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Abstract—Identifying the location of faults in a fast and
accurate manner is critical for effective protection and restoration
of distribution networks. This paper describes an efficient method
for detecting, localizing, and classifying faults using advanced
signal processing and machine learning tools. The method uses
an Isolation Forest technique to detect the fault. Then Continuous
Wavelet Transform (CWT) is used to analyze the traveling waves
produced by the faults. The CWT coefficients of the current
signals at the time of arrival of the traveling wave present unique
characteristics for different fault types and locations. These CWT
coefficients are fed into a Convolutional Neural Network (CNN) to
train and classify fault events. The results show that for multiple
fault scenarios and solar PV conditions, the method is able to
determine the fault type and location with high accuracy.

Index Terms—Fault detection, fault classification, fault loca-
tion, deep learning, solar PV.

I. INTRODUCTION

Fast and accurate fault location is critical for distribution
system protection and recovery. Accurate fault diagnosis can
help maintenance personnel ensure fast restoration, reduce
economic damage, and enhance the reliability of the power
system. Distribution systems with high penetration of solar PV
exhibit a broader range of behavior given the variability of re-
newable sources. Thus fault detection and estimation methods
must be robust enough to handle multiple conditions. Faults in
distribution systems with high penetration of PV usually have
less fault impedance, which makes detection more challenging.
Moreover, higher PV penetration introduces a wide range of
power quality issues due to nonlinear power electronics-based
devices and loads [1]. In some cases, distributed resources in
distribution systems have led to misoperations of conventional
relays while detecting, localizing, and classifying faults [2],
[3].

In this paper, an efficient method is presented for detecting,
localizing and classifying faults in distribution systems with
high penetration of solar PV, based on machine learning (ML)
methods. The main contributions of this work are:

• Development of a robust database of fault signal traces
for a distribution system with high solar PV penetration.

• Development of a machine learning (ML)-based fast fault
detection method.

• Development of a deep learning (DL)-based framework
for accurate localization and classification of faults.

II. BACKGROUND

In this section, the main methods for distribution system
fault location are briefly discussed.
A. Monitoring Electrical Measurements

Distance protection is one of the most widespread protection
scheme in the transmission level. This technique utilizes the
impedance calculated from currents and voltages measured so
to estimate the location. It is not applicable to distribution
systems since it is difficult to isolate the impedance that
correspond to individual lines.

B. Traveling Waves and their Characteristics

This method utilizes the time differences between consec-
utive arrivals of the traveling waves caused by faults in the
distribution network. Continuous Wavelet Transform (CWT)
or Discrete Wavelet Transform (DWT) are usually required
as part of the process to support fault location. [4], [5].
However, travelling waves for the distribution systems have
a large number of reflections. Hence, it is difficult to identify
individual reflections and their origin in distribution systems.
C. Machine Learning Techniques

Various machine learning techniques including Support
Vector Machines (SVM), Artificial Neural Networks (ANN),
Extreme Learning Machines (ELM), fuzzy logic, and stacked
autoencoder, can be used for fault location and fault type
classification [6]–[9]. The state-of-the-art studies use Convo-
lutional Neural Networks (CNN) to extract features from the
current signals and then use the extracted features to train the
model for fault location [1], [10]. However, these techniques
require detailed investigations to observe the impact of high
penetration of Solar PVs into the distribution systems.

Although the aforementioned types of methods report good
performance for fault detection and classification in traditional
distribution networks, the system scenarios that include high
penetration of solar PV require improved protection strategies.

III. PROPOSED METHOD

A. Problem Description

This research aims to develop a fault diagnosis framework
for distribution systems with high PV penetration capable of
detecting, locating, and classifying different types of faults.
Five measurement devices are deployed in the system to record
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the measurements needed to train the ML and DL models and
to perform the detection, location, and classification tasks in
their area of operation. These devices are not synchronized.

