set. Evaluation of the models suggests that the incorporation of 
DWT and IWT greatly improves performance on real word data.

• Currently, the model are designed for predefined segments of 
data; but, our intent is to transition to processing continuous data.

• Portability of the MWCNN model to regions outside the UUSS
network remains a key question to be examined. 

• Using data from the University of Utah Seismograph Stations 
(UUSS) network we compare the performance of the CNN and
MWCNN denoising models using evaluation metrics such as:
cross-correlation, and amplitude distortion, and signal-to-noise 
ratios (SNR) improvements of real-world data.
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