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Abstract— This paper presents a new method for fault 

classification and location based on the Discrete Wavelet 

Transform decomposition and signal reconstruction - a type of 

Multi-Resolution Analysis. The designed signal-processing stage, 

which encompasses various signal transforms, plus the 

aforementioned decomposition in several frequency bands and the 

calculation of the signals’ energy, provides a consistent 

generalization of the features that characterize the fault signal. 

Then, this data is fed into ensemble Machine Learning algorithms. 

The results show that this method is reasonably accurate while 

requiring a tiny amount of fault data, expanding the capabilities 

of Traveling Wave relays to achieve an accurate fault classification 

and location in just microseconds. 

Keywords— Discrete Wavelet Transform, Ensemble Machine 

Learning, Fault Classification, Fault Location, Distribution 

Systems. 

I. INTRODUCTION  

The evolution of relays and protection devices has advanced 
towards faster, more resilient, and more sensitive devices, with 
improved hardware and software capabilities. This has made 
fault detection and location faster and more accurate than ever. 
While traditional relays operate within 1 or 2 cycles, a few 
decades ago a new generation of Traveling Wave-based (TW) 
relays pushed this limit towards a few milliseconds. This was 
possible by the incorporation of techniques from others fields of 
knowledge, such as Digital Signal Processing, which provided 
more insights about how to take advantage of that phenomena 
for fault detection, classification, and location [1][2]. 

In recent years, Machine Learning (ML) methods are 
bringing new opportunities to Power Systems which could 
reduce even more the amount of data needed for this fault 
characterization. In this context, this paper aims to push beyond 
the limits provided by TW relays, and reduces the number of 
measurements up to the scale of microseconds.  The approach 
described in this paper offers a re-visitation of a common 
approach on fault location and classification, as it is the usage of 
the Discrete Wavelet Transform decomposition, which is 
applied to a time window of 50 µs before and after the TW fault 
arrival. The signal is decomposed in six frequency bands, with 
an emphasis of frequencies over 100 kHz, and the signal energy 
is calculated over this time window using Parseval’s Theorem.  
The post-fault energy is then used to summarize the response of 
the system to the fault. Finally, some state-of-the-art ensemble 
Machine Learning approaches (Random Forest and Tree 

Boosting) are employed to perform fault type classification and 
location using the previously generated data.  

A. Literature review 

Over the last couple of decades, there has been a growing 
interest in developing protective relays based on TWs, the initial 
part of a fault signal. Thanks to the TWs information, these 
devices are faster than conventional protection schemes based 
on post-fault measured impedances [3]. Since then, multiple 
approaches, most of them integrating signal processing 
techniques, have been developed to extract features of those fast 
transients. A few of them choose the Fast Fourier Transform 
(FFT) to get the frequency components of the measured signals 
[4][5] and use them as the input to an Artificial Neural Network 
(ANN) to calculate the distance to the fault or the fault.  

However, as is indicated in many sources, Wavelet 
Transforms (WT) are usually preferred to FFT as they provide a 
time dimension to the frequency analysis. For example, the 
Continuous Wavelet Transform (CWT) has been employed in 
[6], on a distribution system for fault detection and 
classification, showing excellent performance. Another type of 
WT, the Discrete Wavelet Transform (DWT), is the choice of 
many algorithms because of its low computation time [7]. Most 
references tend to use either one or several decomposition levels 
given by the DWT. In the case of [8] and [9], the time 
differences on the peaks in the first level of decomposition are 
used to calculate the distance to the fault provided that the wave 
velocity is known.  

Other references put the location/classification tasks in the 
hands of ML algorithms. Same as before, they feed the detail 
coefficients (or the energy) given by the DWT into algorithms 
such as SVM [10], Radial Basis Function (RBF) neural network 
[11], or Bayes classifiers [12]. [13] makes a comparison between 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and ANNs, 
highlighting the superiority of the first one on that particular case 
study. [14] provides an ultra-fast method, based as well on ANN, 
that performs fault classification using just one-eighth of a cycle 
of post-fault data. Some other papers investigate ANN for 
protecting DC systems [15]. Finally, [16] uses the energy 
associated with the DWT decomposition coefficients in DC 
systems, and then uses an SVM for fault classification and a 
Gaussian Process Regression Engine to calculate the fault 
location. This method reports needing about 200 µs of data. The 
other algorithms in literature need at least several milliseconds.  
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B. Contributions of the paper 

As it has been introduced before, the main contributions of 
this paper are: First, developing a curated (and more robust) 
signal processing method with comparatively lower windowing 
times (which makes the algorithm faster) and higher sampling 
frequency (which makes the algorithm more capable of 
detecting high-frequency patterns), decreasing the amount of 
required post-fault data to 50 microseconds. As far as the authors 
know, this is the first proposed method that claims to achieve a 
good performance given that small amount of measurements. 
Second, using powerful state-of-the-art ML methods for both 
classification and location tasks, which allows higher accuracies 
using less temporal information.  

