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Abstract— This paper presents a new method for fault
classification and location based on the Discrete Wavelet
Transform decomposition and signal reconstruction - a type of
Multi-Resolution Analysis. The designed signal-processing stage,
which encompasses various signal transforms, plus the
aforementioned decomposition in several frequency bands and the
calculation of the signals’ energy, provides a consistent
generalization of the features that characterize the fault signal.
Then, this data is fed into ensemble Machine Learning algorithms.
The results show that this method is reasonably accurate while
requiring a tiny amount of fault data, expanding the capabilities
of Traveling Wave relays to achieve an accurate fault classification
and location in just microseconds.
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I. INTRODUCTION

The evolution of relays and protection devices has advanced
towards faster, more resilient, and more sensitive devices, with
improved hardware and software capabilities. This has made
fault detection and location faster and more accurate than ever.
While traditional relays operate within 1 or 2 cycles, a few
decades ago a new generation of Traveling Wave-based (TW)
relays pushed this limit towards a few milliseconds. This was
possible by the incorporation of techniques from others fields of
knowledge, such as Digital Signal Processing, which provided
more insights about how to take advantage of that phenomena
for fault detection, classification, and location [1][2].

In recent years, Machine Learning (ML) methods are
bringing new opportunities to Power Systems which could
reduce even more the amount of data needed for this fault
characterization. In this context, this paper aims to push beyond
the limits provided by TW relays, and reduces the number of
measurements up to the scale of microseconds. The approach
described in this paper offers a re-visitation of a common
approach on fault location and classification, as it is the usage of
the Discrete Wavelet Transform decomposition, which is
applied to a time window of 50 ps before and after the TW fault
arrival. The signal is decomposed in six frequency bands, with
an emphasis of frequencies over 100 kHz, and the signal energy
is calculated over this time window using Parseval’s Theorem.
The post-fault energy is then used to summarize the response of
the system to the fault. Finally, some state-of-the-art ensemble
Machine Learning approaches (Random Forest and Tree
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Boosting) are employed to perform fault type classification and
location using the previously generated data.

A. Literature review

Over the last couple of decades, there has been a growing
interest in developing protective relays based on TWs, the initial
part of a fault signal. Thanks to the TWs information, these
devices are faster than conventional protection schemes based
on post-fault measured impedances [3]. Since then, multiple
approaches, most of them integrating signal processing
techniques, have been developed to extract features of those fast
transients. A few of them choose the Fast Fourier Transform
(FFT) to get the frequency components of the measured signals
[4][5] and use them as the input to an Artificial Neural Network
(ANN) to calculate the distance to the fault or the fault.

However, as is indicated in many sources, Wavelet
Transforms (WT) are usually preferred to FFT as they provide a
time dimension to the frequency analysis. For example, the
Continuous Wavelet Transform (CWT) has been employed in
[6], on a distribution system for fault detection and
classification, showing excellent performance. Another type of
WT, the Discrete Wavelet Transform (DWT), is the choice of
many algorithms because of its low computation time [7]. Most
references tend to use either one or several decomposition levels
given by the DWT. In the case of [8] and [9], the time
differences on the peaks in the first level of decomposition are
used to calculate the distance to the fault provided that the wave
velocity is known.

Other references put the location/classification tasks in the
hands of ML algorithms. Same as before, they feed the detail
coefficients (or the energy) given by the DWT into algorithms
such as SVM [10], Radial Basis Function (RBF) neural network
[11], or Bayes classifiers [12]. [13] makes a comparison between
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and ANNS,
highlighting the superiority of the first one on that particular case
study. [14] provides an ultra-fast method, based as well on ANN,
that performs fault classification using just one-eighth of a cycle
of post-fault data. Some other papers investigate ANN for
protecting DC systems [15]. Finally, [16] uses the energy
associated with the DWT decomposition coefficients in DC
systems, and then uses an SVM for fault classification and a
Gaussian Process Regression Engine to calculate the fault
location. This method reports needing about 200 ps of data. The
other algorithms in literature need at least several milliseconds.
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B. Contributions of the paper

As it has been introduced before, the main contributions of
this paper are: First, developing a curated (and more robust)
signal processing method with comparatively lower windowing
times (which makes the algorithm faster) and higher sampling
frequency (which makes the algorithm more capable of
detecting high-frequency patterns), decreasing the amount of
required post-fault data to 50 microseconds. As far as the authors
know, this is the first proposed method that claims to achieve a
good performance given that small amount of measurements.
Second, using powerful state-of-the-art ML methods for both
classification and location tasks, which allows higher accuracies
using less temporal information.

