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Abstract—Heterogeneous computing is becoming common in
the HPC world. The fast-changing hardware landscape is pushing
programmers and developers to rely on performance-portable
programming models to rewrite old and legacy applications
and develop new ones. While this approach is suitable for
individual applications, outstanding challenges still remain when
multiple applications are combined into complex workflows. One
critical difficulty is the exchange of data between communi-
cating applications where performance constraints imposed by
heterogeneous hardware advantage different data layouts. We
attempt to solve this problem by exploring asynchronous data
layout conversions for applications requiring different memory
access patterns for shared data. We implement the proposed
solution within the DataSpaces data staging service, extending it
to support heterogeneous application workflows across a broad
spectrum of programming models. In addition, we integrate
heterogeneous DataSpaces with the Kokkos programming model
and propose the Kokkos Staging Space as an extension of the
Kokkos data abstraction. This new abstraction enables us to
express data on a virtual shared space for multiple Kokkos
applications, thus guaranteeing the portability of each application
when assembling them into an efficient heterogeneous workflow.
We present performance results for the Kokkos Staging Space
using a synthetic workflow emulator and three different scenarios
representing access frequency and use patterns in shared data.
The results show that the Kokkos Staging Space is a superior
solution in terms of time-to-solution and scalability compared to
existing file-based Kokkos data abstractions for inter-application
data exchange.

I. INTRODUCTION

High performance computing has stepped into a heteroge-
neous era as various computing devices are integrated into
new supercomputers. As of June 2021, seven out of the top
ten systems on the TOP500 list [1] are built with GPUs. This
increases the computing capability of these systems, but also
increases the complexity of the applications deployed on them.
Scientific simulations are capable of running at higher fidelity
by utilizing the computing power of heterogeneous machines
[2]. A variety of applications, such as LULESH [3], LAMMPS
[4] and GTC-P [5], have been ported to GPUs to improve their
capability.

Although these applications obtain great benefits from being
ported to new hardware, the cost of refactoring legacy code
for new architectures and platforms is high. It requires that

application programmers understand the performance char-
acteristics of the target computing platform as well as the
application program in detail. Further, assembling heteroge-
neous simulations and analyses into a scalable in-situ workflow
becomes even more challenging than porting individual appli-
cations. Either refactoring all the components in the workflow
to an identical programming model or designing ad-hoc data
transformations between components with mismatching data
layouts renders the entire porting process time-consuming and
complicated.

Performance portable programming frameworks, such as
Kokkos [6] [7] and RAJA [8], are widely adopted as productive
solutions to write applications targeted at all major HPC
platforms. Applications adapted to the high-level abstractions
provided by such frameworks allow users to simply choose
a particular execution platform at compile time. While these
programming frameworks consider the performance portability
of single applications, to the best of our knowledge, none of
them have the capability to link multiple heterogeneous ap-
plications into a complex workflow using similar performance
portable abstractions. Workflow coupling middleware, such as
DataSpaces [9] and ADIOS [10] [11], provide application-
level data exchange abstractions for efficient code coupling.
However, they do not consider the heterogeneity between com-
ponents and various data representations associated with these
components, which is usually represented as the requirement
for the same data but in different memory layouts.

Our previous work [12] built a workflow for projection-
based reduced-order models (pROMs) [13] in Kokkos. We
observed that while using a uniform programming model in
a single application is intuitive, coupling multiple compo-
nents implemented with optimal data layout for underlying
hardware requires data reorganization between them. Existing
programming interfaces and semantics are inflexible from
the workflow-level perspective, which forces the data reor-
ganization to be offloaded to the application implementation.
Staging-based coupling tasks are typically I/O-bound, which
enables us to utilize compute resources in the staging area for
data reorganization. Building on these insights, we explore
the effects of several data reorganization methods based on
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data access patterns and propose a Self-Adaptive Hybrid
Reorganization (SAHR) method. We implement this method
within the DataSpaces data staging service, and find that we
are able to leverage workflow data access characteristics to
improve heterogeneous I/O performance.

