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Sensitivity analysis for high-fidelity models

Global sensitivity analysis (GSA) aims to quantify the importance of uncertain input
parameters

Our main tool, the Sobol’ index, is a variance-based GSA metric

There are numerous practical challenges associated with GSA:
Quantity of interest (QoI) may be high-dimensional in terms of inputs
High-fidelity (high-accuracy) QoIs are often prohibitively expensive to evaluate
Many GSA methods rely on repeated sampling of the QoI

We consider hierarchies of related models, organized by fidelity and computational cost

Goal: perform GSA efficiently on expensive, high-fidelity models by leveraging
information from cheaper, lower-fidelity models
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Polynomial chaos expansions (PCE)

Given a scalar-valued function Q(ξ) with random vector ξ ∈ Rd, the PCE of Q is

Q̃(ξ) =

PX

k=0

βkΨk(ξ) and βk =
E[Q(ξ)Ψk(ξ)]

E[Ψ2
k(ξ)]

,

where {Ψk}k≥1 is a family of orthogonal polynomials, βk’s are PCE coefficients, and P
controls the number of expansion terms
The choice of basis is meant to guarantee orthogonality with respect to the
distribution of ξ (e.g. Legendre polynomials and uniform distribution)1

The number of PCE terms (for a total order construction) is

P + 1 =
(r + d)!

r!d!
, where r = total polynomial order

1Le Maitre and Knio, Spectral methods for uncertainty quantification: with applications to
computational fluid dynamics, 2010.
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PCE for GSA

One can compute Sobol’ indices from a PCE as a post process
We define the Sobol’ indices w.r.t. u ⊆ {1, . . . , d} as

Su(Q) =
Var[E[Q(ξ) | ξu]]

Var[Q(ξ)]
=

Su

Var[Q(ξ)]
and Ti(Q) =

X

v∋i
Sv(Q),

where Su is the main effect and Ti is the total index
The Sobol’ indices of Q̃ are computed as

Su(Q̃) =

P
k∈Ku

β2
k E[Ψ2

k]PP
k=1 β

2
k E[Ψ2

k]

where Ku denotes the set of PCE terms that only depend on the parameter subset ξu
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Computing PCE coefficients

A variety of methods exist for computing PCE coefficients, including quadrature,
sparse quadrature, regression, etc.2

Recalling βk = E[QΨk]
E[Ψ2

k]
, we estimate the spectral projection, E[QΨk], using Monte

Carlo (MC) integration

Consider the MC estimator,

βk =
E[QΨk]

E[Ψ2
k]

≈ 1

E[Ψ2
k]

1

N

NX

i=1

Q
�
ξ(i)

�
Ψk

�
ξ(i)

�
,

where ξ(i) denotes the ith realization out of N i.i.d. realizations of ξ

The variance of this estimator is proportional to N−1, thus convergence will be slow

2Le Maitre and Knio, Spectral methods for uncertainty quantification: with applications to
computational fluid dynamics, 2010.
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Multilevel Monte Carlo (MLMC)
Consider the hierarchy of models Q0, Q1, . . . , QL with a “level” index ℓ and respective costs
C0 ≤ C1 ≤ · · · ≤ CL

We can decompose the kth spectral projection,

E[QΨk] =

LX

ℓ=0

E[(Qℓ −Qℓ−1)Ψk] :=

LX

ℓ=0

E[Pℓ,k], where Q−1 = 0

This decomposition leads to the multilevel Monte Carlo3 (MLMC) estimator for βk

β̂k =
1

bk

LX

ℓ=0

1

Nℓ

NℓX

i=1

P
(i)
ℓ,k

One can then derive an optimal sample allocation by solving, for example,

min
N0,...,NL

Var[β̂k] =
1

b2k

LX

ℓ=0

Var[Pℓ,k]

Nℓ
subject to Ctot =

LX

ℓ=0

NℓCℓ ≤ C̄

3Giles, “Multilevel Monte Carlo methods”, 2015.
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Hybrid MLMC-PCE Method

Goal: Optimally allocate multilevel samples (Nℓ)
L
ℓ=0 in order to minimize the

variance of the MLMC estimator for a Sobol’ index
We consider the target Var[Ŝu], which we seek to minimize by means of some optimal
sample allocation
The variance of the PCE-estimated variance can be written as

Var

"
PX

k=1

bk β̂2
k

#
=

PX

k=1

b2k Var[β̂2
k] +

X

k ̸=z

bkbzCov
h
β̂2
k, β̂

2
z

i
,

where we can select the terms corresponding to any Ŝu

We derived expressions for Var
h
β̂2
k

i
and Cov

h
β̂2
k, β̂

2
z

i
in terms of (Nℓ)

L
ℓ=0 and the

relevant statistical moments of the QoI
From this, we can estimate Var[Ŝu] and optimize the sample allocation, (Nℓ)

L
ℓ=0
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Optimal sample allocation for GSA

The optimal sample allocation problem has various formulations. Given a subset
u ⊆ {1, . . . , d}, an upper bound on cost, C̄, and a reduction factor, ε, we have:

1 min
N0,...,NL

Var[Su] s.t. Ctot =

LX

ℓ=0

NℓCℓ ≤ C̄

2 min
N0,...,NL

Ctot =

LX

ℓ=0

NℓCℓ s.t. Var[Su] ≤ ε (Var[Su])0

These formulations have been extended to arbitrary sets of Sobol’ indices (e.g. all first
order indices, all total indices, the full QoI variance)
In practice, we compute the optimal allocation numerically using tools in SciPy
The flexibility of the hybrid method in optimizing the allocation distinguishes it from
other comparable GSA methods
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Numerical results