II. THE SYSTEM

The system used in this paper, created by the authors, is
shown in Figure 1. It consists of one 12.47 kV variable-length
distribution line that is connected to a load of 300 kVA per
phase. Faults occur on the load bus. Simulations were performed
in PSCAD for 160 fault locations (increasing the length in steps
of 25 meters), for 3 fault types (Single-Line-to-Ground, Line-to-
Line, and 3-Phase), and for 7 resistance values ranging from
0.01 to 10 Q. In total, there were 3360 simulations. Three-phase
voltages and currents are measured on the secondary side of the
transformer at a sampling frequency of 10 MHz.
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Figure 1. Schematic of the system.

III. THE METHOD

The method described in this paper can be separated into two
main stages: the signal processing block that aims to process the
measured signals (+/- 50 ps since TW time of arrival) and extract
useful information, and the Machine Learning stage where
several algorithms are trained to perform the actual fault location
and classification. The workflow is shown in Figure 2.

As it can be seen, the first part of the signal processing block
consists of applying some transforms to both the 3-Phase voltage
and current signals. Here, the Clarke, Karrenbauer, and DQO
transforms are employed. Numerical results showed that the
larger amount of features, the better performance. Each
transform performs a different operation on the measured data,
which is later used to create additional features to train the ML
algorithms. Figure 3 shows the results of applying these
transforms to a set of signals containing information on TWs.
All faults occur at 30 ms and the TW arrives just a few
microseconds later.

The second step, conceptually, is a high-pass filtering of the
transformed signals, which is implemented using the DWT. In
particular, it uses the reconstructed coefficients of the DWT
decomposition of the input signals for a user-defined number of
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Figure 3. Applied transforms during TW arrival (SLG fault at 3100 meters,
for 10 ohms resistance).



frequency bands. For this project, a window of 100 ps (50 ps
before and 50 ps after the fault detection) is used for performing
the DWT. This corresponds to 1000 samples. Note that this
algorithm is only triggered after the fault has been detected by
other means. The energy of those reconstructed signals is
calculated and is employed as input for the ML models. The
usage of just the medium and high-frequency components of the
signals is motivated by the theory of TWs, which states that as
the wave propagates across the system, there is an attenuation in
both the frequency and velocity [17]. Therefore, the information
retrieved from the frequency spectrum of the wave is key for
both fault location and classification.

Given the importance of the DWT and the ML stage, the next
two sections provide a detailed explanation of these parts of the
proposed method.

A. The Discrete Wavelet Transform (DWT)

The DWT is a widely used tool for time-frequency analysis.
As a more detailed explanation about how it works can be
accessed in a lot of superb references - as in [7] - just a few key
concepts will be included here in order to provide a more concise
explanation. The method used for this paper, the Multi-
Resolution Analysis (MRA), consists of splitting the input signal
into several signals of different frequency ranges. This is
efficiently implemented through the DWT.

The DWT algorithm resembles a pyramidal structure,
known as subband coding, in which the signal goes through
multiple decomposition levels. Each level contains a set of high-
pass and low-pass filters (determined by the mother wavelet),
which return the so-called detail and approximation coefficients,
respectively. The inputs for the following levels are the
approximation coefficients of the previous level. It is important
to note that the output of each filter is downsampled by 2. This
is explained by the fact that, in each new decomposition level,
the cut-off frequency has been divided by 2 in comparison to the
previous level, as well as the expected maximum frequency in
the output on the high-pass filter. Therefore, following the
Nyquist criteria, the number of samples representing the
decomposition level (directly related to the sampling frequency)
can be halved, and the frequency information would still be the
same.

In summary, each decomposition level is defined by two
filters and a down-sampling by 2 of the signal. This can be
compactly expressed as the following set of convolutions:

Yaetait[n] = Xnx[n] - h[2k —n] (1
Yapprox [Tl] = Zn x[n] ' g[Zk - Tl] (2)

Where x[n] is the input signal for the given decomposition
level, h[n] and g[n] are the high-pass and low-pass filter
coefficients, and Ygerqi[n] and Yapprox[nl, the detail and
approximation coefficients for that level, respectively. Note that
we are just interested in the detail coefficients, which contain the
frequency data in that particular frequency band.