In addition, we integrate our solution into the Kokkos
programming model and propose the Kokkos Staging Space
as an extension of the Kokkos data abstraction, improving the
portability of individual applications within a heterogeneous
workflow by enabling asynchronous data layout conversions.
Ultimately, this achieves performance portability of both indi-
vidual applications and combined workflows of these applica-
tions.

The Kokkos Staging Space extends the data copy semantics
of the Kokkos view, a platform-agnostic representation of a
multi-dimensional array, to heterogeneous application work-
flow settings. Our data exchange API for heterogeneous views
requires only one additional parameter at initialization.

Our main contributions can be summarized:

o We explore the trade-offs between three data reorganiza-
tion methods within the DataSpaces data staging service
with respect to the available resources and features of the
workflow, then propose a Self-Adaptive Hybrid Reorgani-
zation (SAHR) method which reduces resource consump-
tion by collecting data access pattern information.

o« We design the Kokkos Staging Space, a prototype of
a portable application coupling framework, implemented
based on Heterogeneous DataSpaces as an extension of
the Kokkos data abstraction, which enables asynchronous
data layout conversions for heterogeneous applications.

« We evaluate the Kokkos Staging Space on current lead-
ership computing systems using a synthetic workflow
running up to ~5K cores and demonstrate that it can
reduce I/O time by up to 98.7% in comparison to C++
standard I/O and HDFS.

The rest of the paper is organized as follows: Section II
provides background and related work. Section III describes
the design and implementation details of the data reorgani-
zation methods. We then present the architecture and a usage
example of the Kokkos Staging Space in Section IV. In Section
V, we evaluate the trade-offs between the data reorganization
methods and compare the Kokkos Staging Space with two
other current methods of inter-application data exchange based
on a file used by Kokkos. We present our conclusions and
future work in Section VI

II. BACKGROUND AND RELATED WORK

Coupled workflows still do not benefit from the latest
hardware equipped in HPC clusters due to porting difficulties
[14]. Often, heterogeneous hardware imposes constraints on
which data layouts are performant that are stronger than the
constraints on homogeneous systems [15] [16]. This may
necessitate data transformations when moving data between
execution platforms in order to maintain overall application
performance. In addition, heterogeneity is found not only
within hardware but also in the software stack. Even if all of
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Fig. 1. Data layout mismatch between heterogeneous applications. Left:
Application O partitions a 4x4 2D array into 4 processors. Application
1 partitions it into 2 processors. Above: Row-major data layout in each
processors memory. Below: Column-major data layout in each processor’s
memory. Arrows show required data movement.

Fig. 2. Complex workflow requires combinatorial numbers of ad-hoc data
layout transformations for polymorphic applications.

the applications are running on CPUs, programming languages
and underlying libraries exhibit different data layout require-
ments. Kokkos, as a heterogeneous programming framework,
accommodates bindings to include Python and Fortran applica-
tions into its ecosystem [17] [18]. Adding these applications to
coupled workflows or reusing math kernels further introduces
heterogeneity issues. Figure 1 illustrates a simple workflow
consisting of two heterogeneous applications with four and
two processes respectively. The first application serializes
data in row-major format with its programming abstraction
while the second requires column-major data to reach peak
performance in the example platform. Such reorganizations
are usually achieved by ad-hoc transformations after the I/O
process, which incurs extra overhead and coding complexity.
With every workflow component also targeting several op-
tional layout models, extreme scale workflows make porting
a combinatorial problem, as shown in Figure 2. Refactoring
all of the components to an identical programming model and
implementing ad-hoc data transformations between all com-
ponents of a workflow makes such a task an insurmountable
challenge.

There are several popular heterogeneous programming
frameworks targeted at simplifying the application porting
process to a specific platform. Kokkos, RAJA, and SYCL
[19] provide high-level programming abstractions where users
are able to specify a parallel execution policy, manage multi-
dimensional data, and execute collective operations in a flex-
ible manner. Applications written in the provided program-
ming abstraction can be configured to support platforms at
compile time. A cornerstone of this portability is the multi-
dimensional data abstraction, which is optimized for each



architecture to minimize data access penalties. Both Kokkos
and RAJA refer the multi-dimensional data abstraction as
the view, while SYCL calls it a buffer. These programming
frameworks have also been extended across nodes by applying
the MPI+X model to improve performance through node-level
parallelism [20] [21]. Instead of focusing on the portability and
heterogeneity of only a single application, our work strives to
assemble multiple heterogeneous applications into a workflow
while maintaining their portability.

