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INTRODUCTION

The Redmond Salt Mine Monitoring Experiment in Utah was designed to record

MAGNITUDE-BASED DISCRIMINATION

= For M, calculation, the mean peak Sg = M, was calculated according to the

DISCRIMINATION BASED ON FREQUENCY
CONTENTS

DISCRIMINATION BASED ON FREQUENCY

39.5°N

seismoacoustic data at distances less than 50 km for algorithm testing and
development. During the experiment from October 2017 to July 2019, six broadband
seismic stations were operating at a time, with three of them having fixed locations for
the duration, while the three other stations were moved to different locations every
one-and-half to two-and-half months. Redmond Salt Mine operations consist of night-
time underground blasting several times per week. These blasts occur in a large
underground tunnel complex, tens of miles long. Redmond Mine is located within a
belt of active seismicity, allowing for easy comparison of natural and anthropogenic
sources.

THE REDMOND SALT MINE MONITORING
EXPERIMENT
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Fig. 1. (Left) Locations (triangles) of broadband stations for the Redmond Mine Experiment. The red
box outlines the Redmond Mine area. (Right) Operational timeline of the stations.

DATA

Using the recorded dataset, we built 1373 events with local magnitude (M,) of —2.4 and lower to 3.3.
For 284 of the events, both M, and the coda duration magnitude (M) are well constrained (see Fig.
2 below). Based on the event locations and the signal onset characters, this subset was divided into
three populations:

= 75 blasts from the Redmond Salt Mine (RMEs),

= 206 tectonic earthquakes (EQs), and

= 3 blasts (@Bs) from a mine/quarry located about 8 km from the Redmond Salt Mine.

Fig. 2. Locations (circles)
of the 284 events from
the subset. The size of
the circle is proportional
to the event magnitude.
Red symbols represent
earthquakes (EQs), navy

amplitudes were estimated from the
horizontal components after conversion to
displacement as would be measured by a

procedure described in Pechmann et al.
(2006), using the equation for the Utah
region proposed by these authors.

Wood-Anderson seismometer; and the
empirical  distance  corrections  were
estimated according to Pechmann et al.
(2007).
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Fig. 3. Magnitude (M, leftand M right) distribution for the 1373 events built. The gray bar in each
plot represents the number of events for which the magnitude could not be estimated.
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Fig. 4. (Left) M, M, relationship. While data points for EQs plot only slightly above the 1:1 line
(dashed line), data points for the mining events (RMEs & QBs) are significantly off that line. This
results from enhanced coda for the shallow mining events (Koper et al., 2016). (Right) Distribution
and median of M, -Mfor the EQ and RME populations. Chi-square tests suggest that the two
populations are statistically distinct.
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Fig. 6. (a) Example displacement seismograms for an earthquake (EQ) a Redmond Mine event
(RME), and a quarry blast (QB). Visible phases are labeled. (b) Spectra for the seismograms
shown in (a). The dashed lines are regression lines for the frequency range from 10 to 35 Hz. The
steeper fall-off slope for the EQ indicates a lack of high-frequency energy. This constitutes the
basis for the discriminant based on Sg low-to-high frequency ratio.

Measuremgnt of Sg Amplitudes
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Separation of Source Excitation, Propagation, and Site Terms
= The recorded amplitude A;for an event i recorded at a station j is expressed as in Equation 1.
log A;;(f) = log EXC;(f) + 1og SITE; (f) + log G(ry, f) (1)
EXC;(f): Source excitation term for source i; SITE;(f): Site term for station j;
G(ri i f ): Distance-correction term (combined effect of geometrical spreading and
attenuation); ;;: Distance from source i to station j.
= \We parameterized the distance-correction term using a piecewise linear function (Yazd, 1993;
Kintner et al., 2020). We defined series of nodes, 7y, in 5-km increment over the source-
distance range of 5-100 km (k = 1,2, ..., 20).
= Distance-correction term, G (Ti i f) approximated using linear interpolation:
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Site and Distance-Correction Terms
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Source Terms and Discrimination Based on Sg Low-to-High Frequency Ratio
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Fig. 11 ROC curve for
RMEs+QBs vs. EQs.
The AUCs range from
0.80 to 0.92, with the
highest value
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CONCLUSIONS AND FUTURE WORK

We used M,—M., which is a depth discriminant, to successfully separate the
population of mining blasts (RMEs+QBs) from the group of earthquakes (EQs). The
area under the receiver operating characteristic curve (AUC) involving the RMEs and
EQs is 0.98, indicating a very effective discriminant.

Using measured Sg amplitudes and a parameterization that linearized the equation
relating the observed amplitudes with the source, distance-correction, and site terms,
we inverted for each of those terms in three frequency bands (10-15 Hz, 15-20 Hz,
and 20-30 Hz).

circles in the inset the 1.0 Fig. 5. ROC curve for a binary classifier between : . o . L .
Redmond mine events RMEs and EQs. The optimum M,-M cutoff 6(rp f) = 6o f) R r— (ru k) G esss f) = G )) @ = Using thg |solatedl source excitation terms, we deS|gneq a discriminant that is based
(RMEs), and green 08 associated with the closest point to the ideal « Linearized equation for an observation atr t;;tv;een roand 7 on the difference in frequency contents between the mining blasts and earthquakes.
e circles in the inset the . classifier is —1.38. The high value for the area L Aq = log EXC/(F) 41 SlI}TE )+ k 1 G"(“' ) + plog G )6 The AUC for Sg low-to-high frequency ratio ranges from 0.80 to 0.92, with the largest
quarry blasts (QBs). 2. under the curve (AUC=0.98) is a clear indication 0gAyj(f) = log EXCi(f) +log f(f__rk)q 08 G, f) + Plog G (e 1, £, 3) value associated with Sg(10—15 Hz)/Sg(20-30 Hz).
E for a very effective discriminant. where p = c-"—Ssand g = 1—p = We are in the process of designing other discriminants that are effective at these local
8 oa = Matrix form: @ = Jm @) distances. We will combine two or more discriminants to improve classification power.
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