Three types of faults are considered: Single-Line-to-Ground
(SLG) faults, Line-to-Line (LL), and Three-Phase (3P) faults.
The faults are simulated to occur at several nodes in the
distribution system. The sampling frequency used for mea-
surement devices is 10 MHz. After the measurements are
collected, the ML model employs the Isolation Forests (IF), a
powerful technique to detect anomalies in the collected signals,
which can indicate the existence of a fault. The signal is
cropped ±0.5 ms the fault is detected to occur. The 1 ms
gives enough time to collect necessary information regarding
the fault dynamics to support accurate fault diagnosis. Next,
CWT matrices are calculated from this 1 ms signal since they
contain all the information regarding the inherent frequencies
of the traveling waves. Finally, the DL framework deploys
the CNN to provide both the location of the faults and their
types. Figure 1 presents the overall workflow, which is applied
separately for fault location and classification.

B. Fault Simulation

Three types of faults, namely SLG, LL, and 3P faults are
simulated in the IEEE 34-bus distribution test feeder. The 3P
faults are the most severe types of faults in this system. These
faults are simulated in PSCAD for different combinations of
parameters as shown in Table I in order to generate the fault
signals needed for training.

Table I: Parameter details for fault simulation
Parameter Value

Type of faults SLG, LL, 3P
Resistance 0.01Ω, 0.1Ω, 1Ω, 1.5Ω, 2Ω, 5Ω, 10Ω

Incidence angle 1 ms, 2 ms
Irradiation 600 W/m2, 1000 W/m2

Temperature 28◦C, 50◦C

The simulation of faults in PSCAD involves two steps:
transient to steady-state and fault transient. In the first stage,
the simulation is conducted for 2 seconds without the fault to
ensure that the system arrives at a steady state. A snapshot is
taken and saved after 2 seconds of simulation. In the second
stage, 2 ms per fault case are simulated. The snapshot is
considered as the starting point, and the fault occurs at 1 ms
and 2 ms. Hence, the first half of the measurement data records
the regular operation, and the last half records the incipient
fault current transients. The recorded data from the simulation
infers a group of signal measurements. The three-phase current
measurements of the five measurement devices are extracted
from this group of signal measurements for further processing.

C. Continuous Wavelet Transform

The Wavelet Transform (WT) is a powerful mathematical
tool used in Digital Signal Processing (DSP). The convolution
of the product between a signal f(t) and the daughter wavelet
is known as the Continuous Wavelet Transform (CWT) of
that signal. The CWT can analyze the frequency components

Figure 1: Overall workflow for the fault detection and loca-
tion/classification.

of a signal for a specific time. The CWT provides high-
frequency resolution for low scales, which allows an accurate
representation of the TWs. The CWT of a signal x(t) is
defined as follows:

CWTx(a, b) =
1√
a

∫ ∞
−∞

x(t)ψ

(
t− b
a

)
dt (1)

where ψ(t) is the mother wavelet which is scaled by a
coefficient a, and translated using a translation coefficient
b. The CWT of this signal results in a rectangular matrix
where the number of rows represents the number of scales
(each of the scales is inversely related to a frequency), and
the number of columns represents the number of samples
(frequency spectrum of the wave at each time instants) [11].

D. Isolation Forest (IF) for Fault Detection

Because the fault signatures of the measurements behave
differently than the measurements recorded during the reg-
ular operation, the fault detection is inherently an anomaly



detection process. Typically, statistical, clustering, and nearest
neighbor-based techniques are used for anomaly detection.
An isolation-based approach, namely, Isolation Forest (IF) for
fault detection is adopted, which was proposed in 2008 [12].

Isolation Forest isolates the observations by splitting the
dataset. It develops a forest of random distinct itrees (isolation
trees), where each of the trees has to decide based on the
observation whether it is an anomaly or not. IF works in
two stages. In the first stage, the IF model is trained and it
constructs the forest of random itrees. In the second stage
(scoring phase), the IF assigns an anomaly score to all the
observations in the dataset. The anomaly score is computed
using the following formula:

s(x, n) = 2−
E(h(x))

c(n) (2)

where,

E(h(x)) =

∑t
i=1 hi(x)

t
(3)

Here, x, h(x), and E(h(x)) represent the observation, path
lengths, and average path length of x over t itrees, respectively.
c(n) stands for the average path length of the unsuccessful
search in the Binary Search Tree (BST).

c(n) = 2H(n− 1)− 2(n− 1)

n
(4)

where, H(i) = ln(i) + γ. Here, γ is the Euler’s constant. IF
determines whether an observation x is an anomaly or not
based on the following condition:

x =

{
Anomaly, if s(x, n) ∼ 1

Not anomaly, if s(x, n) < 0.5
(5)

If the s(x, n) is close to one, it belongs to the anomaly group.
On the other hand, if s(x, n) is less than 0.5, it belongs to the
group of normal data points [13]. The ranges of the anomaly
score can be scaled based on the design of the algorithm.

