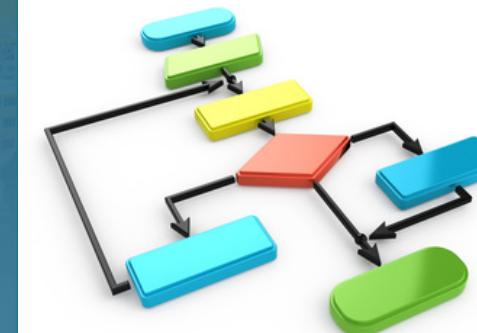


Sandia
National
Laboratories

On Iterative Sparse Triangular Solves



Erik G Boman, Sandia National Labs

Copper Mountain Conference, April 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Sparse triangular solves
- Parallel: Level sets
- Parallel: Iterative methods
- Why would anybody use iterative triangular solves?
- Exact LU vs incomplete LU
- Robustness: Blocking
- Robustness: Scaling
- Ordering, recursion

Sparse triangular solves

- Solve $Lx = b$, where L is triangular
- Trivial. Just do forward/back substitution!
- Highly sequential. Hard in parallel.
Active research topic.
- Important for sparse direct solvers and for ILU preconditioning

Parallel sparse triangular solves

- Well studied problem
 - Anderson & Saad ('89), Saltz ('90), Alvarado & Schreiber ('93), Liu et al. ('16), Chow et al. ('15, '18), ...
- Level sets
 - Find level sets in the dependency graph
 - Everything within the same level can be done in parallel
 - Very limited amount of parallelism

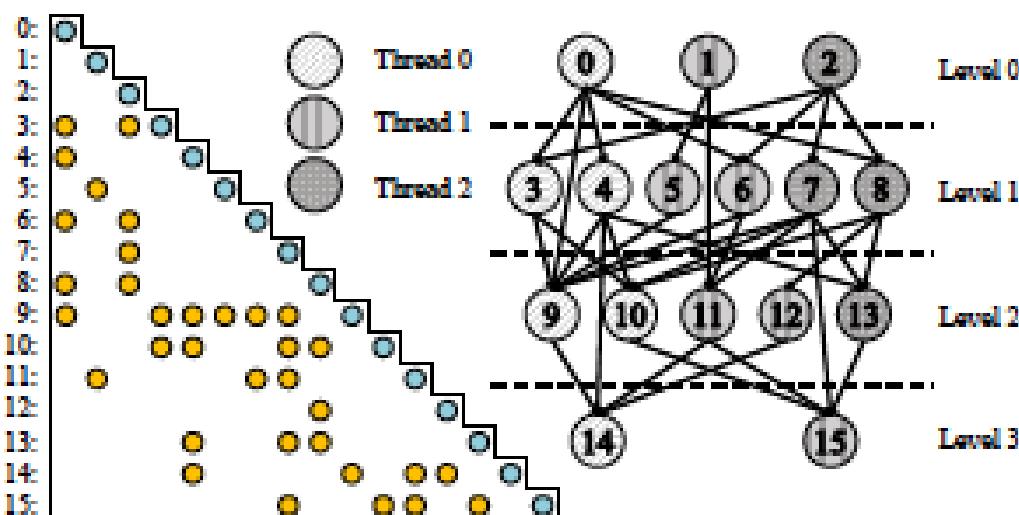


Figure by Wang et al.

Parallel sparse triangular solves

- Iterative methods: (block) Jacobi (Anzt, Chow, et al.)
 - Could use Krylov/GMRES but often not worth it
 - Jacobi good for asynchronous
- Are you crazy? Why compute LU if we must do iterative solves on L and U?
 - Iterative solves on L/U may be faster than on A
 - Iterative solves fast in parallel (e.g., GPU)
- Recent interest motivated by Chow & Patel ('15)
 - Iterative (asynchronous) method for ILU
 - Sparse triangular solves became a bottleneck

Review: Jacobi method

- Let $A = D - L - U$, where D is diagonal, L strictly lower triangular, U strictly upper
- Jacobi: $Dx^{k+1} = (L+U)x^k + b$
- Fixed-point version: $x^{k+1} = T x^k + c$, $T = D^{-1}(L+U)$
- Convergence depends on $\rho(T)$
- Asynchronous Jacobi: Same but overwrite x
 - No “iterations”, but asynchronous updates
 - This is actually similar to Gauss-Seidel
 - Convergence depends on $\rho(|T|)$

Polynomial perspective

- Jacobi iteration is really a truncated Neumann series
- Let $A = (I - B)$, then $A^{-1} = I + B + B^2 + \dots$
- k iterations of Jacobi : $x^k = p_k(A) r^0$
 - Where $p_k(A)$ is polynomial degree k
- Question: Can other polynomials do better?
 - Least-squares polynomial (Saad)
 - GMRES polynomial (Loe, Morgan '21)
- In some cases, yes. No clear “winner”.