II. THE SYSTEM 

The system used in this paper, created by the authors, is 
shown in Figure 1. It consists of one 12.47 kV variable-length 
distribution line that is connected to a load of 300 kVA per 
phase. Faults occur on the load bus. Simulations were performed 
in PSCAD for 160 fault locations (increasing the length in steps 
of 25 meters), for 3 fault types (Single-Line-to-Ground, Line-to-
Line, and 3-Phase), and for 7 resistance values ranging from 
0.01 to 10 Ω. In total, there were 3360 simulations. Three-phase 
voltages and currents are measured on the secondary side of the 
transformer at a sampling frequency of 10 MHz.  

 
Figure 1. Schematic of the system. 

 

III. THE METHOD  

The method described in this paper can be separated into two 
main stages: the signal processing block that aims to process the 
measured signals (+/- 50 µs since TW time of arrival) and extract 
useful information, and the Machine Learning stage where 
several algorithms are trained to perform the actual fault location 
and classification. The workflow is shown in Figure 2. 

As it can be seen, the first part of the signal processing block 
consists of applying some transforms to both the 3-Phase voltage 
and current signals. Here, the Clarke, Karrenbauer, and DQ0 
transforms are employed. Numerical results showed that the 
larger amount of features, the better performance. Each 
transform performs a different operation on the measured data, 
which is later used to create additional features to train the ML 
algorithms. Figure 3 shows the results of applying these 
transforms to a set of signals containing information on TWs. 
All faults occur at 30 ms and the TW arrives just a few 
microseconds later. 

The second step, conceptually, is a high-pass filtering of the 
transformed signals, which is implemented using the DWT. In 
particular, it uses the reconstructed coefficients of the DWT 
decomposition of the input signals for a user-defined number of 

 

 

 

Figure 2. Workflow of the algorithm. 
 

 

Figure 3. Applied transforms during TW arrival (SLG fault at 3100 meters, 
for 10 ohms resistance). 



 

 

frequency bands. For this project, a window of 100 µs (50 µs 
before and 50 µs after the fault detection) is used for performing 
the DWT. This corresponds to 1000 samples. Note that this 
algorithm is only triggered after the fault has been detected by 
other means. The energy of those reconstructed signals is 
calculated and is employed as input for the ML models. The 
usage of just the medium and high-frequency components of the 
signals is motivated by the theory of TWs, which states that as 
the wave propagates across the system, there is an attenuation in 
both the frequency and velocity [17]. Therefore, the information 
retrieved from the frequency spectrum of the wave is key for 
both fault location and classification.  

Given the importance of the DWT and the ML stage, the next 
two sections provide a detailed explanation of these parts of the 
proposed method.   

A. The Discrete Wavelet Transform (DWT) 

The DWT is a widely used tool for time-frequency analysis. 
As a more detailed explanation about how it works can be 
accessed in a lot of superb references - as in [7] - just a few key 
concepts will be included here in order to provide a more concise 
explanation. The method used for this paper, the Multi-
Resolution Analysis (MRA), consists of splitting the input signal 
into several signals of different frequency ranges. This is 
efficiently implemented through the DWT.  

The DWT algorithm resembles a pyramidal structure, 
known as subband coding, in which the signal goes through 
multiple decomposition levels. Each level contains a set of high-
pass and low-pass filters (determined by the mother wavelet), 
which return the so-called detail and approximation coefficients, 
respectively. The inputs for the following levels are the 
approximation coefficients of the previous level. It is important 
to note that the output of each filter is downsampled by 2. This 
is explained by the fact that, in each new decomposition level, 
the cut-off frequency has been divided by 2 in comparison to the 
previous level, as well as the expected maximum frequency in 
the output on the high-pass filter. Therefore, following the 
Nyquist criteria, the number of samples representing the 
decomposition level (directly related to the sampling frequency) 
can be halved, and the frequency information would still be the 
same.  