E. CNNs for Fault Diagnosis

CNNs are well known for their superior performance in
image processing and classification. The CNNs are composed
of successive convolutional layers, maximum pooling layers,
average pooling layers, dense layers, etc. There are several
architectures of CNNs, namely RESNET50, VGG16, VGG19,
NASNET, etc. The VGG19 architecture of CNN is adopted,
which is a deep CNN used for image classification. It has im-
proved training time, and a higher number of FLOPs (floating
point operations per second) compared to other architectures.
In this research, the CWT matrices are treated as images. The
VGG19 is a variant of the VGG model, composed of 19 layers
including 16 convolutional layers, 3 fully connected layer, 5
MaxPool layers, and 1 SoftMax layer.

Convolutional operations are executed in the convolutional
layers, which extract the information from the images while
maintaining the spatial relationship of pixels. The convolu-
tional operation is conducted between the input image and a
filter. The resulting matrix from the convolution is called a

“feature map”, which consists of successive iterations of the
convolution across the whole input image. The model learns
the coefficients of these filters during the training process. As
mentioned earlier, the measurements are recorded for 0.5 ms
before and after the ground mode arrival time (total 1 ms), the
CWT matrices of that 1 ms are saved for the training process
of the VGG19. The VGG19 model is being trained with
the measurements from each measurement device for fault
location/classification. Given that there are 5 measurement
devices located across the system, 5 models for fault location
and 5 models for fault classification are trained.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, the case description and results from the fault
detection method and fault location and classification based on
CNN are discussed. All the measurement devices are trained
under all the fault scenarios.

A. Case Description

The IEEE 34-bus case is adopted for fault simulations. The
simulations are performed using PSCAD using the python
Automation Library. Figure 2 shows the IEEE 34-bus case
with the fault locations, the measurement devices, and 3 solar
PV installations of 200kW each. Measurement devices s, 1,
2, 3, and 4 are located at nodes 800, 850, 828, 832, and 860,
respectively.

Figure 2: IEEE 34-bus test case.

In order to have a robust training model, a combinato-
rial dataset containing comprehensive information about the
incipient fault current transients was generated. A total of
13, 440 fault cases (including measurements recorded by the
5 measurement devices) were simulated. For each case, the
corresponding CWT matrices were obtained.

B. Simulation Results

In order to evaluate the classification performance of the
CNN architecture (VGG19), we use precision, recall, F1-score,
and accuracy.

1) Fault Detection: The Isolation Forest model is trained
for fault detection with normal data (no fault measure-
ments). The three-phase measurements are summarized into
the ground mode. Then, the ground mode current is used for
detection. It is easier to represent the ground mode current
compared to the three-phase fault. Figure 3 shows the ground
mode current of node 806 under a three-phase fault. The
measurement is recorded by measurement device 2.
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Figure 3: Ground mode current of node 806 with noise (timestep 0.1
µs).

Once training is completed, all the data (including normal
and faulty observations) are fed to the trained model for
testing. Figure 4 illustrates the anomaly score region after
testing. The gray-colored region in Figure 4 represents the
outlier region. Any value that lies in the gray-colored re-
gion is considered as fault measurement. Similarly, to detect
events/faults for the other nodes, the current measurements
need to be used to train the IF, calculate anomaly score, and
detect the fault based on the anomaly score.
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Figure 4: Anomaly region for the ground mode current of node 806

2) Fault Location: After the fault is detected, its location is
determined. For this purpose, the CWT matrices are fed into
the VGG19 model. The results of fault location classification
for measurement device 4 are shown in Figure 5. The diagonal
elements of the confusion matrix show the successful classifi-
cations, while the off-diagonal elements represent unsuccessful
classification. For the majority of the nodes, the predictions
were correctly classified. However, the model showed poor
performance for nodes 888 and 890.

