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networks (CNN) to create multi-
level wavelet CNN (MWCNN)
models.
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» Using data from the University of Utah Seismograph Stations
(UUSS) network we compare the performance of the CNN and
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 The model evaluation on the test
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* All three models have similar
performances on the signal waveforms.
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* Architecture of the fully convolutional network (FCN) used to build the STFT and CWT FCN versions of * Architecture of the denoiser network used in the MWCNN version of the model, which combines a CNN
the model. Each box in the network represents a layer; and the processes taking place in each layer are approach with DWT and inverse wavelet transforms (IWT). Each box represents a layer; and processes taking
described in the legend. ReLU stands for rectified linear unit. place in each layer are described in the legend.
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» Three denoising models were built using the same training data
set. Evaluation of the models suggests that the incorporation of
DWT and IWT greatly improves performance on real word data.
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* To further evaluate the performance of the model we also gather a set of 5,525 raw
60-sec waveform segments collected on a set of UUSS stations active from
2009-2017 containing both earthquake and mining explosion data. The waveform
were processed using the denoising approaches.
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* Currently, the model are designed for predefined segments of
data; but, our intent is to transition to processing continuous data.
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* The denoising models provide the signal and noise masks that represent time-
dependent filter operators. Examples of those masks are shown below.
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 Portability of the MWCNN model to regions outside the UUSS
network remains a key question to be examined.

Frequancy {Hz)
]

[}
(=]
u

Denoised Signal Waveform

Designaled Noise Waveform
0 10 20 0 40 50 &0 0 10 20 0 40 50 &0 —400

Denocised Signal Waveform Denoised Signal Waveform

Normalized Amplitude
[}
= =

1o Time (s) Time {s) ° B = 'I'|m3‘: {s) ® = > ° . » 'I'lmj: {s) “ ” ” This research was funded b . . . C
_ _ _ _ _ _ _ _ y the U.S. Department of Energy. Sandia National Laboratories is a multimission laboratory managed and operated by
o 10 20 ﬁmag(s) a0 50 = e The models are evaluated using the noise and S|gna| constructed test dataset and a number of different Cntena, |nc|ud|ng the National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
. o . . . ] . . . ] Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the
_ i Noise Mask ab|||ty of the den0|S|ng model to recover the Orlglnal Slgna| and noise waveforms. This ablllty IS estimated by measuring the e The models evaluate real-world non-constructed data collected from selected UUSS views of the U.S. Department of Energy or the United States Government. This research was funded by the National Nuclear Security Administration,
= & . . . . . . . . . . . . ) ] _ o _ _ Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge important interdisciplinary collaboration
degree of similarity using cross correlation, and the degree of amplitude distortion using the signal-to-distortion ratio (SDR) network stations where the main evaluation metric is the improvement in SNR of the with scientists and engineers from LANL, LLNL, MSTS, PNNL, and SNL.
£ £ which we seek to maximize. denoised signal waveforms when compared to the raw waveforms and those that have Tibi, R., P. Hammond, R. Brogan, C. J. Young, and K. Koper (2021). Deep Learning Denoising Applied to Regional

Distance Seismic Data in Utah, Bull. Seismol. Soc. Am. 111, 775-790, doi: 10.1785/0120200292
Liu, P, Zhang, H., Lian, W., & Zuo, W. (2019). Multi-level wavelet convolutional neural networks. IEEE Access, 7,
74973-74985.

been bandpass filtered.

* The equation to calculate SDR is shown above with W . being the original waveforms and W being the reconstructed waveform.
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