In summary, each decomposition level is defined by two 
filters and a down-sampling by 2 of the signal. This can be 
compactly expressed as the following set of convolutions:  

 𝑦𝑑𝑒𝑡𝑎𝑖𝑙[𝑛] =  ∑ 𝑥[𝑛] ∙ ℎ[2𝑘 − 𝑛]𝑛  () 

 𝑦𝑎𝑝𝑝𝑟𝑜𝑥[𝑛] =  ∑ 𝑥[𝑛] ∙ 𝑔[2𝑘 − 𝑛]𝑛  () 

Where 𝑥[𝑛] is the input signal for the given decomposition 
level, ℎ[𝑛] and 𝑔[𝑛]  are the high-pass and low-pass filter 
coefficients, and 𝑦𝑑𝑒𝑡𝑎𝑖𝑙[𝑛]  and 𝑦𝑎𝑝𝑝𝑟𝑜𝑥[𝑛], the detail and 

approximation coefficients for that level, respectively. Note that 
we are just interested in the detail coefficients, which contain the 
frequency data in that particular frequency band.   

There are features of the DWT that make this approach very 
convenient. First, halving the size of the coefficients implies less 
processing time than other WT, such as the CWT. This fast 

processing speed is what is needed for fault protection in power 
systems. Also, the DWT decomposition provides the minimal 
amount of information that is needed for reconstruction, which 
implies a more efficient usage of the resources.  

The selected mother wavelet is Daubechies 7 (db7). This 
family is commonly used in power systems (particularly for TW 
applications) because their sharp shape is perfect for detecting 
low amplitude, short duration, and fast decay signals [18]. 
Different Daubechies wavelets were considered, but db7 gave 
slightly better numerical results.  This makes sense with other 
research papers, as lower order wavelets (as db3) have less cut-
off frequencies (so its suitability for TWs is diminished), while 
too large orders incur excessive computation time [19]. As such, 
db7 offers a perfect balance.   

As a side note, the Wavelet Transforms have a trade-off 
between resolution on time and frequency domains. That means 
that higher-frequency components can be identified with 
accurate temporal resolution but poorer frequency resolution. 
For lower-frequency components, it is the other way around: 
higher-frequency resolution but lower temporal resolution. In 
the case of the DWT, this can be easily observed by taking a 
look at the implementation: For the used sampling rate (10 
MHz), the maximum frequency that can be effectively sampled 
is one-half (5 MHz) following Nyquist’s rule. The first 
decomposition level will encompass the frequency components 
on the range 2.5 – 5 MHz.  Due to the down-sampling by 2, this 
first level would need 500 coefficients to accurately describe the 
frequencies of the signal. The next decomposition on the 
approximation coefficients has a frequency range from 1.25 to 
2.5 MHz. Therefore, as the maximum frequency dropped in half, 
the required number of coefficients also halved to 250. The same 
process will be repeated for the next levels. As the level 
increases, fewer coefficients are used for the signal 
representation in the time domain, which could lead to 
inaccuracies regarding when the frequencies appeared in the 
wave. This decomposition can be continued up to the maximum 
level (where the down-sampling by 2 is no longer possible), 
which depends on the length of the window and the employed 
mother wavelet. In this project, the decomposition goes just up 
to level 6. The ranges of analyzed frequencies goes from 5 MHz 
to 78.125 kHz. 

This loss of coefficients (and the physical meaning that they 
have) is not desired on MRA, where decomposition of the signal 
by frequency ranges is the goal. For this reason, the 
decomposition levels are reconstructed back to voltage and 
current signals of length 1000 samples. The reconstruction 
process, following the same procedure, consists of successive 
convolutions of the detail coefficients and the synthesis filters. 
The fact that the detail coefficients are the only ones that are 
reconstructed is what gives the similarity to a high-pass filtering 
(in frequency bands) of the measured signal. In Figure 4, one of 
those reconstructed voltage signals for some specific fault 
conditions over a window of 100 µs can be observed.   

  



 

 

 
Figure 4. Reconstructed third level of decomposition  

(SLG fault at 25 meters, for 0.01 ohms resistance and Clarke transform and 

the alpha component) 

 

The next step is to calculate the energy associated with each 
reconstructed level using the Parseval’s Theorem, which for a 
discrete and finite signal 𝑥 is calculated as: 

 𝐸𝑘(𝑗) =  ∑ 𝑥𝑛
2𝑗

𝑛=0   𝑓𝑜𝑟 𝑗 = 1, … , 𝑁 () 

Where 𝑘 is the level of energy, 𝑗 is the sample index and 
𝑁 is the total number of samples in the reconstructed signal. The 
equation is the same for both voltage and current signals. Using 
the Parseval Energy, the abrupt arrival of the traveling wave 
after the fault occurs will be more evident. During normal 
operation, the voltage and current values are really small (signals 
should not have those frequency components). When the 
traveling wave arrives, the magnitudes of the signals at those 
levels become much larger for a few instants, before coming 
back to almost null once the TW is attenuated enough. When the 
energy of the signal is calculated over the defined time window, 
a step-wise shape appears, as it is shown in Figure 5. Note that 
the first oscillations lead to a large energy increase, while the 
next oscillations have a relatively smaller effect, approximately 
reaching a “steady-state”. Also, the trade-off between frequency 
and time resolution can be appreciated on level 6, where DWT 
reconstructed coefficients start to increase some microseconds 
before the known arrival of the TW.  