To enhance I/O performance, [22] [23] [24] apply efficient
layout reorganization mechanisms to parallel I/O systems
by identifying data access patterns. However, they do not
consider heterogeneity requirements from a workflow per-
spective. Apache Arrow [25] defines a language-independent
columnar memory format to enable data reorganization for
heterogeneity, but it has not been applied to HPC settings.
Coupling frameworks for scientific workflows such as DataS-
paces [9] and ADIOS [11] define coupling semantics between
components in a workflow. Unfortunately, they only operate
as a pipeline between applications and offload the data trans-
formation to the workflow components. While these basic
coupling semantics together with application-specific data
transformations work to create a consistent multi-component
workflow, this approach lacks flexibility and is labor-intensive
when components can be configured to any given platform at
compile time. In contrast, our work integrates data reorgani-
zation inside the coupling and adds heterogeneity semantics,
enabling flexible coupling between polymorphic components.

III. HETEROGENEOUS DATA REORGANIZATION METHODS

Data producer applications in extreme-scale in-situ work-
flows using a staging-based approach are computationally
intensive, and therefore extra overhead generated by hetero-
geneity should not be handled by these applications. We thus
propose four data reorganization methods, reorganization at
reorganization at destination (RAD), reorganization at staging
as requested (RASAR), reorganization at staging in advance
(RASIA), and self-adaptive hybrid reorganization (SAHR),
and present the details of these four methods.

A. Reorganization at Destination (RAD)

To prepare data for a different layout than its original
format, the most straightforward approach is to get the original
data and reorganize it right before usage. We implement this
approach by adding a generic function for data reorganization
inside the data get API call. The data reorganization is
triggered after the original data is moved from the DataSpaces
server to the destination application/client. This straightfor-
ward design has obvious advantages. The embarrassingly par-
allel data reorganization task displays consistent performance
and is easy to scale out with the destination application. The
weakness of this approach becomes apparent when workflow
is complex. As shown in Figure 3a, if multiple applications
request the data the same layout which is different from the
original layout, every application has to reorganize the data

Source App @
Staging
Server

Destination App 1

Destination App 2 Query | Read | Reorganization

(a) Reorganization at Destination (RAD)

Source App

Staging
Server

—
Heterogeneous
Replica

Reorganization | Cache

Destination App 1

Destination App 2

(b) Reorganization at Staging as Requested (RASAR)

o

Stage | Reorganization | Cache

Source App

Staging
Server

C—
Heterogeneous
|| Replica

Query Read

Destination App 1

Destination App 2 Query | Read %

(c) Reorganization at Staging in Advance (RASIA)

Fig. 3. A schematic illustration of data reorganization methods.

on its own, which is a waste of both computational resources
and time to solution.

B. Reorganization at Staging as Requested (RASAR)

Placing the data reorganization in the staging server is an-
other viable solution. Figure 3b illustrates data reorganization
requested at the staging server. The first get request for the
data in a different layout from the original layout will invoke
the reorganization process at the server. A lock mechanism
is applied here to avoid repetitive reorganization overheads
as well as duplicated heterogeneous replica storage. The first
request for a data object in the heterogeneous layout will
acquire the lock so that other concurrent requests will be
halted until the first one finishes. Then, the staging server will
send the reorganized data to the proper destination according
to the requests and add the reorganized data object into its
storage at almost the same time. Since the staging server
keeps the replicated data in the new layout, subsequent get
requests for the data in this layout can reuse the existing one,
which saves I/O time as well. This design leverages the idle
computing resources at the staging server as data staging is an
I/0O-bounded operation. However, placing reorganization in the
middle of the data request and transfer still leads to elongated
I/O time for the first request for each data object. If the staging
server is extremely limited in scale, server-side reorganization
may also consume more time.