There are features of the DWT that make this approach very
convenient. First, halving the size of the coefficients implies less
processing time than other WT, such as the CWT. This fast

processing speed is what is needed for fault protection in power
systems. Also, the DWT decomposition provides the minimal
amount of information that is needed for reconstruction, which
implies a more efficient usage of the resources.

The selected mother wavelet is Daubechies 7 (db7). This
family is commonly used in power systems (particularly for TW
applications) because their sharp shape is perfect for detecting
low amplitude, short duration, and fast decay signals [18].
Different Daubechies wavelets were considered, but db7 gave
slightly better numerical results. This makes sense with other
research papers, as lower order wavelets (as db3) have less cut-
off frequencies (so its suitability for TWs is diminished), while
too large orders incur excessive computation time [19]. As such,
db7 offers a perfect balance.

As a side note, the Wavelet Transforms have a trade-off
between resolution on time and frequency domains. That means
that higher-frequency components can be identified with
accurate temporal resolution but poorer frequency resolution.
For lower-frequency components, it is the other way around:
higher-frequency resolution but lower temporal resolution. In
the case of the DWT, this can be easily observed by taking a
look at the implementation: For the used sampling rate (10
MHz), the maximum frequency that can be effectively sampled
is one-half (5 MHz) following Nyquist’s rule. The first
decomposition level will encompass the frequency components
on the range 2.5 — 5 MHz. Due to the down-sampling by 2, this
first level would need 500 coefficients to accurately describe the
frequencies of the signal. The next decomposition on the
approximation coefficients has a frequency range from 1.25 to
2.5 MHz. Therefore, as the maximum frequency dropped in half,
the required number of coefficients also halved to 250. The same
process will be repeated for the next levels. As the level
increases, fewer coefficients are wused for the signal
representation in the time domain, which could lead to
inaccuracies regarding when the frequencies appeared in the
wave. This decomposition can be continued up to the maximum
level (where the down-sampling by 2 is no longer possible),
which depends on the length of the window and the employed
mother wavelet. In this project, the decomposition goes just up
to level 6. The ranges of analyzed frequencies goes from 5 MHz
to 78.125 kHz.

This loss of coefficients (and the physical meaning that they
have) is not desired on MRA, where decomposition of the signal
by frequency ranges is the goal. For this reason, the
decomposition levels are reconstructed back to voltage and
current signals of length 1000 samples. The reconstruction
process, following the same procedure, consists of successive
convolutions of the detail coefficients and the synthesis filters.
The fact that the detail coefficients are the only ones that are
reconstructed is what gives the similarity to a high-pass filtering
(in frequency bands) of the measured signal. In Figure 4, one of
those reconstructed voltage signals for some specific fault
conditions over a window of 100 us can be observed.
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Figure 4. Reconstructed third level of decomposition
(SLG fault at 25 meters, for 0.01 ohms resistance and Clarke transform and
the alpha component)

The next step is to calculate the energy associated with each
reconstructed level using the Parseval’s Theorem, which for a
discrete and finite signal x is calculated as:

E ()= Xi_ox% forj=1,..,N 3)

Where k is the level of energy, j is the sample index and
N is the total number of samples in the reconstructed signal. The
equation is the same for both voltage and current signals. Using
the Parseval Energy, the abrupt arrival of the traveling wave
after the fault occurs will be more evident. During normal
operation, the voltage and current values are really small (signals
should not have those frequency components). When the
traveling wave arrives, the magnitudes of the signals at those
levels become much larger for a few instants, before coming
back to almost null once the TW is attenuated enough. When the
energy of the signal is calculated over the defined time window,
a step-wise shape appears, as it is shown in Figure 5. Note that
the first oscillations lead to a large energy increase, while the
next oscillations have a relatively smaller effect, approximately
reaching a “steady-state”. Also, the trade-off between frequency
and time resolution can be appreciated on level 6, where DWT
reconstructed coefficients start to increase some microseconds
before the known arrival of the TW.

