

# Hybrid multilevel Monte Carlo polynomial chaos method for global sensitivity analysis

Michael Merritt<sup>1</sup>

Gianluca Geraci, Mike Eldred, Teresa Portone<sup>2</sup>

*NC State University, Department of Mathematics<sup>1</sup>*

*Sandia National Laboratories, Department of Optimization and Uncertainty Quantification<sup>2</sup>*

April 13, 2022

# Sensitivity analysis for high-fidelity models

- Global sensitivity analysis (GSA) aims to quantify the importance of uncertain input parameters
- Our main tool, the Sobol' index, is a variance-based GSA metric
- There are numerous practical challenges associated with GSA:
  - Quantity of interest (QoI) may be high-dimensional in terms of inputs
  - High-fidelity (high-accuracy) QoIs are often prohibitively expensive to evaluate
  - Many GSA methods rely on repeated sampling of the QoI
- We consider hierarchies of related models, organized by fidelity and computational cost
- **Goal:** perform GSA efficiently on expensive, high-fidelity models by leveraging information from cheaper, lower-fidelity models

# Polynomial chaos expansions (PCE)

- Given a scalar-valued function  $Q(\xi)$  with random vector  $\xi \in \mathbb{R}^d$ , the PCE of  $Q$  is

$$\tilde{Q}(\xi) = \sum_{k=0}^P \beta_k \Psi_k(\xi) \quad \text{and} \quad \beta_k = \frac{\mathbb{E}[Q(\xi)\Psi_k(\xi)]}{\mathbb{E}[\Psi_k^2(\xi)]},$$

where  $\{\Psi_k\}_{k \geq 1}$  is a family of orthogonal polynomials,  $\beta_k$ 's are PCE coefficients, and  $P$  controls the number of expansion terms

- The choice of basis is meant to guarantee orthogonality with respect to the distribution of  $\xi$  (e.g. Legendre polynomials and uniform distribution)<sup>1</sup>
- The number of PCE terms (for a total order construction) is

$$P + 1 = \frac{(r + d)!}{r!d!}, \quad \text{where } r = \text{total polynomial order}$$

---

<sup>1</sup>Le Maître and Knio, *Spectral methods for uncertainty quantification: with applications to computational fluid dynamics*, 2010.

- One can compute Sobol' indices from a PCE as a post process
- We define the Sobol' indices w.r.t.  $u \subseteq \{1, \dots, d\}$  as

$$S_u(Q) = \frac{\mathbb{V}ar[\mathbb{E}[Q(\boldsymbol{\xi}) \mid \boldsymbol{\xi}_u]]}{\mathbb{V}ar[Q(\boldsymbol{\xi})]} = \frac{S_u}{\mathbb{V}ar[Q(\boldsymbol{\xi})]} \quad \text{and} \quad T_i(Q) = \sum_{v \ni i} S_v(Q),$$

where  $S_u$  is the main effect and  $T_i$  is the total index

- The Sobol' indices of  $\tilde{Q}$  are computed as

$$S_u(\tilde{Q}) = \frac{\sum_{k \in K_u} \beta_k^2 \mathbb{E}[\Psi_k^2]}{\sum_{k=1}^P \beta_k^2 \mathbb{E}[\Psi_k^2]}$$

where  $K_u$  denotes the set of PCE terms that only depend on the parameter subset  $\boldsymbol{\xi}_u$

# Computing PCE coefficients

- A variety of methods exist for computing PCE coefficients, including quadrature, sparse quadrature, regression, etc.<sup>2</sup>
- Recalling  $\beta_k = \frac{\mathbb{E}[Q\Psi_k]}{\mathbb{E}[\Psi_k^2]}$ , we estimate the spectral projection,  $\mathbb{E}[Q\Psi_k]$ , using Monte Carlo (MC) integration
- Consider the MC estimator,

$$\beta_k = \frac{\mathbb{E}[Q\Psi_k]}{\mathbb{E}[\Psi_k^2]} \approx \frac{1}{\mathbb{E}[\Psi_k^2]} \frac{1}{N} \sum_{i=1}^N Q\left(\boldsymbol{\xi}^{(i)}\right) \Psi_k\left(\boldsymbol{\xi}^{(i)}\right),$$

where  $\boldsymbol{\xi}^{(i)}$  denotes the  $i$ th realization out of  $N$  i.i.d. realizations of  $\boldsymbol{\xi}$

- The variance of this estimator is proportional to  $N^{-1}$ , thus convergence will be slow

---

<sup>2</sup>Le Maître and Knio, *Spectral methods for uncertainty quantification: with applications to computational fluid dynamics*, 2010.