C. Reorganization at Staging in Advance (RASIA)

In order to hide the data reorganization overhead and make
it transparent to the destination applications, overlapping the
reorganization time in the staging server with the processing
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Fig. 4. A schematic illustration of Self-Adaptive Hybrid Reorganization (SAHR) method.

time in the destination applications is essential. We achieve this
goal by reorganizing the data to all layouts at the staging server
in advance. As shown in Figure 3c, the staging server starts to
reorganize the entire data domain immediately after receiving
it from the source applications. In this approach, all subsequent
get requests do not have to spend extra time on reorganization,
since the staging server has a heterogeneous data replica for all
possible layouts. However, a major weakness of this design is
the huge memory requirement in the staging server to support
multiple data layouts for every single data object exchanged
in the workflow. This very likely results in waste, if a given
workflow does not use all layout types.

D. Self-Adaptive Hybrid Reorganization (SAHR)

Although a dynamic decision between RAD, RASAR, and
RASIA based on the workflow features maximizes the advan-
tages of each method, the decision synchronization between
servers and clients, as well as server instances, becomes
a bottleneck when the scale increases. Thus, we propose
a self-adaptive hybrid reorganization method based on two
assumptions:

o A particular numerical application is interested in a fixed
set of data objects with iterative values.

o The particular numerical application only requests one
specific layout for each data object.

This method combines the three methods above by adding
a data access pattern collection module. The data access
pattern collection module extracts a pattern for each requested
variable from the query by collecting its layout, domain index
descriptor(bounding box), and request frequency. While each
individual destination application holds a pattern record for
itself, the staging server keeps the pattern record for all
components in the workflow. As shown in Figure 4, when
a data get request is initiated, the module will check local
records to determine if the request exhibits a new data object
get pattern that should be collected asynchronously and sent
to the server. Algorithm 1 describes the details of the pattern
update process at both the destination application and the
staging server. For those data objects which intersect with
existing get patterns from other applications in the workflow,
the server will calculate a superset to prepare the data for all
applications. When data is put to the server, it will check the
get pattern list for the intersected record and transform the

data object to the destination layout in advance. The pattern
collection module predicts what the applications will require
after their first data get request, which makes reorganization at
staging efficient and accurate. When a data query is received
by the server, it first searches the data objects in the requested
layouts. If the requested data object exists, then the client does
not reorganize it after the bulk transfer is complete. Otherwise,
the server transfers the data object in the source layout and
lets the client reorganize it at the destination. In this design,
requested data objects are reorganized in advance except for
the initial get, and a missing search implicitly indicates that
the server is busy. Thus, reorganizations are then placed to
destination clients to reduce the overhead load on the server.

Algorithm 1 Get Pattern Update

godsc <MetaData for the queried data object {Contains
varname, bounding box descriptor, version, layout,
src_layout, etc..}
query < Query(qodsc) {Request for a specified data
object}
pattern < ExtractPattern(query)
record_list <SearchGetPattern(pattern.varname,
pattern.layout)
if record_list '= NULL then
for all record in record_list do
if CheckGridIntersection(pattern.bbox, record.bbox)
then
pattern <—CalculateSuperSet(pattern, record)
end if
end for
end if
record_list «+UpdateGetPattern(pattern)

IV. IMPLEMENTATION

Our implementation aims to provide a concise coupling
tool that can be applied to the extension of any portable
programming framework for heterogeneous workflow support.
We develop an in-transit mechanism to collect data access
patterns and manage data reorganization as well as replication
for heterogeneous memory layouts based on the DataSpaces
staging service. Specifically, we explore three approaches with
different placements for in-transit data reorganization and
finally propose a self-adaptive hybrid reorganization(SAHR)



method to automatically adapt with system resource con-
straints and workflow characteristics. In addition, we integrate
our heterogeneous data staging solution with Kokkos ecosys-
tem by supporting inter-application data exchanges between
various memory layouts. The resulting Kokkos Staging Space
allows us to simply transfer the data between applications in
the Kokkos semantics at runtime irrespective to the data layout
and the underlying memory subsystems of the individual
application instances.