The feature creation part of the method just takes the 
“steady-state” values for the training and testing datasets. The 
data is organized as a table, in which the columns are the steady-
state values for both voltage and current measurements, the 3 
transforms (which have 3 components each), and the 6 
reconstructed levels of decomposition. Altogether, they sum up 
to 108 values per fault simulation. Afterward, 2730 of those 
faults form the training set, while the other 630 comprise the 
testing set. Note that those final values are highly dependent on 
the selected transform, the fault resistance value, the distance to 
the fault, and the type of fault. This is what the ML algorithms 
will use for classification and location. These variations for 
distance can be observed in Figure 6. The shadowed areas 
correspond to variations for several resistance values. 

 

Figure 5. Energy of the reconstructed level signals (SLG fault at 25 meters, 

for 0.01 ohms resistance and Clarke transform and the alpha component) 

 

 

Figure 6. Steady-state energy variation due to distance (SLG fault and Clarke 

transform) 

 

B. Machine Learning/ Deep Learning approaches 

A comparison between several algorithms has been made in 
this paper, with special emphasis on ensemble learning, which 
consists of combining multiple ML models in order to create a 
more accurate and powerful model. Currently, it is one of the 
most used techniques to improve the performance. There are 
several techniques to implement ensemble models, such as 
bagging, boosting, or stacking. For comparison, a Random 
Forest (RF) algorithm (example of bagging), implemented on 
scikit-learn library, has been selected, along with Google’s 
TensorFlow Boosted Trees (BT) estimator (Gradient Tree 
Boosting). Some notions of these techniques will be given later. 
These particular algorithms have been selected because of their 
excellent accuracy, computational efficiency, and scalability for 
a larger number of samples/ larger systems (which is where 
outperforms other common ML algorithms, such as SVMs). 
Finally, some of the state-of-the-art Machine Learning 



 

 

algorithms integrate different types of models into one ensemble 
model that takes advantage of the individual skills of each of the 
components (known as stacking). In this line, one model that 
groups the two aforementioned individual methods (RF and BT) 
has been implemented.  

a) Random Forest (RF) estimator: This method splits the 

dataset on 𝑁 independent datasets, randomly choosing √𝐹 of 𝐹 

available features for each dataset, which is considered as a form 

of bagging. Then, a total of N decision trees are trained. The 

prediction would be either the result of voting (for classification) 

or the average of the individual predictions (for regression). This 

approach provides huge advantages, which are aligned with the 

goals of the project. First, RF provides variance reduction and 

overfitting avoidance. The method that is presented in this paper 

displays a strong signal processing part that reduces the features 

to a “small” set of final energy values with no temporal 

evolution. This implies a huge reduction in training data that 

could easily lead to overfitting. This is a problem because the 

testing dataset (and a real fault) would present slightly different 

energy values. Therefore, it is necessary to keep a good 

generalization capability. Training trees on random subsets of 

features ensures that. Also, this algorithm brings in other 

desirable features such as its fast training. Although the dataset 

has more than one hundred columns, as only a few are used at 

the same time, training is comparatively quicker. In addition, the 

trees are trained in parallel.  

b) Boosted Trees (BT) estimator: This algorithm also 

combines multiple decision trees, but the boosting approach 

follows a different procedure. This time, N decision trees are 

trained as weak learners, which means that every one of them is 

able to outline a very basic rule on the dataset. The trees are 

trained sequentially in this case, and each added tree has to 

reduce the loss function. The resulting algorithm is a strong 

learner that can cope with the complexity of the training dataset. 

c) Stacking: As explained before, this approach looks for 

combining the predictions (and averaging out the errors) of 

already-trained models using what is called a “meta-model”. In 

this case, a linear estimator is chosen for this role. The 

predictions of the RF and the BT on the training set are used as 

input for training this method. This method is especially useful 

when the errors in the predictions are uncorrelated (otherwise 

the meta-learner would mainly have the same behavior as the 

individual estimators). Note that due to the good results on 

classification, this approach is used only for fault location. 