# Multilevel Monte Carlo (MLMC)

- Consider the hierarchy of models  $Q_0, Q_1, \dots, Q_L$  with a “level” index  $\ell$  and respective costs  $C_0 \leq C_1 \leq \dots \leq C_L$
- We can decompose the  $k$ th spectral projection,

$$\mathbb{E}[Q\Psi_k] = \sum_{\ell=0}^L \mathbb{E}[(Q_\ell - Q_{\ell-1})\Psi_k] := \sum_{\ell=0}^L \mathbb{E}[P_{\ell,k}], \text{ where } Q_{-1} = 0$$

- This decomposition leads to the multilevel Monte Carlo<sup>3</sup> (MLMC) estimator for  $\beta_k$

$$\hat{\beta}_k = \frac{1}{b_k} \sum_{\ell=0}^L \frac{1}{N_\ell} \sum_{i=1}^{N_\ell} P_{\ell,k}^{(i)}$$

- One can then derive an optimal sample allocation by solving, for example,

$$\min_{N_0, \dots, N_L} \mathbb{V}ar[\hat{\beta}_k] = \frac{1}{b_k^2} \sum_{\ell=0}^L \frac{\mathbb{V}ar[P_{\ell,k}]}{N_\ell} \quad \text{subject to} \quad C_{tot} = \sum_{\ell=0}^L N_\ell C_\ell \leq \bar{C}$$

---

<sup>3</sup>Giles, “Multilevel Monte Carlo methods”, 2015.

# Hybrid MLMC-PCE Method

- **Goal:** Optimally allocate multilevel samples  $(N_\ell)_{\ell=0}^L$  in order to minimize the variance of the MLMC estimator for a Sobol' index
- We consider the target  $\mathbb{V}ar[\hat{\mathcal{S}}_u]$ , which we seek to minimize by means of some optimal sample allocation
- The variance of the PCE-estimated variance can be written as

$$\mathbb{V}ar \left[ \sum_{k=1}^P b_k \hat{\beta}_k^2 \right] = \sum_{k=1}^P b_k^2 \mathbb{V}ar[\hat{\beta}_k^2] + \sum_{k \neq z} b_k b_z \mathbb{C}ov \left[ \hat{\beta}_k^2, \hat{\beta}_z^2 \right],$$

where we can select the terms corresponding to any  $\hat{\mathcal{S}}_u$

- We derived expressions for  $\mathbb{V}ar[\hat{\beta}_k^2]$  and  $\mathbb{C}ov[\hat{\beta}_k^2, \hat{\beta}_z^2]$  in terms of  $(N_\ell)_{\ell=0}^L$  and the relevant statistical moments of the QoI
- From this, we can estimate  $\mathbb{V}ar[\hat{\mathcal{S}}_u]$  and optimize the sample allocation,  $(N_\ell)_{\ell=0}^L$

# Optimal sample allocation for GSA

The optimal sample allocation problem has various formulations. Given a subset  $u \subseteq \{1, \dots, d\}$ , an upper bound on cost,  $\bar{C}$ , and a reduction factor,  $\varepsilon$ , we have:

$$① \quad \min_{N_0, \dots, N_L} \mathbb{V}ar[\mathcal{S}_u] \quad \text{s.t.} \quad C_{tot} = \sum_{\ell=0}^L N_\ell C_\ell \leq \bar{C}$$

$$② \quad \min_{N_0, \dots, N_L} C_{tot} = \sum_{\ell=0}^L N_\ell C_\ell \quad \text{s.t.} \quad \mathbb{V}ar[\mathcal{S}_u] \leq \varepsilon (\mathbb{V}ar[\mathcal{S}_u])_0$$

- These formulations have been extended to arbitrary sets of Sobol' indices (e.g. all first order indices, all total indices, the full QoI variance)
- In practice, we compute the optimal allocation numerically using tools in SciPy
- The flexibility of the hybrid method in optimizing the allocation distinguishes it from other comparable GSA methods