Table II: Classification report for fault location of measurement
device 4.

Precision Recall F1-score

Accuracy 0.91
Average 0.91 0.91 0.91

Table II presents the overall classification accuracy, and
averages of precision, recall, and F1-score. The overall ac-
curacy of the model is 91%. The performance metrics for the
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Figure 5: Confusion matrix for fault location at measurement device
4.

Table III: Fault location metrics for all the measurement devices using
the VGG19 model

s 1 2 3 4

Precision 76% 89% 90% 89% 91%
Recall 75% 88% 89% 89% 91%
F1-score 75% 88% 89% 89% 91%
Accuracy 75% 88% 89% 89% 91%

other measurement devices are shown in Table III. The overall
accuracy of measurement devices s, 1, 2, 3, and 4 was 75%,
88%, 89%, 89%, and 91%, respectively.

3) Fault Classification: Once the fault is located, the fault
is classified using new VGG19 CNN models.

Table IV: Detailed classification report for type classification of
measurement device s.

Precision Recall F1-score

SLG 0.97 0.93 0.95
3P 0.97 0.94 0.96
LL 0.94 0.99 0.96

Table IV presents the detailed classification report in terms
of the performance matrices (i.e., precision, recall, and F1-
score) for individual fault types.

Table V: Classification report for type classification of measurement
device s.

Precision Recall F1-score

Accuracy 0.96
Average 0.96 0.96 0.96

Table V shows the average precision, recall and F1-score
of the fault types. From Table V, it is found that the overall
accuracy of the fault classification in measurement device s is
96%.



Table VI: Fault type classification

s 1 2 3 4

Precision 96% 99% 99% 99% 99%
Recall 96% 99% 99% 99% 99%
F1-score 96% 99% 99% 99% 99%
Accuracy 96% 99% 99% 99% 99%

Table VI presents the fault classification performances for
the other measurement devices. All the measurement devices,
except measurement device s, achieved an accuracy of 99%
while classifying the faults.

V. DISCUSSION

In this section, we compare the results from this paper with
our previous work [14] and other state-of-the-art research on
fault location and classification.

Table VII: Results comparison for fault location

Measurement device s 1 2 3 4

Proposed method 75% 88% 90% 89% 91%
[14] 40.51% 78.44% 64.65% 85.34% 93.10%

Table VII and VIII compare the outcome of this paper with
our previous work in [14].

Table VIII: Results comparison for type classification

Measurement device s 1 2 3 4

Proposed method 96% 99% 99% 99% 99%
[14] 93.97% 94.83% 93.10% 93.10% 93.11%

In both cases, the accuracy of fault location and clas-
sification is improved considering a large number of fault
scenarios (compared to [14]). For fault location, the accuracies
have increased by 34.49%, 9.56%, 25.35%, and 3.66% for
measurement device s, 1, 2, and 3, respectively. For fault
classification, the performance accuracies have increased by
2.03%, 4.17%, 5.90%, 5.90%, and 5.89% for measurement
device s, 1, 2, 3, and 4, respectively.

Apart from the previous work, the results in this paper are
comparable to [1], [9], [10], [15] in terms of the complexity
of the system in consideration (size of the system, number of
PVs, number of faults scenarios, etc.) and performance of the
classification models.

VI. CONCLUSIONS AND FUTURE WORK

Fault detection, location, and type classification are essential
in distribution system protection and service restoration. This
paper applied fault detection, location, and classification tech-
niques on a distribution network with high PV penetration. The
knowledge-based technique was implemented using ML and
DL algorithms. CWT was performed together with statistical
measures to extract meaningful information from the measured
current signal. Those features were used to train the DL
algorithm (VGG19). The performances of the ML models
are evaluated in terms of precision, recall, F1-score, and

accuracy, and found satisfactory compared to our previous
work (86.6% and 98.4% average accuracy for fault location
and classification, respectively) and current state-of-the-art
works.
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