The feature creation part of the method just takes the
“steady-state” values for the training and testing datasets. The
data is organized as a table, in which the columns are the steady-
state values for both voltage and current measurements, the 3
transforms (which have 3 components each), and the 6
reconstructed levels of decomposition. Altogether, they sum up
to 108 values per fault simulation. Afterward, 2730 of those
faults form the training set, while the other 630 comprise the
testing set. Note that those final values are highly dependent on
the selected transform, the fault resistance value, the distance to
the fault, and the type of fault. This is what the ML algorithms
will use for classification and location. These variations for
distance can be observed in Figure 6. The shadowed areas
correspond to variations for several resistance values.
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Figure 5. Energy of the reconstructed level signals (SLG fault at 25 meters,
for 0.01 ohms resistance and Clarke transform and the alpha component)
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Figure 6. Steady-state energy variation due to distance (SLG fault and Clarke
transform)

B. Machine Learning/ Deep Learning approaches

A comparison between several algorithms has been made in
this paper, with special emphasis on ensemble learning, which
consists of combining multiple ML models in order to create a
more accurate and powerful model. Currently, it is one of the
most used techniques to improve the performance. There are
several techniques to implement ensemble models, such as
bagging, boosting, or stacking. For comparison, a Random
Forest (RF) algorithm (example of bagging), implemented on
scikit-learn library, has been selected, along with Google’s
TensorFlow Boosted Trees (BT) estimator (Gradient Tree
Boosting). Some notions of these techniques will be given later.
These particular algorithms have been selected because of their
excellent accuracy, computational efficiency, and scalability for
a larger number of samples/ larger systems (which is where
outperforms other common ML algorithms, such as SVMs).
Finally, some of the state-of-the-art Machine Learning



algorithms integrate different types of models into one ensemble
model that takes advantage of the individual skills of each of the
components (known as stacking). In this line, one model that
groups the two aforementioned individual methods (RF and BT)
has been implemented.

a) Random Forest (RF) estimator: This method splits the
dataset on N independent datasets, randomly choosing VF of F
available features for each dataset, which is considered as a form
of bagging. Then, a total of N decision trees are trained. The
prediction would be either the result of voting (for classification)
or the average of the individual predictions (for regression). This
approach provides huge advantages, which are aligned with the
goals of the project. First, RF provides variance reduction and
overfitting avoidance. The method that is presented in this paper
displays a strong signal processing part that reduces the features
to a “small” set of final energy values with no temporal
evolution. This implies a huge reduction in training data that
could easily lead to overfitting. This is a problem because the
testing dataset (and a real fault) would present slightly different
energy values. Therefore, it is necessary to keep a good
generalization capability. Training trees on random subsets of
features ensures that. Also, this algorithm brings in other
desirable features such as its fast training. Although the dataset
has more than one hundred columns, as only a few are used at
the same time, training is comparatively quicker. In addition, the
trees are trained in parallel.

b)  Boosted Trees (BT) estimator: This algorithm also
combines multiple decision trees, but the boosting approach
follows a different procedure. This time, N decision trees are
trained as weak learners, which means that every one of them is
able to outline a very basic rule on the dataset. The trees are
trained sequentially in this case, and each added tree has to
reduce the loss function. The resulting algorithm is a strong
learner that can cope with the complexity of the training dataset.

¢) Stacking: As explained before, this approach looks for
combining the predictions (and averaging out the errors) of
already-trained models using what is called a “meta-model”. In
this case, a linear estimator is chosen for this role. The
predictions of the RF and the BT on the training set are used as
input for training this method. This method is especially useful
when the errors in the predictions are uncorrelated (otherwise
the meta-learner would mainly have the same behavior as the
individual estimators). Note that due to the good results on
classification, this approach is used only for fault location.

IV. RESULTS

A. Fault type classification

For the fault type classification task, the algorithms must be
able to discern whether the measurements are of a Single-Line-
to-Ground fault, Line-to-Line fault, or 3-Phase fault. Accuracy
is defined as the number of correctly predicted fault types over
the total number of faults. Table I summarizes the individual
results of both RF and BT algorithms. As it can be observed,
accuracy is close to 100% in both of them. The reason for this
excellent performance is the large energy magnitude variations
among each type of fault, which makes this task easy.