We present a three-level version of the Ishigami function4:

q0(θ) = sin(θ1) + (0.6) a sin2(θ2) + (9)bθ23 sin(θ1), C0 = 0.001

q1(θ) = sin(θ1) + (0.95) a sin2(θ2)+bθ43 sin(θ1), C1 = 0.05

q2(θ) = sin(θ1) + a sin2(θ2)+bθ43 sin(θ1), C2 = 1.0

We can compute all PCE and Sobol’ terms analytically for verification
We compare 4 competing GSA methods, using an equivalent cost for each:

1 Our hybrid MLMC-PCE method
2 Standard MC method (“Saltelli sampling”)
3 Single-fidelity PCE method
4 The recent multifidelity GSA method of Qian and Willcox4 (MF-Saltelli)

4Qian et al., “Multifidelity Monte Carlo estimation of variance and sensitivity indices”, 2018.
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Comparison of hybrid method with other GSA methods

PDFs of first order Sobol’ indices, Si, and total Sobol’ indices, Ti, i = 1, 2, 3.
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Chemical reaction networks
We consider an ODE model for the genetic oscillator system from chemical kinetics5

The system has 16 uncertain parameters, which are the reaction rate constants

Goal: use the hybrid MLMC-PCE method with optimal sample allocation for
efficient GSA. QoI: time-integrated value of the repressor protein, R(t)

5Vilar et al., “Mechanisms of noise-resistance in genetic oscillators”, 2002.
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Optimization results

Setup: 3 level genetic oscillator ODE, cost: [0.025, 0.125, 1.0], total order 2 PCE basis,
sample profile: [105, 104, 103]

We will solve the following problem

min
N0,...,NL

X

u

Var[Su] s.t. Ctot ≤ 1000

Basis reordered and truncated by choosing a threshold on ri =

Pi
k=1 bk β̂2

k

\Var[Q]

22 PCE modes, r = 1.0 All 153 PCE modes
Target Opt. profile Opt. profile (scaled) Opt. profile Opt. profile (scaled)

All main [6727, 3726, 191] [35.2, 19.5, 1]· 191 [6717, 3726, 191] [35.2, 19.5, 1]· 191
All total [6714, 3711, 194] [34.6, 19.1, 1]· 194 [6666, 3694, 197] [33.8, 18.8, 1]· 197
V[[V[Q]] [6609, 3646, 205] [32.2, 17.8, 1]· 205 [9748, 3325, 180] [54.2, 18.5, 1]· 180
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Chemical reaction network results

We compute all first order and all total indices (using optimal sampling) and report
confidence intervals computed from Var[Ŝi] and Var[T̂i], i = 1, . . . , 16
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Ŝ i

×106

Reference values

MLMC-PCE results, Bars:

√
V[Ŝi]
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Left: first order conditional variances Right: total order conditional variances

Next, we compare the performance of the hybrid method against other GSA methods
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Chemical reaction network results
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Distributions of a few first order indices, comparing SL-PCE, MF-GSA, and the hybrid method.
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Challenges/Ongoing Work

Investigated multiple optimization frameworks for sample allocation

Investigated the effects of using unbiased estimators and various strategies for PCE
basis truncation

Produced a library of Python tools implementing the hybrid method

Published an early version in Sandia’s CSRI Summer Proceedings:
Michael Merritt et al. “Hybrid multilevel Monte Carlo polynomial chaos method for
global sensitivity analysis”. Sandia CSRI Summer Proceedings 2020 (2020)

A journal article is in preparation

Future work includes extensions to the multifidelity MC and approximate control
variate frameworks6

6Gorodetsky et al., “A generalized approximate control variate framework for multifidelity uncertainty
quantification”, 2020.
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Overview of derivation process

Write PCE estimators as sums of MC samples
Expand squared sums and group together terms with nonzero covariance
Rewrite variances or covariances in terms of raw moments
Below is an example of the single level covariance expression:

Cov
h
(β̂k)

2
, (β̂z)

2
i
= Cov

 1

E[Ψ2
k
]N

NX
i=1

Q
i
Ψ

i
k

2

,

 1

E[Ψ2
z ]N

NX
i=1

Q
i
Ψ

i
z

2
=

1

E[Ψ2
k
]2E[Ψ2

z ]
2

"
E[Q4Ψ2

kΨ
2
z ] − E[Q2Ψ2

k]E[Q
2Ψ2

z ]

N3
+

(2N − 2) (E[Q3Ψ2
kΨz ]E[QΨz ] − E[Q2Ψ2

k]E[QΨz ]
2)

N3

+
(2N − 2)

�
E[Q3Ψ2

zΨk]E[QΨk] − E[QΨk]
2E[Q2Ψ2

z ]
�

N3
+

(2N − 2)
�
E[Q2ΨkΨz ]

2
�

N3

+
4(N − 1)(N − 2) (E[Q2ΨkΨz ]E[QΨk]E[QΨz ])

N3
−

(4N2 − 10N + 6) (E[QΨk]
2E[QΨz ]

2)

N3

#

We have derived estimators for all MLMC variances and covariances7

7Merritt et al., “Hybrid multilevel Monte Carlo polynomial chaos method for global sensitivity
analysis”, 2020.
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