## Numerical results

- We present a three-level version of the Ishigami function<sup>4</sup>:

$$q_0(\boldsymbol{\theta}) = \sin(\theta_1) + (0.6) a \sin^2(\theta_2) + (9) b \theta_3^2 \sin(\theta_1), \quad C_0 = 0.001$$

$$q_1(\boldsymbol{\theta}) = \sin(\theta_1) + (0.95) a \sin^2(\theta_2) + b \theta_3^4 \sin(\theta_1), \quad C_1 = 0.05$$

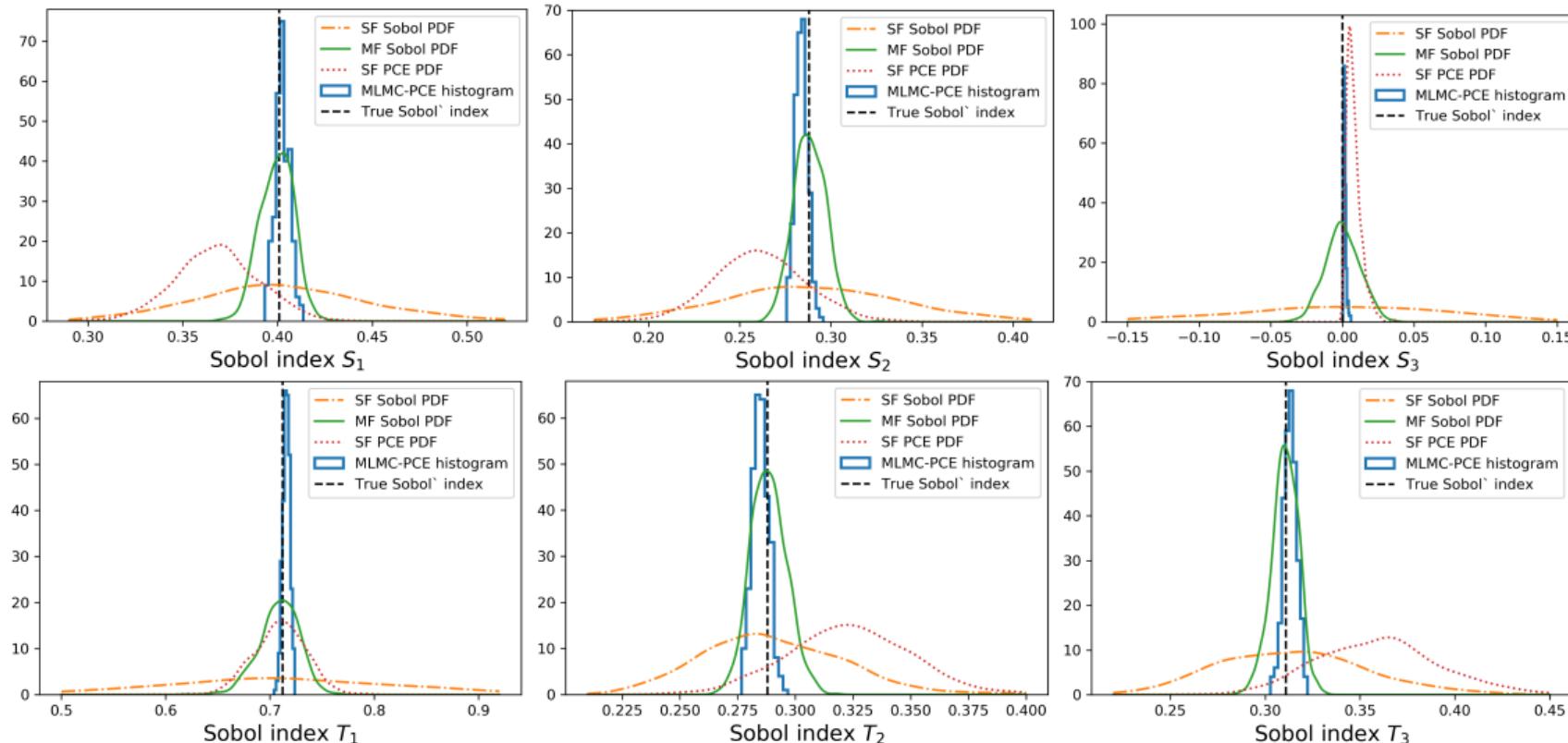
$$q_2(\boldsymbol{\theta}) = \sin(\theta_1) + a \sin^2(\theta_2) + b \theta_3^4 \sin(\theta_1), \quad C_2 = 1.0$$