A schematic overview of the Kokkos Staging Space is pre-
sented in Figure 5. It is built upon the DataSpaces framework
and directly leverages the existing components by reusing
its data transport, indexing, and querying capabilities. The
DataSpaces client APIs are seamlessly integrated with the
Kokkos core library to support Kokkos: :Staging APIs.
The key components of the Kokkos Staging Space include
the Access Pattern Collection module and the Data Reorga-
nization module inside Heterogeneous DataSpaces as well as
the Kokkos: : Staging Interface on the top. These modules
cooperate to facilitate data movement and sharing across
heterogeneous HPC workflow applications.

A. Heterogeneous DataSpaces

Heterogeneous DataSpaces is extended from existing solu-
tions by adding an Access Pattern Collection module and a
Data Reorganization module. The Access Pattern Collection
module is responsible for new data access pattern recognition
and record as detailed in Section III-D. The Data Reorganiza-
tion module accommodates a unified data layout management
abstraction for the data staging movement. Specifically, it
implements general-purpose transposition algorithms for ar-
bitrary data structure but provides a plugin interface for third-
party algorithms as well. It is also responsible for managing
the supported data layout and scheduling the data reorga-
nization operations by cooperating with the Access Pattern
Collection module. In a complex workflow, the required data
layouts of multiple applications can be varied. If such a
workflow scales out, the complexity of data access requests
would be a Cartesian product of the number of layout types
and the number of data objects. When thousands or even
millions of asynchronous heterogeneous data requests flood
in, concurrency also becomes a major concern if the data
reorganization operations are performed at the staging server.
To overcome this problem, we have integrated concurrency
and heterogeneous replica controls in the Data Reorganiza-
tion module. When the staging server receives data access
requests for heterogeneity, the server only launches a data
reorganization for the first request and keeps a replica with
the reorganized layout for the subsequent requests so that the
particular layout is served through the replica.

B. Kokkos::Staging Interface

For the purpose of making our new data staging capa-
bility compliant to other memory spaces in Kokkos, we
wrap DataSpaces client operations with a new namespace
Kokkos: :Staging. Figure 6 presents a sample code that

Staging Server
_ T — 4
Coordination Layer

Data Reorganization I ‘
Transformation

Kokkos::CudaSpace

Data Access Kokkos::HostSpace ‘

Pattern

Query
Engine

Indexi o™
ndexin| =
L] Algorithm | | Kokkos::Staging Interface |

Coordination Layer

Yoe©?

N-Dimensional
Data Storage

Heter
Replica Control I |

Data Reor Access |
Pattern

Transformation
Algorithm

Collection |
1

Kokkos
Application
Client

|
| Layout Control I |
|
|

ASync Control

Heterogeneous DataSpaces

Fig. 5. Architecture of Kokkos Staging Space. The data reorganization module
and Kokkos::Staging API were implemented on top of the DataSpaces and
Kokkos framework respectively.

exchanges data between two Kokkos applications whose views
are in different layouts. To use Kokkos: : Staging function-
alities, an initialization call is required. This call is responsible
for initializing an internal DataSpaces client, assuming that
Kokkos initialization call has been made. At the end of each
program but before Kokkos finalizes, Kokkos: :Staging
needs to be called in order to release the resource binding
to the DataSpaces server. After the initialization, users can
declare a Kokkos::Staging view similar to what they
are supposed to do with other Kokkos memory spaces [6].
The layout of Kokkos: : Staging view should be explicitly
declared for heterogeneity, otherwise, it would use the default
layout of the host space. In accordance with the data copy
semantics in Kokkos memory spaces, a deep copy between
Kokkos::Staging view and other memory space views
is served by zero-copy non-blocking put/get operations for
Kokkos applications to transfer data to/from the staging server.
However, setting the version and bounding box of the vari-
able before the actual data transfer is optional but strongly
suggested. When reader applications request the data with
a different layout, an extra line is needed to declare the
heterogeneity, as shown in line 26 in Figure 6. An implicit data
reorganization will be performed in deep_copy function
after this explicit call for user awareness.

With these fundamental APIs, users can exchange data
between heterogeneous applications. Coupled applications are
expected to be aware of the variable name and local bounding
box of the data. They can then simply call deep_copy () to
enable data exchange between the coupled applications. Users
are free to implement complex functions by encapsulating
these basic operations.

