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Sensitivity analysis for high-fidelity models

o Global sensitivity analysis (GSA) aims to quantify the importance of uncertain input
parameters

@ Our main tool, the Sobol’ index, is a variance-based GSA metric

There are numerous practical challenges associated with GSA:

o Quantity of interest (Qol) may be high-dimensional in terms of inputs
o High-fidelity (high-accuracy) Qols are often prohibitively expensive to evaluate
o Many GSA methods rely on repeated sampling of the Qol

o We consider hierarchies of related models, organized by fidelity and computational cost

Goal: perform GSA efficiently on expensive, high-fidelity models by leveraging
information from cheaper, lower-fidelity models
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Polynomial chaos expansions (PCE)

o Given a scalar-valued function Q(€) with random vector £ € R?, the PCE of Q is

SR E[Q(€) ¥k (€)]
Q) = kz_oﬁk‘llk(ﬁ) and B = Wa

where {U}},>; is a family of orthogonal polynomials, 5j;’s are PCE coefficients, and P
controls the number of expansion terms

@ The choice of basis is meant to guarantee orthogonality with respect to the
distribution of £ (e.g. Legendre polynomials and uniform distribution)?

e The number of PCE terms (for a total order construction) is

(r+d)!

P+l= rld!

where r = total polynomial order

'Le Maitre and Knio, Spectral methods for uncertainty quantification: with applications to
computational fluid dynamics, 2010.
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PCE for GSA

@ One can compute Sobol’ indices from a PCE as a post process
o We define the Sobol’ indices w.r.t. w C {1,...,d} as
 VarEQE) [ &) _ S

Varl@e] varjog) 4 @ =v§3;sv(@>,

Su(Q)

where S, is the main effect and T; is the total index

o The Sobol’ indices of Q are computed as

~ Srex, BE E[WE
Su Q — “
©) Sy B2 E[W3]

where K, denotes the set of PCE terms that only depend on the parameter subset &,
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Computing PCE coefficients

o A variety of methods exist for computing PCE coefficients, including quadrature,
sparse quadrature, regression, etc.?

E[QWy]

E[V7]

Carlo (MC) integration

e Recalling ), = , we estimate the spectral projection, E[QUy], using Monte

o Consider the MC estimator,

N
B = Exé?q%] ~ ]E[\11/2] % ;Q (69) we (€9),

where E(i) denotes the ith realization out of IV i.i.d. realizations of &

e The variance of this estimator is proportional to N~', thus convergence will be slow

2Le Maitre and Knio, Spectral methods for uncertainty quantification: with applications to
computational fluid dynamics, 2010.

Michael Merritt Hybrid MLMC-PCE method for GSA



Multilevel Monte Carlo (MLMC)

@ Consider the hierarchy of models Qq, @1, ..., Q with a “level” index ¢ and respective costs
Co<C <--- <
@ We can decompose the kth spectral projection,

L

E[QUy] = ZE (Qe = Qe1)Wy] := > E[Pry], where Q1 =0

£=0 £=0

@ This decomposition leads to the multilevel Monte Carlo® (MLMC) estimator for S
L Ny
N 1 1 )
=— —>» P,

@ One can then derive an optimal sample allocation by solving, for example,

L
subject to  Cior = ZN@C( <C
£=0

l L Va’l‘[Pz’k}

min  Var[Bi] = ~
¢

No,...,NL b%

3Giles, “Multilevel Monte Carlo methods”, 2015.
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Hybrid MLMC-PCE Method

Goal: Optimally allocate multilevel samples (Ng)é’zo in order to minimize the
variance of the MLMC estimator for a Sobol’ index

~

We consider the target Var[S,], which we seek to minimize by means of some optimal
sample allocation

The variance of the PCE-estimated variance can be written as

P P
> by B,%] = b Var[7] + > bib.Cov [B,%, BE] ,

k=1 k=1 ktz

VYar

where we can select the terms corresponding to any S,
We derived expressions for Var [B,ﬂ and Cov [B,%, Bg} in terms of (Ng)fzo and the
relevant statistical moments of the Qol

From this, we can estimate Var[Su] and optimize the sample allocation, (Ng)é;o

Michael Merritt Hybrid MLMC-PCE method for GSA



Optimal sample allocation for GSA

The optimal sample allocation problem has various formulations. Given a subset

u C {1,...,d}, an upper bound on cost, C, and a reduction factor, ¢, we have:
L
min  Var|S s.t. Cior = N«Cy < C
(1] NowNy [ u] tot % JAST S

Ciot = ) NiCp st. Var[S,] <e (Var[S,
2] Nor,m,nL tot = Z Cr s ar[Su] < e (Var[Sul)o

@ These formulations have been extended to arbitrary sets of Sobol’ indices (e.g. all first
order indices, all total indices, the full Qol variance)

e In practice, we compute the optimal allocation numerically using tools in SciPy

@ The flexibility of the hybrid method in optimizing the allocation distinguishes it from
other comparable GSA methods
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Numerical results

e We present a three-level version of the Ishigami function*:

q0(0) = sin(hy) + (0.6) asin®(hs) + (9)b63 sin(h;), Cp = 0.001
q1(0) =sin(fy) + (0.95)  asin®(fy)+bb3sin(hy), Cy =0.05
q2(0) = sin(6;) + asin®(09)+b03sin(61),  Cy = 1.0