- We can compute all PCE and Sobol' terms analytically for verification
- We compare 4 competing GSA methods, using an equivalent cost for each:
  - ➊ Our hybrid MLMC-PCE method
  - ➋ Standard MC method (“Saltelli sampling”)
  - ➌ Single-fidelity PCE method
  - ➍ The recent multifidelity GSA method of Qian and Willcox<sup>4</sup> (MF-Saltelli)

---

<sup>4</sup>Qian et al., “Multifidelity Monte Carlo estimation of variance and sensitivity indices”, 2018.

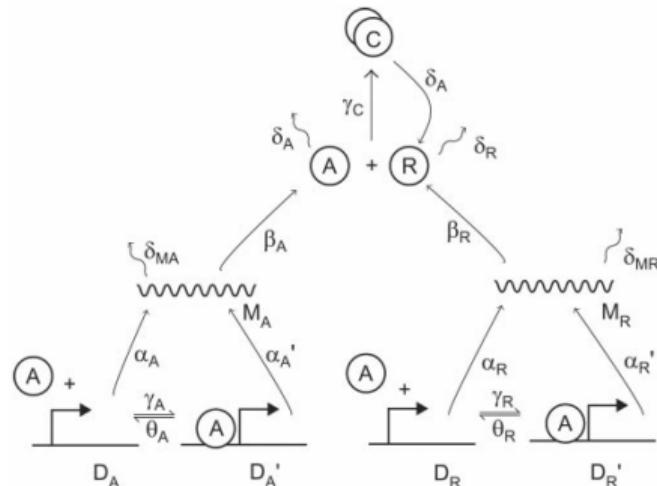
# Comparison of hybrid method with other GSA methods



PDFs of first order Sobol' indices,  $S_i$ , and total Sobol' indices,  $T_i$ ,  $i = 1, 2, 3$ .

# Chemical reaction networks

- We consider an ODE model for the genetic oscillator system from chemical kinetics<sup>5</sup>
- The system has 16 uncertain parameters, which are the reaction rate constants



| Reaction                               | Propensity Function         | Parameter     | Value |
|----------------------------------------|-----------------------------|---------------|-------|
| $P_a \rightarrow P_a + mRNA_a$         | $\alpha_A P_a$              | $\alpha_A$    | 50.0  |
| $P_{a-A} \rightarrow P_{a-A} + mRNA_a$ | $\alpha_a \alpha_A P_{a-A}$ | $\alpha_R$    | 0.01  |
| $P_r \rightarrow P_r + mRNA_r$         | $\alpha_R P_r$              | $\beta_A$     | 50.0  |
| $P_{r-A} \rightarrow P_{r-A} + mRNA_r$ | $\alpha_r \alpha_R P_{r-A}$ | $\beta_R$     | 5.0   |
| $mRNA_a \rightarrow mRNA_a + A$        | $\beta_A mRNA_a$            | $\gamma_C$    | 20.0  |
| $mRNA_r \rightarrow mRNA_r + R$        | $\beta_R mRNA_r$            | $\gamma_A$    | 1.0   |
| $A + R \rightarrow C$                  | $\gamma_C A R$              | $\theta_A$    | 50.0  |
| $P_a + A \rightarrow P_{a-A}$          | $\gamma_A P_a A$            | $\gamma_R$    | 1.0   |
| $P_{a-A} \rightarrow P_a + A$          | $\theta_A P_{a-A}$          | $\theta_R$    | 1.0   |
| $P_r + A \rightarrow P_{r-A}$          | $\gamma_R P_r A$            | $\delta_A$    | 1.0   |
| $P_{r-A} \rightarrow P_r + A$          | $\theta_R P_{r-A}$          | $\delta_R$    | 0.2   |
| $A \rightarrow \emptyset$              | $\delta_{AA}$               | $\delta_{MA}$ | 10.0  |
| $R \rightarrow \emptyset$              | $\delta_{RR}$               | $\delta_{MR}$ | 0.5   |
| $mRNA_a \rightarrow \emptyset$         | $\delta_{MA} mRNA_a$        | $\delta'_A$   | 1.0   |
| $mRNA_r \rightarrow \emptyset$         | $\delta_{MR} mRNA_r$        | $\alpha_a$    | 10.0  |
| $C \rightarrow R$                      | $\delta'_A C$               | $\alpha_r$    | 5000  |