V. EVALUATION

We test our heterogeneous data reorganization methods
using a synthetic workflow emulator, which simulates various
data read patterns. We performed these experiments on the
Frontera system [26] at the Texas Advanced Computing Center
(TACC). Frontera hosts 8368 compute nodes, each containing
a Dual Intel Xeon Platinum 8280 (“Cascade Lake”) 28-core
processor with 192GB of DDR4 RAM and 240GB SSD. All
of the test runs in subsequent sections have been executed 3
times and the average result is reported.

To better understand the impact of the read access rate
and layout matching between a source and a destination on
workflow performance, we select two scenarios similar to



1 Kokkos::Staging::initialize();

2 {

3 using ViewHost_lr_t = Kokkos::View<Data_t*x*,

4 Kokkos::LayoutRight, Kokkos::HostSpace>;

5 using ViewHost_11_t = Kokkos::View<Data_t**,

6 Kokkos::LayoutLeft, Kokkos::HostSpace>;

7 using ViewStaging_lr_t = Kokkos::View<Data_tx%,

8 Kokkos: :LayoutRight, Kokkos::StagingSpace>;
9 using ViewStaging_ 11 t = Kokkos::View<Data_t«x,

10 Kokkos: :LayoutLeft, Kokkos::StagingSpace>;

11 ViewHost_lr_t v_P ("PutView", 10, 1i1);

12 ViewStaging_lr_t v_S_lr("StagingView_LayoutRight",

13 i0, 1i1);

14 ViewStaging_11_t v_S_11("StagingView_LayoutLeft",

15 io, 1i1);

16 ViewHost_11_t v_G("GetView", 10, il);

17 // global domain geometric descriptor

18 Kokkos::Staging: :set_lower_bound(v_S_1lr, 1b0, 1bl);
19 Kokkos::Staging: :set_upper_bound(v_S_1lr, 1b0, 1bl);
20 Kokkos::Staging::set_lower_bound(v_S_11, 1b0, 1bl);
21 Kokkos::Staging::set_upper_bound(v_S_11, 1b0, 1bl);

2 // global iteration

23 Kokkos::Staging::set_version(v_S_lr, version);
24 Kokkos::Staging::set_version(v_S_11, version);
5 // bind two staging views in different
26 Kokkos::Staging::view_bind_layout (v_S_11, v_S_1r);
21 // from
28 Kokkos::deep_copy(v_S_1lr, v_P);
2 // from
30 Kokkos::deep_copy (v_G, v_S_11);
31}

32 Kokkos::Staging::finalize();

layout

host to staging

staging to host

Fig. 6. Code example of data exchange between Kokkos views in different
layouts

[27]: reading the entire data domain and reading a subset
data domain for all time steps. In both scenarios, the coupled
scientific applications are modeled to read/write data to/from a
3-D data domain. The data is modeled as writes over multiple
iterations or time steps in a fixed layout, and reads in a similar
temporal manner but with heterogeneous layouts.

In our synthetic tests, two application codes, namely readers
and writers, are used to emulate generic end-to-end data
movement behaviors in real coupled simulation workflows. As
their names suggest, writers produce simulation data and write
it to the staging servers and readers read the data from staging
servers and then perform some analysis. In all of the test cases,
one writer application writes the data for the entire domain in
a fixed layout over all of the simulation time steps into the
staging servers. One reader application also reads the data,
using either the same layout or a different layout as needed,
but varies the data access pattern. To demonstrate reorganized
data reuse, a second reader, which shares the same read pattern
as the first one, is added when the reader requests the data in
a layout different from that of writer.

A. Exploring the task placement of data reorganization

This experiment evaluates the impact on I/O performance in
the scalable in-transit workflow of the four data reorganization
methods introduced in Section III. To better understand the
trade-offs between these approaches, three critical workflow
metrics are selected according to [28]. Table I details the
base setup for all tests cases in this experiment. The second
reader starts after the first reader finishes data reads in this

TABLE I
EXPERIMENTAL SETUP CONFIGURATIONS FOR SYNTHETIC EXPERIMENTS

Data Domain 1024 x 1024 x 1024
No. of Parallel Writer Cores (Nodes) 512(16)
No. of Parallel Reader Cores (Nodes) 64(4)
No. of 2nd Parallel Reader Cores (Nodes) 64(4)
No. of Staging Cores (Nodes) 32(8)
Total Staged Data Size (15 Time-steps) 120 GB

experiment to eliminate interference between asynchronous
reader applications.

