
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

A Tiered Approach to
Scientific Software Quality

Presenter: Miranda Mundt – mmundt@sandia.gov
Coauthors: Wade Burgess, Dena Vigil

SEA's Improving Scientific Software Conference 2022
April 5th, 2022 – 10:20-10:50AM MDT

SAND2022-3977CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:mmundt@sandia.gov

Introduction

• Software quality is not a “one size fits all”
problem

• How does scientific software differ from
commercial software?
• Primarily self-taught developers
• Unique challenges (requirements, testing,

funding, performance)
• End goal: Progression of science

2Images from undraw.co

Background & Motivation

• Software quality in the Center for
Computing Research (CCR) at Sandia
National Laboratories was not
standardized
• Each project lead determined their own

definition and guidelines for quality

• Desire: Create a standardization
framework for CCR
• Problem: Existing software quality

frameworks are aimed towards
commercial software

• Question: How do we right-size a
framework?

• Goal: Create a tiered software quality
framework that scales and evolves
naturally with a software project

3Image from undraw.co

Methodology

4

Interviews Surveys Rapid Review

• All department managers
within CCR

• One-hour, in-person
interviews

• Open-ended with the goal
of gathering answers to:
• What is your definition

of software quality?
• What do you consider

to be you process for
quality?

• What would be your
trigger for a more rigor?

• How do your
stakeholders enforce
quality?

• How do you measure
the success of a
project?

• Software project leads
within CCR

• Anonymous web-based
form

• Structured questions
aimed at collecting
information regarding:
• Project metadata (e.g.,

maturity, size)
• Value of research and

software development
activities

• Current state of
practice

• Systemic, time-boxed
literature review
• Faster turnaround at

the cost of certain
steps (e.g., limited
literature search)

• Motivated by a practical
problem

• Two unique research
questions to explore:
• Do different teams

work better under
different sets of quality
standards?

• How do we right-size a
software quality
model?

Interviews

5

Fundamental
Research

Triggers for more
rigor

Non-prescriptive
guidelines

“It’s clear that we
are not a
software

development
shop – we are a

research
development

shop.”

“Until we really had a
sponsor that

demanded a higher
level of rigor (e.g.,

process
documentation,

traceability), there had
to be a clear benefit

for all of those [in
order for us to do

them].”

“When I had my first
ASC software quality

assessment, one of the
reviewers told me,
‘We're not here to
expose external

processes for you. You
clearly get work done -

therefore, you have
processes.’”

Surveys

6Full survey questions can be found in accompanying paper.

Metadata Non-software end
products Software development activities

Maturity %

Proof of concept 0

Somewhat exploratory 29

Somewhat productionized 50

Very productionized 14

Other 7

Team size %

1-3 50

4-6 14

7-10 14

11+ 22

Members with SWE Training %

0-24% 50

25-49% 14

50-74% 14

75-100% 22

Perceived
Importance

Publications Presentations Research
answers

SDLC
*

Testing
**

U&S
Considerations

Not
important 7% 0% 7% 4.8% 9.3% 9.2%

Somewhat
important 29% 14% 21% 24.1% 37% 29.2%

Important 43% 71% 29% 44.6% 27.8% 35.4%

Very
important 21% 14% 43% 26.5% 25.9% 26.2%
* Software development life cycle (SDLC) includes: software architecture; software design; software development;
software release/deployment; software stability; software extensibility
** Testing includes: regular verification testing; regular validation testing; regular functionality testing; regular unit
testing
*** User & Stakeholder (U&S) Considerations includes: stakeholder specifications and requirements; stakeholder
satisfaction; user experience (installation); user experience (usage); maintenance and support

Rapid Review

7

Relevant Factor Description Key Takeaway

Individual Developers as individuals bring unique skills and perspectives to a
project. This includes not only a familiarity with the problem
domain or training in software development, but also motivations
and past experiences.

A scientific software developer who has received
formalized training in software development will
ultimately create higher quality code in a more
productive manner.

Team A development team consists of several members working
together on a software package with collaborative intent. This
includes a sense of common identity, clear goals, and the rate of
turnover.

Good teaming enables productivity and quality. That is,
when team processes and workflows are clearly defined
and followed, teams will be more productive, create
higher quality code, and be able to support new
development.

Organizational An organization represents a shared value system and
understanding of business goals and has sway over the direction
of its projects. This includes support and commitment from upper
management, budget allocations, and relationships to neighboring
projects.

In order to achieve productivity and quality, a project
must be in alignment with the organization's values and
processes, but the organization or funding source must
also value quality and allocate funding towards quality
activities.

Technology Tools for software quality practices supply efficient ways to
manage those activities. This includes the use of software
development tools such as version control, issue tracking, and
code analysis.

The right tools used in the right way can improve quality.
That is, technology can both enable and inhibit quality,
depending on usage.

Process Processes exist to deterministically designate the steps taken for a
particular task. This includes the use of development
methodologies, whether well-defined or ad hoc, and the extent to
which the project is committed to using those methods.

Adherence to a managed and well-defined process for
software development is likely to result in quality and
productivity.

Customer A customer may be a user or a stakeholder and can influence the
direction of a project. This includes the frequency of changes in
requirements, the extent of user involvement in the development,
and users’ resistance to change.

N/A

Tiered Software Quality Framework

8

Threats to Validity

9

Interviews Surveys Rapid Review

• Only one level of
managers
interviewed

• Open-ended
interviews made
quantitative
extraction of data
difficult

Framework

• Reasonable response
rate (14 out of 200,
7%)

• Lack of response
from “least mature”
category
• Possible skew

towards more
production-ready
values

• No information on
current practices –
potential that Tier 1
is not appropriately
right-sized

• No full systemic
review

• Omitted steps
• Extensive

literature search
• Lower quality

appraisal
• Fairly confident

that this is a low
risk

• Lack of strong
enforcement

• Released during
peak of COVID
restrictions
• No changes

made in release
process to
account for this

• No reliable data for
adoption and
efficacy rate

Future Work

10

• Efficacy and reproducibility of framework creation process
• Case studies outside of national laboratories (e.g., academia)
• Mapping to common recognized measures of maturity or quality (e.g., technology

readiness levels (TRLs) or ISO/IEC 25010)
• Integration of research quality into scientific software quality framework

Image from undraw.co

Conclusion

• Motivation: Provide a set of software
quality assurance guidelines for scientific
software developers
• How do we right-size software quality for

scientific software projects?

• Methodology: Interviews, surveys, and
rapid literature review
• Gauge value, current practices, and

recommended practices

• Goal: Create a tiered framework that
scales and evolves naturally with a
software project

11Image from undraw.co

Q&A

12

