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> 1 OQutline

» Sparse triangular solves

» Parallel: Level sets

» Parallel: Iterative methods

« Why would anybody use iterative
triangular solves?

« Exact LU vs incomplete LU
* Robustness: Blocking |
* Robustness: Scaling |

* Ordering, recursion



s | Sparse triangular solves

» Solve Lx = b, where L is triangular

* Trivial. Just do forward/back
substitution!

» Highly sequential. Hard in parallel.
Active research topic. |

* Important for sparse direct solvers and |
for ILU preconditioning



« Well studied problem

« Anderson & Saad (‘89), Saltz (90), Alvarado & Schreiber (‘93),
Liu et al. (“16), Chow et al. ('15, “18), ...

» Level sets
e Find level sets in the dependency graph
« Everything within the same level can be done in parallel
« Very limited amount of parallelism |

|
; | Parallel sparse triangular solves m
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s | Parallel sparse triangular solves

Iterative methods: (block) Jacobi (Anzt, Chow, et al.)
* Could use Krylov/GMRES but often not worth it
« Jacobi good for asynchronous

Are you crazy? Why compute LU if we must do iterative

solves on L and U?
« Iterative solves on L/U may be faster than on A
« Iterative solves fast in parallel (e.g., GPU)

Recent interest motivated by Chow & Patel (‘15)
 Iterative (asynchronous) method for ILU
e Sparse triangular solves became a bottleneck




s | Review: Jacobi method

 Let A=D-L-U, where D is diagonal, L strictly lower
triangular, U strictly upper

e Jacobi: Dxk*1 = (L+U)xk + b

« Fixed-point version: x<*1 =T xk + ¢, T= D-'(L+U)

« Convergence depends on p(T)

* Asynchronous Jacobi: Same but overwrite x
« No “iterations”, but asynchronous updates
e Thisis actually similar to Gauss-Seidel
« Convergence dependson p(|T|)




7 I Polynomial perspective

e Jacobi iteration is really a truncated Neumann series
 LetA=(l-B), then A" =1+B+B*+ ...
« kiterations of Jacobi : x* = p, (A) r°

*  Where p, (A) is polynomial degree k

e Question: Can other polynomials do better?
« Least-squares polynomial (Saad)
 GMRES polynomial (Loe, Morgan '21)

* In some cases, yes. No clear “winner”.




¢ 1| Exact LU vs incomplete LU

« Example: Laplace/Poisson in 2D (n*n)
« Compare Jacobi for Ax=b vs Ly=b, Ux=y

. Residual reduction: 1e6

e ExactlL and U:;

BT Y YN T

5828 111 111
100 19646 209 208
200 60250 397 396

* Incomplete L and U:

-mm
Note: For preconditioning, we do

5828
not need high accuracy. In
100 19646 26 26 practice, 5-10 iterations is enough.

200 60250 26 26




s | Robustness

 Jacobi is not robust, may diverge

« Convergence for inexact ILU poorly understood

« Several ways to improve robustness:

« Block Jacobi
* Scaling

 Difficult case: Highly non-normal matrices
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0 1| Robustness: Blocking

« Block Jacobi

* Anzt, Chow, Dongarra (*15): “block” asynchronous on GPU
«  Chow, Anzt, Scott, Dongarra (18):
«  Showed block Jacobi improves robustness on ill-conditioned
problems
*  Priority blocking scheme
* Focus on SPD problems, what about unsymmetric/indefinite?

 Additive Schwarz

* Anzt, Chow, Szyld, Dongarra (‘16): RAS on triangular system
 |nexact Jacobi on subdomains

*  Got only modest speedup (over Jacobi)

 Method could be combined with blocking (above)




1 1 Robustness: Scaling

« We can scale the matrix A by A"'=D AD.
 Whatis a good scaling?
- Make A better conditioned, “more diag. dom.”
« Chow et al: equilibrate (unit diagonal)
« works well for SPD problems
 Thomas et al. ('22):
« |LU smoothers for multigrid
* Ruiz scaling (row and columns) |

« Targets the non-symmetric case
e Tested on real CFD problems
« Scaling is a preprocessing step |
« (Can amortize the cost of finding a scaling |



> 1 Recursive algorithm (synch.)

Let L be split into 2x2 system:

L, Ly

| =

Now we solve by:

1. Solve L,
2. Update b,
3. Solve L,,

Solve recursively until the blocks are small. Subproblems
may use direct or iterative solve.

Unfortunately, need to synchronize after step 1. When does
this approach pay off?

1. #iterations for L; is small I
2. L,, has alot of nonzeros I



1z 1 Recursive algorithm (asynch.)

Let L be split into 2x2 system:

L, Ly

| =

Now we solve by:

1. Solve L,
2. Update b,
3. Solve L,,

Idea: Solve all steps simultaneously, asynch

Assume: L,, and L,, have separate resources (cores, GPU).
Who does step 2 (b update)? How often?

If b, is updated frequently, the algorithm is Jacobi on L!




2 1 Orderings

« Often we can permute A before forming L
« Permuting a given L is possible but tricky
e Potential ordering methods:
1. RCM (low bandwidth)
2. Graph partitioning
e L,, sparse (not helpful?)
3. Coloring or independent sets
« L,,isdiagonal, trivial to invert
* L,, has many nonzeros, good for recursive!




s | Nested Dissection Ordering (with Separators)

Suppose we reorder A so L looks like:
L11
L = 122
131 132 133
Then we can solve by:
1. Solve for L,, and L,, in parallel
2. Updatebs=Dbs;-L3;y,-Ls Y,
3. Solve for L,

This algorithm is much more parallel.
Drawback: Finding separators is expensive. Might be
useful when solving a sequence of systems.




16 | Conclusions

Iterative sparse triangular solves make sense
« Both synchronously and asynch.

Robustness is a concern
« Blocking and scaling improve robustness

Incomplete LU factors typically converge quickly

Recursive decompositions have potential
« Natural if solver already uses ND ordering

Still several issues that need more research
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