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Contacting but not Connected

Interpenetrating Lattices
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 What are Interpenetrating Lattices
* Why lattices?
* Classical geometry from Euclid and Kepler
* Design possibilities

* Interpenetrating Lattice Experimental Demonstrations
* Electrical properties
* Composite behavior
* Fracture toughness
* Polymer like behaviors

* Potential Applications and Future Work
* Vibration
* Interpenetrating nanolattices
* Interpenetrating structures




Why Use Lattices?

1. Lattices can give you properties not found in bulk materials

2. Lattices expand the range of effective properties available to your printer
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|+ LosAlamos

Single vs Multi Component Lattices (I

* Previous lattices are single * What if we weave one lattice through
continuous bodies the voids of another?

Multi Material

* We can still use different topologies,
materials and length scales
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Construction Rules
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Reciprocal Lattices s (A G

E. Wigner, F. Seitz, On the
Constitution of Metallic

Wigner-Seitz Cells Sodium. Phys Rev, 1933

Truncated
Octahedron

Reciprocal Lattice
Metamaterials
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* Gap between lattices depends on the
density (strut diameter) of each lattice

* The only new manufacturing constraint is
minimum feature gap




Reciprocal Lattices

* Topology is independent of material and size

Polyjet Multi-Jet Fusion Laser Powder Bed Fusion Multiphoton Lithography
(Objet 1826) (HP 580) (ProX DMP 200) (Nanoscribe GT)
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Interpenetrating Lattice Arrangements

Exterior/boundary Lattice Configurations
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Resistivity (2 m)

Flastically-Controlled Conductivity = (AN G

* Lattice arraignments controls
interface interactions

* |Interfaces offer new behaviors

* Highly stress sensitive resistivity

Applied Stress (MPa)
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Vibration Isolation )
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* VVibrations are isolated by interfaces and damped by friction
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Damage Sensing N

Natora | VLos Alamos

* Plastic damage can be assessed in real time, or passively after the fact
* Structural components can double as unpowered sensors
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Thermal Insulation 2 (@)

Superposition Dominated Interface Dominated

Large AT over
contact interface

Uniform gradient in Colder FCC Near Hotter RD Near
both FCC and RD heat source heat sink 14



Composite-like
Load-sharing
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It works at the microscale — T

)+ LosAlamos

Two possible benefits
at the microscale:

* size-dependent
strengthening

* Narrower gaps



"+ Los Alamos

/0
)

)

laboratories '

Sand
N |

Sandia
ationa

Fracture Toughness

Two cracks = reduced crack tip singularities

e Two lattices
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Fracture Toughness @)

* Interpenetrating lattice shows tremendous toughening as the cracks separate
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Damage Progression - (A 5.
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Toughening Mechanisms

| FCC Crac Tip X

BT
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Break The Symmetry

* Reciprocal lattices are defined
by strict symmetry rules
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* Breaking the symmetry rules
explodes the design space
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Non-Reciprocal Lattices

Simple tetragonal at 0° 4 BCC cells inside Positive and Negative 8 fold Symmetric BCC
Simple tetragonal at 45° single cubic cell Poisson's Ratio & amorphous “lattice”

3D FCC/Octet 2D sheet Gyroid . . N
0D spheres 2, 1D strut lattices BCC: Connectivity=8, Fiber: Connectivity =2

\ 7\

Boyce, 2020, US Provisional Patent 62989288



Sliding Interpenetrating Lattices . (@) .

* Quai plasticity results solely from friction
* Negative stiffness/multi-stable behavior
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Force (F) [N]
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Nano Scale Interpenetrating Lattices  EENC

 Surface effects become more significant at the
nano scale

* Interpenetrating lattices should show a stronger

size effect
Nano-Pilar compression
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Interpenetrating Structures s (A G

* Two interpenetrating structures
can occupy the same space
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Future Possibilities

* Multi-Material interpenetrating lattices
* Chemical and Electrical applications

* Architected polymers/insulators

* Electrostatic actuators-metallic muscles
* Electrolytic reactors, batteries, fuel cells
* Dynamic filters

Brittle
Vero White

27

Lyncee Tec:
https://www.lynceetec.co
m/mems-actuator/#tab-2




Modeling challenges

A 5x5x5 FCC lattice has 3600 struts

Topology optimization

using homogenized Lattice substitution via Final Printed Part
properties conformal meshing




Elastic predictions e (A G
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Summary

Effective Stress (MPa)

* New/Improved properties can be achieved by interpenetrating lattices

* Interpenetrating lattices can be printed in any material by nearly any printer
* We have shown Polyjet, LPBF, and Lithography examples

* Huge new design space
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