- **Goal:** use the hybrid MLMC-PCE method with optimal sample allocation for efficient GSA. QoI: time-integrated value of the repressor protein,  $R(t)$

<sup>5</sup>Vilar et al., “Mechanisms of noise-resistance in genetic oscillators”, 2002.

# Optimization results

- Setup: 3 level genetic oscillator ODE, cost:  $[0.025, 0.125, 1.0]$ , total order 2 PCE basis, sample profile:  $[10^5, 10^4, 10^3]$
- We will solve the following problem

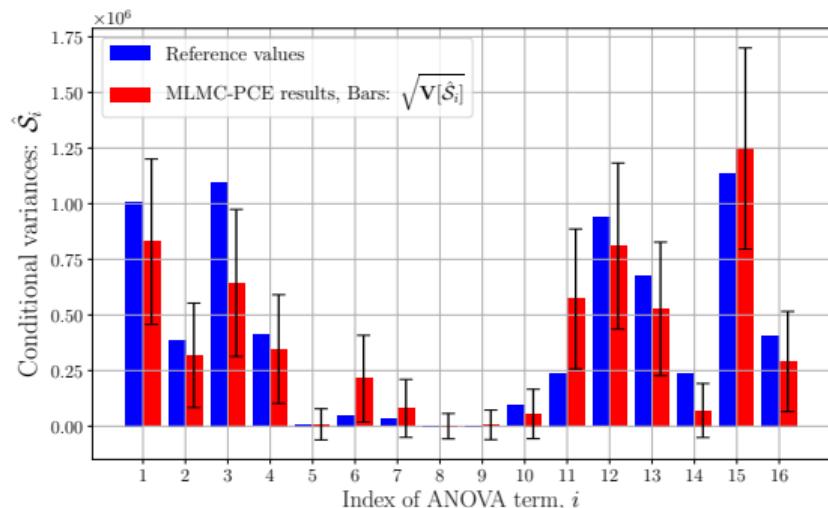
$$\min_{N_0, \dots, N_L} \sum_u \mathbb{V}ar[\mathcal{S}_u] \quad \text{s.t.} \quad C_{tot} \leq 1000$$

- Basis reordered and truncated by choosing a threshold on  $r_i = \frac{\sum_{k=1}^i b_k \hat{\beta}_k^2}{\widehat{\mathbb{V}ar}[Q]}$

|                                           | 22 PCE modes, $r = 1.0$ |                             | All 153 PCE modes |                             |
|-------------------------------------------|-------------------------|-----------------------------|-------------------|-----------------------------|
| Target                                    | Opt. profile            | Opt. profile (scaled)       | Opt. profile      | Opt. profile (scaled)       |
| All main                                  | [6727, 3726, 191]       | $[35.2, 19.5, 1] \cdot 191$ | [6717, 3726, 191] | $[35.2, 19.5, 1] \cdot 191$ |
| All total                                 | [6714, 3711, 194]       | $[34.6, 19.1, 1] \cdot 194$ | [6666, 3694, 197] | $[33.8, 18.8, 1] \cdot 197$ |
| $\widehat{\mathbb{V}ar}[\mathbb{V}ar[Q]]$ | [6609, 3646, 205]       | $[32.2, 17.8, 1] \cdot 205$ | [9748, 3325, 180] | $[54.2, 18.5, 1] \cdot 180$ |

# Chemical reaction network results

- We compute all first order and all total indices (using optimal sampling) and report confidence intervals computed from  $\text{Var}[\hat{\mathcal{S}}_i]$  and  $\text{Var}[\hat{\mathcal{T}}_i]$ ,  $i = 1, \dots, 16$