@ We can compute all PCE and Sobol’” terms analytically for verification

e We compare 4 competing GSA methods, using an equivalent cost for each:
@ Our hybrid MLMC-PCE method
@ Standard MC method (“Saltelli sampling”)
@ Single-fidelity PCE method
@ The recent multifidelity GSA method of Qian and Willcox* (MF-Saltelli)

4Qian et al., “Multifidelity Monte Carlo estimation of variance and sensitivity indices”, 2018.
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Comparison

rid method with other GSA methods
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Chemical reaction networks

e We consider an ODE model for the genetic oscillator system from chemical kinetics®

@ The system has 16 uncertain parameters, which are the reaction rate constants

Reaction Propensity Function Parameter  Value

@ Py — Py + mRNA, aab, ay 50.0

\6A PyA— P A+ IH'I?NA,, agoalPy— A ap 0.01

"CT \ P, — P, + mRNA, arP, Ba 50.0

5.3 / /_/ X P—A— P._A+mRNA, arapP_ A Br 5.0

® Og mRNA, - mRNA, + A BamRN A, ole] 20.0

mRNA, - mRNA, + R BrmRNA, YA 1.0

A+R—C YoAR 04 50.0

N Br r':a Pi+ AP A YaPuA R 1.0

g MR Py-A— P+ A 0aP,— A Or 1.0

P+A— P_A YrPA da 1.0

/ M P_A— P+ A OpP,_A OR 0.2

u,\ an' A—=0 G4A Sara 10.0

+ ‘ @ R—0 OorR MR 0.5

[—; V_ ’R mRNA, — 0 SpamRNA, oy 1.0
0, @ mRNA, — ) SprmRN A, Qg 10.0

D, D, DR Dy’ C - R 5_'_‘(7 ap 5000

e Goal: use the hybrid MLMC-PCE method with optimal sample allocation for
efficient GSA. Qol: time-integrated value of the repressor protein, R(t)

5Vilar et al., “Mechanisms of noise-resistance in genetic oscillators”, 2002.
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Optimization results

e Setup: 3 level genetic oscillator ODE, cost: [0.025,0.125,1.0], total order 2 PCE basis,
sample profile: [10°,10%, 103]

o We will solve the following problem

min Var[S,] s.t. Cio <1000

No,...,NL,
i_ b Hh2
e Basis reordered and truncated by choosing a threshold on r; = M
Var[Q)]
22 PCE modes, r = 1.0 All 153 PCE modes
Target Opt. profile ‘ Opt. profile (scaled) Opt. profile ‘ Opt. profile (scaled)

All main || [6727,3726,191] [35.2,19.5,1]-191 [6717,3726,191] [35.2,19.5,1]- 191
All total || [6714,3711,194] [34.6,19.1,1]- 194 (6666, 3694, 197] [33.8,18.8,1]- 197

VIV[Q]] || [6609,3646,205) | [32.2,17.8,1]-205 | [9748,3325,180] | [54.2,18.5,1]- 180
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Chemical reaction network results

e We compute all first order and all total indices (usinngptimal sampling) and report
confidence intervals computed from Var([S;] and Var[T;],i =1,...,16
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e Next, we compare the performance of the hybrid method against other GSA methods




Chemical reaction network results
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Challenges/Ongoing Work

o Investigated multiple optimization frameworks for sample allocation

o Investigated the effects of using unbiased estimators and various strategies for PCE
basis truncation

@ Produced a library of Python tools implementing the hybrid method

e Published an early version in Sandia’s CSRI Summer Proceedings:
Michael Merritt et al. “Hybrid multilevel Monte Carlo polynomial chaos method for
global sensitivity analysis”. Sandia CSRI Summer Proceedings 2020 (2020)

@ A journal article is in preparation

e Future work includes extensions to the multifidelity MC and approximate control
variate frameworks®

SGorodetsky et al., “A generalized approximate control variate framework for multifidelity uncertainty
quantification”, 2020.
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ation process

o Write PCE estimators as sums of MC samples
e Expand squared sums and group together terms with nonzero covariance
e Rewrite variances or covariances in terms of raw moments

e Below is an example of the single level covariance expression:

2 2
«:ov[(fék)zméz)?}:m:ov{(w ZQ ) (E[w ZQZ )}

_ 1 E[Q* w7 w2] — E[Q*URIE[Q?®2] (2N —2) (E[Q*T] U ]E[QT.] — E[Q?UI]E[QP.]?)
T E[W2]2E[w2]? N3 + N3

@N = 2) (ElQ*92U4E[Q¥,] — E[QU]E[Q?¥2]) LN -2 (BlQ?wyw.)?)

N3 N3
L AN = DIV - 2) BQPY, WL E[QULIE[Q¥:]) _ (4N? — 10N +6) (E[Q\Pk]zlE[Q‘llz]z)}
N3 N3

e We have derived estimators for all MLMC variances and covariances’

"Merritt et al., “Hybrid multilevel Monte Carlo polynomial chaos method for global sensitivity
analysis”, 2020.
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