
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

On Iterative Sparse
Triangular Solves

Er ik G Boman, Sandia Nat ional Labs

Copper Mountain Conference, April 2022

SAND2022-3973CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline2

• Sparse triangular solves
• Parallel: Level sets
• Parallel: Iterative methods
• Why would anybody use iterative

triangular solves?
• Exact LU vs incomplete LU
• Robustness: Blocking
• Robustness: Scaling
• Ordering, recursion

Sparse triangular solves3

• Solve Lx = b, where L is triangular

• Trivial. Just do forward/back
substitution!

• Highly sequential. Hard in parallel.
Active research topic.

• Important for sparse direct solvers and
for ILU preconditioning

Parallel sparse triangular solves4

• Well studied problem
• Anderson & Saad (‘89), Saltz (‘90), Alvarado & Schreiber (‘93),

Liu et al. (‘16), Chow et al. (’15, ‘18), …
• Level sets
• Find level sets in the dependency graph
• Everything within the same level can be done in parallel
• Very limited amount of parallelism

Figure by Wang et al.

Parallel sparse triangular solves5

• Iterative methods: (block) Jacobi (Anzt, Chow, et al.)
• Could use Krylov/GMRES but often not worth it
• Jacobi good for asynchronous

• Are you crazy? Why compute LU if we must do iterative
solves on L and U?
• Iterative solves on L/U may be faster than on A
• Iterative solves fast in parallel (e.g., GPU)

• Recent interest motivated by Chow & Patel (‘15)
• Iterative (asynchronous) method for ILU
• Sparse triangular solves became a bottleneck

Review: Jacobi method6

• Let A = D-L-U, where D is diagonal, L strictly lower
triangular, U strictly upper

• Jacobi: Dxk+1 = (L+U)xk + b
• Fixed-point version: xk+1 = T xk + c, T= D-1(L+U)
• Convergence depends on ρ(T)

• Asynchronous Jacobi: Same but overwrite x
• No “iterations”, but asynchronous updates
• This is actually similar to Gauss-Seidel
• Convergence depends on ρ(|T|)

Polynomial perspective7

• Jacobi iteration is really a truncated Neumann series
• Let A = (I-B), then A-1 = I+B+B2 + …
• k iterations of Jacobi : xk = pk (A) r0

• Where pk (A) is polynomial degree k

• Question: Can other polynomials do better?
• Least-squares polynomial (Saad)
• GMRES polynomial (Loe, Morgan ’21)

• In some cases, yes. No clear “winner”.

Exact LU vs incomplete LU8

• Example: Laplace/Poisson in 2D (n*n)
• Compare Jacobi for Ax=b vs Ly=b, Ux=y

• Residual reduction: 1e6
• Exact L and U:

• Incomplete L and U:

 n #it A #it L #it U
 50 5828 111 111

100 19646 209 208
200 60250 397 396

 n #it A #it L #it U
 50 5828 25 25

100 19646 26 26
200 60250 26 26

Note: For preconditioning, we do
not need high accuracy. In
practice, 5-10 iterations is enough.

Robustness9

• Jacobi is not robust, may diverge
• Convergence for inexact ILU poorly understood

• Several ways to improve robustness:
• Block Jacobi
• Scaling

• Difficult case: Highly non-normal matrices

Example from
Chow et al. (‘18)

Robustness: Blocking10

• Block Jacobi
• Anzt, Chow, Dongarra (‘15): “block” asynchronous on GPU
• Chow, Anzt, Scott, Dongarra (‘18):

• Showed block Jacobi improves robustness on ill-conditioned
problems

• Priority blocking scheme
• Focus on SPD problems, what about unsymmetric/indefinite?

• Additive Schwarz
• Anzt, Chow, Szyld, Dongarra (‘16): RAS on triangular system
• Inexact Jacobi on subdomains
• Got only modest speedup (over Jacobi)
• Method could be combined with blocking (above)

Robustness: Scaling11

• We can scale the matrix A by A’ =DrADc
• What is a good scaling?
• Make A better conditioned, “more diag. dom.”
• Chow et al: equilibrate (unit diagonal)
• works well for SPD problems

• Thomas et al. (‘22):
• ILU smoothers for multigrid
• Ruiz scaling (row and columns)
• Targets the non-symmetric case
• Tested on real CFD problems

• Scaling is a preprocessing step
• Can amortize the cost of finding a scaling

Recursive algorithm (synch.)12

Let L be split into 2x2 system:

L =

Now we solve by:
1. Solve L11
2. Update b2
3. Solve L22

Solve recursively until the blocks are small. Subproblems
may use direct or iterative solve.

Unfortunately, need to synchronize after step 1. When does
this approach pay off?
1. #iterations for Lii is small
2. L21 has a lot of nonzeros

L11 0

L21 L22

Recursive algorithm (asynch.)13

Let L be split into 2x2 system:

L =

Now we solve by:
1. Solve L11
2. Update b2
3. Solve L22

Idea: Solve all steps simultaneously, asynch
Assume: L11 and L22 have separate resources (cores, GPU).
Who does step 2 (b update)? How often?
If b2 is updated frequently, the algorithm is Jacobi on L!

L11 0

L21 L22

Orderings14

• Often we can permute A before forming L
• Permuting a given L is possible but tricky

• Potential ordering methods:
1. RCM (low bandwidth)
2. Graph partitioning
• L22 sparse (not helpful?)

3. Coloring or independent sets
• L11 is diagonal, trivial to invert
• L21 has many nonzeros, good for recursive!

Nested Dissection Ordering (with Separators)15

Suppose we reorder A so L looks like:

L =

Then we can solve by:
1. Solve for L11 and L22 in parallel
2. Update b3 = b3 – L31 y1 – L32 y2
3. Solve for L33

This algorithm is much more parallel.
Drawback: Finding separators is expensive. Might be
useful when solving a sequence of systems.

L11

L22

L31 L32 L33

Conclusions16

• Iterative sparse triangular solves make sense
• Both synchronously and asynch.

• Robustness is a concern
• Blocking and scaling improve robustness

• Incomplete LU factors typically converge quickly
• Recursive decompositions have potential

• Natural if solver already uses ND ordering
• Still several issues that need more research

Acknowledgments:
• Thanks to Edmond Chow, Jennifer Loe, Siva Rajamanickam,

Daniel Szyld for helpful discussions
• Funded by DOE ASCR.