TABLE L. FAULT TYPE CLASSIFICATION ACCURACY

Classifier Accuracy
Boosted Trees 99.84%
Random Forest 100%

B. Fault location

The results for the BT and RF regressors, along with the
Stacking method can be observed in Figure 7. The average and
the standard deviation of the errors are shown in Table II. Most
of the faults are located with an error well below 200 m.

1000
Boosted Trees
4+ Stacking
800 Random Forest 5
A
— 600 ‘e R
E
5 : . ‘
o 400 4 A . 4
Y A
200
0
0 500 1000 1500 2000 2500 3000 3500 4000
Actual fault location (m)
Figure 7. Prediction errors relative to fault distance
TABLE II. MEAN AND STD OF PREDICTION ERRORS
Standard
Regressor Mean (m) Deviation (m)
Boosted Trees 72.64 99.14
Random Forest 53.64 113.01
Stacking 62.95 94.77

As it can be seen in Figure 7, the Random Forest model
tends to have lower errors in most of the cases, but there are a
few outliers. However, the BT algorithm is much more
consistent. The stacking of both algorithms leads to a middle
point, lowering the prediction errors (respect to BT) and the
number and magnitude of outliers (respect to RF). This can be
observed in Figure 8.

The fact that the Stacking approach gives a little bit of extra
overall accuracy in the tested fault locations is motivated by the
fact that the correlation of the Boosted Trees and Random
Forest algorithms errors is low and no major trend is observed,
as it can be seen in Figure 9.
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Figure 9. Correlation between BT and RF errors

A closer look at the distribution of errors (for Stacking) with
respect to the fault type is shown in Figure 10. It can be
observed that Line-to-Line faults are more prone to problems
than other faults, while SLG and LLL have comparatively
lower prediction errors and fewer outliers.

SLG

LL

Fault Type

']

LLL

0 200 400 600 800
Error (m)

Figure 10. Distribution of location errors per fault types

Regarding the distribution of errors in relation to the fault
resistance, it can be observed in Figure 11 that, first, using the
Stacking approach some fault simulation predictions are driven
into lower errors and, second, that the faults that still have larger
errors are the ones for higher fault impedances.
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Figure 11. Distribution of location errors per fault resistance values

V. DISCUSSION

The method presented in this paper has shown that a faster
fault location and classification is achievable using much lower
post-fault data. The method works on top of several
assumptions, such as that the fault has already been detected (so
the time needed for this purpose is not taken into account) and
that the sampling rate is 10 MHz (otherwise, time windows and
DWT parameters would need to be adjusted, leading to probably
larger delays). Provided that, this method is an excellent trade-
off between speed and accuracy. Faults can be located and
classified with just 50 pus of measured data after the TW arrival.

As a comparison with other references for fault
classification, such as [10], [11], [12], and [14], although they
use different test systems, they need time windows that range
between 2 ms up to 100 ms. The accuracies reported in those
works are similar to ours. Regarding fault location, methods on
other references do have lower error average and less maximum
error on their respective systems, but they typically use several
cycles for estimation, such as in [8], [9], and [13]. Only [16]
reports a good performance going down to the limit of 200 ps of
measured data for a DC microgrid. As far as the authors know,
this is the first proposed method that goes that low in amount of
needed measured data.

In this study, fault classification and location under noisy
conditions has not been addressed and is left for future work.
Due to the decomposition of the signals in several frequency
bands, it is expected that moderate noise will not have a
significant impact on all levels, allowing a fairly accurate
prediction. Also, the next step would be to check the
performance of this method on a larger system.

VI. CONCLUSION

This paper presents a new addition to Discrete Wavelet
Transform-based fault classification and location approaches.
First, the signal is decomposed into several frequency bands,
then it is reconstructed before its energy is calculated using
Parseval’s Theorem. Second, each energy level is summarized



into one value taken after 50 us from the fault detection. This
leads to a huge reduction of data for the Machine Learning
prediction stage. A few other considerations have been
explained in this paper, such as the convenience of high-
sampling rates for achieving lower time windows and the
accuracy of ensemble techniques (usually forgotten on power
systems). Finally, it has been discussed how this method gives a
great performance given the considered time window, making
fault location and classification in AC distribution systems
possible using just 50 ps of measured data after the traveling
wave arrival.
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