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A growing recognition of the benefits of gradient nanomateriagidjz=m
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Gradients offer strength/ductility payoff m . ({8
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Homogeneous
plastic deformation

Gradient nanograined After a surface mechanical 0 * Grain refinement N
grinding treatment to copper, grain sizes are about 20 nm in the Strength
topmost treated surface (outlined by dashed line) and increase
gradually to the microscale with depth.

K Lu, Science, 2014 3



Gradients offer toughening
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Gradients offer fatigue resistance
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Gradients offer fatigue resistance
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HW Huang, ZB Wang, J Lu, K Lu, Acta Mater, 2015



Cyclic sliding contact can surface grain refinement... - or grain coarsening

Ni

{E@ib sliding direction Be02
UNG leyer \

200Jcycles
(d) 30 Cycles __
&, 200 nm

.

Panzarino & Rupert,

Padilla, Boyce, Battaile, Prasad, ~.,
Materialia, 2018 8

Wear, 2013
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All these examples of heterostructures were achieved
by gradients in “severe plastic deformation”

Can we achieve gradient nanostructures by chemical means?

* Create a structure with no/few existing dislocations & twins
* Tailor features that are not “accessible” to surface mechanical treatments
* Create microstructure that is also stable against evolution



Chemical gradient concept

Saturated GBs{
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Segregation | [ |/
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What is the role of solute in creating the microstructural gradient?
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Solute effects on grain size stability
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Phase field model development...
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Segregation-enhanced thermal stability via a phase-field mode TN\
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Segregation and stabilization

Phase-field model of segregation and stabilization
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Segregation at GBs is not so simple...
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Grain growth with segregation
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Solute impedes grain growth even without segregation

16

14

12

10

Ac (um?)
(00

0 2000

Anti-segregating solute

(A2

A=y

Solute-free s C: T(C)
grain growth N
.. ... A ® 001’ 300
o' ... R A 0.01; 800
[ ] ... . A o 0.03; 300
.
. ... A A A 0.03; 800 _
] ... A A °® A A ] 0_05; 300 NE
e et A 005800 3
c ettt Lantt e 0.1;300
[ ] .. A :. ...A A L A A A 01' 800 q
.. '. ‘.‘..‘ A . A.. ....... 0.2' 300
° ‘.° A4 ‘.‘. oo .
S e A s A 0.2;800
) ."A ‘.oo‘oof aaas A A
:..‘.:.i.:.A .‘““‘.“: A o A
:..~.:.A .:. .’.’ eeed A A A A A A A A A
3228 oo deangegeper sttt
gjesec

4000 6000
t (s)

8000

10000

16

12

10

GB-segregating solute

~+ Modest growth
. .
. suppression from
°
[ ] .
. segregation
.
.
o. A
[ ]
° A
[} ... A
. A
. .'. G .
°
o. ® A ‘ A
[ ) .. A 4 A A
° o. n A A 4
° A _o® A
. ° s o0° A
° ° A o... o® A A
‘. ‘o'. At 00"... N ‘
o ‘05. A :.0‘... A Al at
P S A
l.‘ b.~.~ NS ‘ eeo® A
° e® A A co00®® AA‘AAA
a e A eooeo®’ dode’
‘o‘. A ‘.'.00'° ¢ ¢000‘.“'“
A:o°°..:05 vosed AAAAAA“A“
;:00.‘. AAAAAA‘AAA
A

2000 4000 6000

t (s)

8000 10000

17



Five generic classes of GBs
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J.M. Monti et al., Acta Mater, 2022
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See Joe Monti’s talk at TMS 2022...
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Free energy diagrams for different scenarios
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Composition profiles
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Triple junction evolution

Shrinking

0.0

grain

?,

LAGB,

concentration
. 0.2 0.4 0.6
|

(a)

Growing
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J.M. Monti et al., Acta Mater, 2022
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Using concentration gradient to trigger grain size gradient et
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Experimental Confirmation
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The Pt-Au nc system
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More details on Pt-Au

Au does not segregate uniformly... Au plays both a thermodynamic & kinetic role

2.0
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MNon-dimensional velocity VD,

For more information... GB character: C.M. Barr, et al., Nanoscale, 2021
Wear response: J.F. Curry, et al., Adv. Mater., 2018
GB phase transformations: C.J. O’Brien et al., J. Mater. Sci., 2018
Tensile behavior: N.M. Heckman et al., Nanoscale, 2018 27
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Step-wise compositional gradient ) == (§ \ 5 hekames

PVD deposition Films femtolaser cut into dogbones
Pt-10Au 0.2um
Pt-3Au 0.2um
Pt-1Au 0.2um
Pt 0.8 um
Pt-1Au 0.2um
Pt-3Au 0.2um
Pt-10Au 0.2um

Across Thickness (2 um)

*only the 90/10 layers have been quantified for
atomic %; Others are new targets

Deposited on Si/SiO wafer
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A brief sidenote on the difficulty of using EDS to quantify . AR -
small quantities of Au in Pt = \ N/
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EDS line-scan to observe chemical gradient

As-deposited 800C/1hr Anneal

Gradient PtAu as-received
(ave over 9 pixels; pixel size 3.279 nm) Gradient PtAu annealed at 800C for 1 hr
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Maps
for heterogeneous grain growth

As-deposited

<001> <101>

Orientation w.r.t.
out-of-plane
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Summary =, ([l et

* Most gradient nanostructures are formed by severe plastic deformation,
and are expected to be thermally unstable.

* Compositional gradients can create grain size gradients during annealing
* Such chemical gradients are naturally stable, unlike SPD gradients.

* Outlook: Can steep microstructural gradients be manipulated to control
tensile, fracture, fatigue resistance, wear resistance, radiation tolerance?

34



Au solute dramatically enhances high-cycle fatigue resistan |
by inhibiting fatigue-induced grain growth

Approximate Test Duration [hrs]

500 1 10 100 1000
r ‘ " R=zo, =0.3 -
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—_— B i T . . I . » ‘- oL
w 3000 " o | _ SNESRN, -
S g B _E_x_-5|tu unnotched Pt (Air) '
5 ) T -

£ 200 W e Y. W i
< B L s Cr
a In-situ notched Pt-Au (Vacuum)
g o |
a o o . o

)
© 100} 0O g i |

In-situ notched Pt (Vacuum)
104 10° 10° 10/ 108

N¢, Number of Cycles to Failure

35
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The limitations of pure nanocrystals

Elongation at Failure ([ % )

Ductility/toughness
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Grain growth with segregation e \ Q) it

Combined grain growth and segregation model: Abdeljawad and Foiles

Mmax 2 2
Frot = f dV[ toc(c, T, {6}) + Z Veil? + = Vel
Graln boundary width
fioc(© T (B)) = o T) + W — &c — £,c?1g(@)
l_'_l \ Y J

Bulk concentration Grain dynamics

g(c,g) varies smoothly between 0 (bulk) and 1 (grain boundary)

Abdeljawad et al., Acta Mat. 126 2017
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Grain growth with segregation ) e

Anti-segregating parameters

flOC(C' T, {‘I’}):fb(C,T) + [W — &c —&c?]g(d) — :Illjl(anQ
— g / “ . Gs
Bulk concentration Grain dynamics Y cd =05
s 0
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o
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W= W+ (Ggb — Gi) -~ /
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1074 102 100
C
$ = (ng - Qb) . .
Anti-segregation: {14, > 0
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Anti-segregating solute population
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Segregants impede grain growth
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