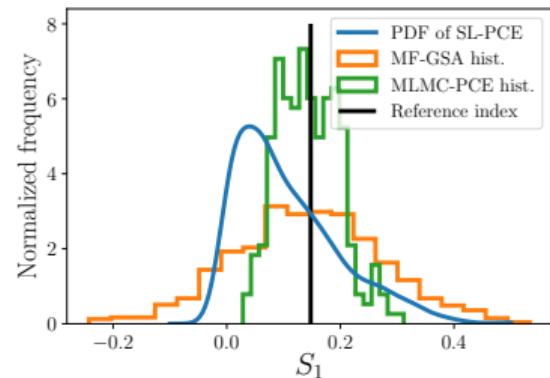
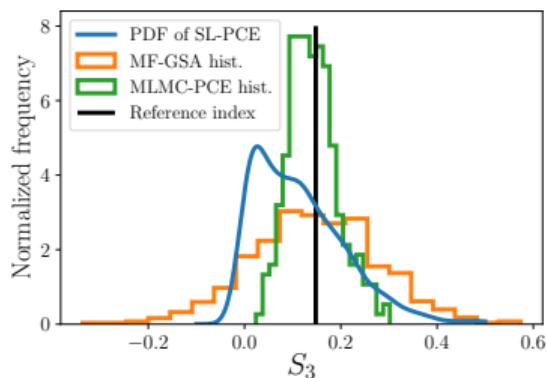
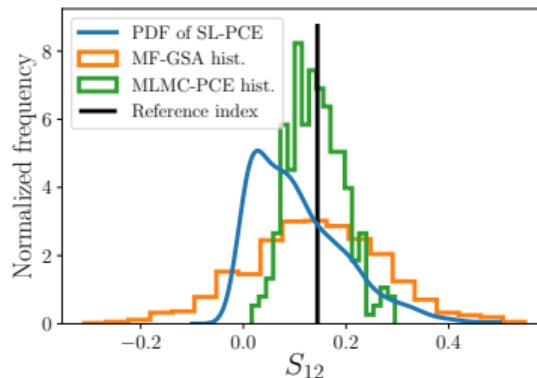
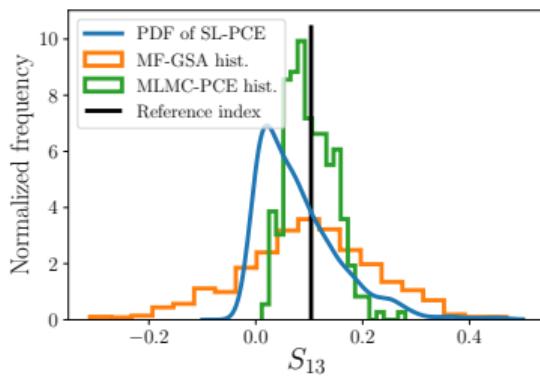
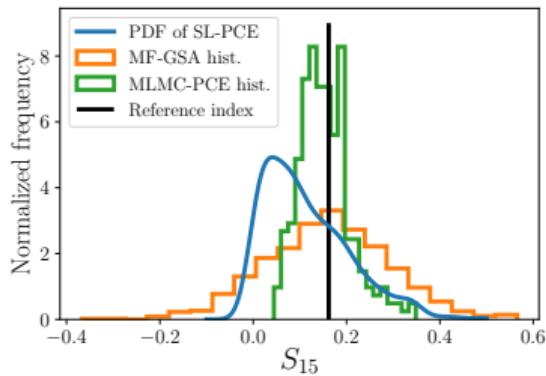
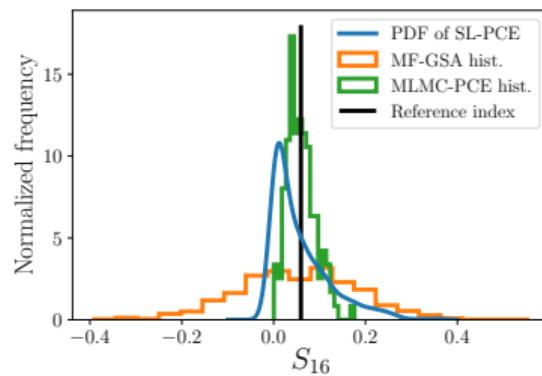
Left: first order conditional variances



Right: total order conditional variances

- Next, we compare the performance of the hybrid method against other GSA methods

# Chemical reaction network results



Distributions of a few first order indices, comparing SL-PCE, MF-GSA, and the hybrid method.