Exact LU vs incomplete LU

- Example: Laplace/Poisson in 2D ($n \times n$)
- Compare Jacobi for $Ax=b$ vs $Ly=b$, $Ux=y$
 - Residual reduction: 1e6
- Exact L and U:

n	#it A	#it L	#it U
50	5828	111	111
100	19646	209	208
200	60250	397	396

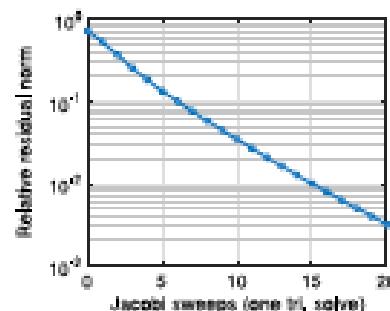
- Incomplete L and U:

n	#it A	#it L	#it U
50	5828	25	25
100	19646	26	26
200	60250	26	26

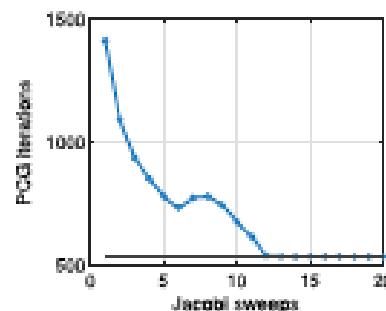
Note: For preconditioning, we do not need high accuracy. In practice, 5-10 iterations is enough.

Robustness

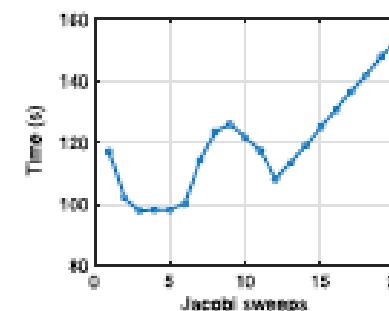
- Jacobi is not robust, may diverge
 - Convergence for inexact ILU poorly understood
- Several ways to improve robustness:
 - Block Jacobi
 - Scaling
- Difficult case: Highly non-normal matrices



(a) Scalar Jacobi triangular solve convergence.



(b) $\text{IC}(0)$ -PCG convergence.



(c) $\text{IC}(0)$ -PCG run time.

Example from
Chow et al. ('18)

Fig. 2. For Geo_1438, the effects of increasing the number of scalar Jacobi sweeps. Using exact triangular solves requires 533 $\text{IC}(0)$ -PCG iterations and 320 s.

Robustness: Blocking

- Block Jacobi
 - Anzt, Chow, Dongarra ('15): “block” asynchronous on GPU
 - Chow, Anzt, Scott, Dongarra ('18):
 - Showed block Jacobi improves robustness on ill-conditioned problems
 - Priority blocking scheme
 - Focus on SPD problems, what about unsymmetric/indefinite?
- Additive Schwarz
 - Anzt, Chow, Szyld, Dongarra ('16): RAS on triangular system
 - Inexact Jacobi on subdomains
 - Got only modest speedup (over Jacobi)
 - Method could be combined with blocking (above)

Robustness: Scaling

- We can scale the matrix A by $A' = D_r A D_c$
- What is a good scaling?
 - Make A better conditioned, “more diag. dom.”
 - Chow et al: equilibrate (unit diagonal)
 - works well for SPD problems
 - Thomas et al. ('22):
 - ILU smoothers for multigrid
 - Ruiz scaling (row and columns)
 - Targets the non-symmetric case
 - Tested on real CFD problems
- Scaling is a preprocessing step
 - Can amortize the cost of finding a scaling

Recursive algorithm (synch.)

Let L be split into 2×2 system:

$$L = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix}$$

Now we solve by:

1. Solve L_{11}
2. Update b_2
3. Solve L_{22}

Solve recursively until the blocks are small. Subproblems may use direct or iterative solve.

Unfortunately, need to synchronize after step 1. When does this approach pay off?

1. #iterations for L_{ii} is small
2. L_{21} has a lot of nonzeros

Recursive algorithm (asynch.)

Let L be split into 2×2 system:

$$L = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix}$$

Now we solve by:

1. Solve L_{11}
2. Update b_2
3. Solve L_{22}

Idea: Solve all steps simultaneously, **asynch**

Assume: L_{11} and L_{22} have separate resources (cores, GPU).

Who does step 2 (b update)? How often?

If b_2 is updated frequently, the algorithm is Jacobi on L !

Orderings

- Often we can permute A before forming L
 - Permuting a given L is possible but tricky
- Potential ordering methods:
 1. RCM (low bandwidth)
 2. Graph partitioning
 - L_{22} sparse (not helpful?)
 3. Coloring or independent sets
 - L_{11} is diagonal, trivial to invert
 - L_{21} has many nonzeros, good for recursive!

Nested Dissection Ordering (with Separators)

Suppose we reorder A so L looks like:

$$L = \begin{array}{|c|c|c|} \hline L_{11} & & \\ \hline & L_{22} & \\ \hline L_{31} & L_{32} & L_{33} \\ \hline \end{array}$$

Then we can solve by:

1. Solve for L_{11} and L_{22} *in parallel*
2. Update $b_3 = b_3 - L_{31} y_1 - L_{32} y_2$
3. Solve for L_{33}

This algorithm is much more parallel.

Drawback: Finding separators is expensive. Might be useful when solving a sequence of systems.

Conclusions

- Iterative sparse triangular solves make sense
 - Both synchronously and asynch.
- Robustness is a concern
 - Blocking and scaling improve robustness
- Incomplete LU factors typically converge quickly
- Recursive decompositions have potential
 - Natural if solver already uses ND ordering
- Still several issues that need more research

Acknowledgments:

- Thanks to Edmond Chow, Jennifer Loe, Siva Rajamanickam, Daniel Szyld for helpful discussions
- Funded by DOE ASCR.