IV. RESULTS 

A. Fault type classification 

For the fault type classification task, the algorithms must be 

able to discern whether the measurements are of a Single-Line-

to-Ground fault, Line-to-Line fault, or 3-Phase fault. Accuracy 

is defined as the number of correctly predicted fault types over 

the total number of faults. Table I summarizes the individual 

results of both RF and BT algorithms. As it can be observed, 

accuracy is close to 100% in both of them. The reason for this 

excellent performance is the large energy magnitude variations 

among each type of fault, which makes this task easy.  

TABLE I.  FAULT TYPE CLASSIFICATION ACCURACY 

Classifier Accuracy 

Boosted Trees 99.84% 

Random Forest 100% 

 

B. Fault location 

The results for the BT and RF regressors, along with the 

Stacking method can be observed in Figure 7. The average and 

the standard deviation of the errors are shown in Table II. Most 

of the faults are located with an error well below 200 m.  

 

 
Figure 7. Prediction errors relative to fault distance 

 

TABLE II.  MEAN AND STD OF PREDICTION ERRORS 

Regressor Mean (m) 
Standard 

Deviation (m) 

Boosted Trees 72.64 99.14 

Random Forest 53.64 113.01 

Stacking 62.95 94.77 

 

As it can be seen in Figure 7, the Random Forest model 

tends to have lower errors in most of the cases, but there are a 

few outliers. However, the BT algorithm is much more 

consistent. The stacking of both algorithms leads to a middle 

point, lowering the prediction errors (respect to BT) and the 

number and magnitude of outliers (respect to RF). This can be 

observed in Figure 8. 

 

The fact that the Stacking approach gives a little bit of extra 

overall accuracy in the tested fault locations is motivated by the 

fact that the correlation of the Boosted Trees and Random 

Forest algorithms errors is low and no major trend is observed, 

as it can be seen in Figure 9.  

 

 



 

 

 
Figure 8. Distribution of prediction errors  

 

 

 
Figure 9. Correlation between BT and RF errors 

 

A closer look at the distribution of errors (for Stacking) with 

respect to the fault type is shown in Figure 10. It can be 

observed that Line-to-Line faults are more prone to problems 

than other faults, while SLG and LLL have comparatively 

lower prediction errors and fewer outliers.  

 

 

 
Figure 10. Distribution of location errors per fault types 

 

Regarding the distribution of errors in relation to the fault 

resistance, it can be observed in Figure 11 that, first, using the 

Stacking approach some fault simulation predictions are driven 

into lower errors and, second, that the faults that still have larger 

errors are the ones for higher fault impedances.  

 

 
Figure 11. Distribution of location errors per fault resistance values 

 

V. DISCUSSION 

The method presented in this paper has shown that a faster 
fault location and classification is achievable using much lower 
post-fault data. The method works on top of several 
assumptions, such as that the fault has already been detected (so 
the time needed for this purpose is not taken into account) and 
that the sampling rate is 10 MHz (otherwise, time windows and 
DWT parameters would need to be adjusted, leading to probably 
larger delays). Provided that, this method is an excellent trade-
off between speed and accuracy. Faults can be located and 
classified with just 50 µs of measured data after the TW arrival. 

As a comparison with other references for fault 
classification, such as [10], [11], [12], and [14], although they 
use different test systems, they need time windows that range 
between 2 ms up to 100 ms. The accuracies reported in those 
works are similar to ours. Regarding fault location, methods on 
other references do have lower error average and less maximum 
error on their respective systems, but they typically use several 
cycles for estimation, such as in [8], [9], and [13]. Only [16] 
reports a good performance going down to the limit of 200 µs of 
measured data for a DC microgrid. As far as the authors know, 
this is the first proposed method that goes that low in amount of 
needed measured data.  

 In this study, fault classification and location under noisy 
conditions has not been addressed and is left for future work. 
Due to the decomposition of the signals in several frequency 
bands, it is expected that moderate noise will not have a 
significant impact on all levels, allowing a fairly accurate 
prediction. Also, the next step would be to check the 
performance of this method on a larger system.  

VI. CONCLUSION 

This paper presents a new addition to Discrete Wavelet 

Transform-based fault classification and location approaches. 

First, the signal is decomposed into several frequency bands, 

then it is reconstructed before its energy is calculated using 

Parseval’s Theorem. Second, each energy level is summarized 



 

 

into one value taken after 50 µs from the fault detection. This 

leads to a huge reduction of data for the Machine Learning 

prediction stage. A few other considerations have been 

explained in this paper, such as the convenience of high-

sampling rates for achieving lower time windows and the 

accuracy of ensemble techniques (usually forgotten on power 

systems). Finally, it has been discussed how this method gives a 

great performance given the considered time window, making 

fault location and classification in AC distribution systems 

possible using just 50 µs of measured data after the traveling 

wave arrival. 
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