# Challenges/Ongoing Work

- Investigated multiple optimization frameworks for sample allocation
- Investigated the effects of using unbiased estimators and various strategies for PCE basis truncation
- Produced a library of Python tools implementing the hybrid method
- Published an early version in Sandia's CSRI Summer Proceedings:  
[Michael Merritt et al. "Hybrid multilevel Monte Carlo polynomial chaos method for global sensitivity analysis". \*Sandia CSRI Summer Proceedings 2020\* \(2020\)](#)
- A journal article is in preparation
- Future work includes extensions to the multifidelity MC and approximate control variate frameworks<sup>6</sup>

---

<sup>6</sup>Gorodetsky et al., "A generalized approximate control variate framework for multifidelity uncertainty quantification", 2020.

## References

Giles, Michael B. "Multilevel Monte Carlo methods". *Acta Numerica* 24 (2015), p. 259.

Gorodetsky, Alex A et al. "A generalized approximate control variate framework for multifidelity uncertainty quantification". *Journal of Computational Physics* 408 (2020), p. 109257.

Le Maître, Olivier and Omar M Knio. *Spectral methods for uncertainty quantification: with applications to computational fluid dynamics*. Springer Science & Business Media, 2010.

Merritt, Michael et al. "Hybrid multilevel Monte Carlo polynomial chaos method for global sensitivity analysis". *Sandia CSRI Summer Proceedings 2020* (2020).

Qian, Elizabeth et al. "Multifidelity Monte Carlo estimation of variance and sensitivity indices". *SIAM/ASA Journal on Uncertainty Quantification* 6.2 (2018), pp. 683–706.

Vilar, José MG et al. "Mechanisms of noise-resistance in genetic oscillators". *Proceedings of the National Academy of Sciences* 99.9 (2002), pp. 5988–5992.

---

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

# Overview of derivation process

- Write PCE estimators as sums of MC samples
- Expand squared sums and group together terms with nonzero covariance
- Rewrite variances or covariances in terms of raw moments
- Below is an example of the single level covariance expression:

$$\begin{aligned}\text{Cov} \left[ (\hat{\beta}_k)^2, (\hat{\beta}_z)^2 \right] &= \text{Cov} \left[ \left( \frac{1}{\mathbb{E}[\Psi_k^2]N} \sum_{i=1}^N Q^i \Psi_k^i \right)^2, \left( \frac{1}{\mathbb{E}[\Psi_z^2]N} \sum_{i=1}^N Q^i \Psi_z^i \right)^2 \right] \\ &= \frac{1}{\mathbb{E}[\Psi_k^2]^2 \mathbb{E}[\Psi_z^2]^2} \left[ \frac{\mathbb{E}[Q^4 \Psi_k^2 \Psi_z^2] - \mathbb{E}[Q^2 \Psi_k^2] \mathbb{E}[Q^2 \Psi_z^2]}{N^3} + \frac{(2N-2) (\mathbb{E}[Q^3 \Psi_k^2 \Psi_z] \mathbb{E}[Q \Psi_z] - \mathbb{E}[Q^2 \Psi_k^2] \mathbb{E}[Q \Psi_z]^2)}{N^3} \right. \\ &\quad + \frac{(2N-2) (\mathbb{E}[Q^3 \Psi_z^2 \Psi_k] \mathbb{E}[Q \Psi_k] - \mathbb{E}[Q \Psi_k]^2 \mathbb{E}[Q^2 \Psi_z^2])}{N^3} + \frac{(2N-2) (\mathbb{E}[Q^2 \Psi_k \Psi_z]^2)}{N^3} \\ &\quad \left. + \frac{4(N-1)(N-2) (\mathbb{E}[Q^2 \Psi_k \Psi_z] \mathbb{E}[Q \Psi_k] \mathbb{E}[Q \Psi_z])}{N^3} - \frac{(4N^2 - 10N + 6) (\mathbb{E}[Q \Psi_k]^2 \mathbb{E}[Q \Psi_z]^2)}{N^3} \right]\end{aligned}$$

- We have derived estimators for all MLMC variances and covariances<sup>7</sup>

---

<sup>7</sup>Merritt et al., “Hybrid multilevel Monte Carlo polynomial chaos method for global sensitivity analysis”, 2020.