1) Metric 1 - Cycle time of writer and reader: Because our
synthetic writers and readers use a simplified data generator,
both of the applications have a relatively fast cycle time.
While this fast cycle time may accurately represent some
applications, applications with longer cycle times should be
studied as well. To simulate a longer cycle time, a pause is
added to our synthetic writers and readers after the completion
of computation but before the data movement in each cycle.
The four simulated cases were:

o Delay(0): writers and readers ran with no sleep com-

mand.

o Delay(5): writers and readers ran with 5 seconds of sleep

after each computation time step.

o Delay(10): writers and readers ran with 10 seconds of

sleep after each computation time step.

o Delay(20): writers and readers ran with 20 seconds of

sleep after each computation time step.

Figure 7 shows the I/O time per time step for each data
reorganization method with varying application cycle time. We
see that longer cycle times benefit data reorganization at the
staging server. RAD, where data reorganization takes place at
the reader side, cannot take advantage of any latency hiding
and keeps a steady I/O time regardless of the delay time.
Although the data reorganization in RASAR happens at the
staging server at the start of receiving get requests, it benefits
from the longer cycle time, because less frequent data get
requests leave enough time for the data reorganization at the
staging server, avoiding a cascading slowdown in the following
requests. RASIA and SAHR obtain the most advantage from
the longer cycles, with a speedup of up to 96% and 78%
compared to RAD and RASAR respectively in Delay(20),
because the data reorganization overhead can be hidden by
the staging server and the readers can proceed in parallel.
However, in Delay(0), the reorganization in the server means
the staging servers are computationally bound, which causes
both the read and write times of RASAR, RASIA, and SAHR
to increase. For the second reader, RASAR, RASIA, and
SAHR have nearly identical read times due to directly hitting
the reorganized replica at the staging server, while RAD still
has to transform every data object. This “cache hit” saves up
to 95% read time.

2) Metric 2 - Staging server scale: Placing the data reor-
ganization task at the staging server has a great potential to
make the staging operations computationally bounded. Con-
sequently, the response rate to incoming I/O requests would
slow down, which might further affect the entire workflow
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Fig. 7. Comparison of I/O time per time step among four data reorganization methods with varying cycle time of applications

adversely. For an in-transit paradigm, the scale of simulation
and analysis is predetermined. Thus, we change the number
of the staging server cores to explore how the staging server
scale impacts the performance. The three server configurations
with the scale of 512(16) writer cores(nodes) and 64(4) reader
cores(nodes) used were:

o 8(2): staging server ran with 8(2) cores(nodes).
o 16(4): staging server ran with 16(4) cores(nodes).
o 32(8): staging server ran with 32(8) cores(nodes).

Figure 8 demonstrates the I/O time per time step among
the four data reorganization methods with different staging
server sizes. Since the first reader starts with the writer at the
same time, the read time of the first time step is extremely
long because the reader must wait for the data generated
and transferred to the staging server. The statistic in the
first time step is always excluded due to its uncertainty.
Several insights can be drawn from Figure 8. RASAR, RASIA,
and SAHR are subject to a dramatic I/O time increase as
the server:reader ratio decreases while RAD keeps constant
performance because the limited server resources cannot afford
the computational overhead incurred by reorganization. Such
a heavy workload can even lead to performance degradation
for the writers since the write call is blocking and the response
time to the write requests increases. For the first reader,
RASAR is sensitive to the server scale changes because of no
time overlapping. It performs the worst in the server:reader
ratio of 8:64 case while RASIA and SAHR have relatively
the same performance as RAD on average. The read time
of RASIA and SAHR witness an extraordinary slowdown in
the beginning, but finally converge to the read time of the
second readers who completely reuse the reorganized replicas
at the server, which is due to the I/O behavior variation in
the asynchronous workflow we were running as time step
increases. From the second time step, RASIA and SAHR
must wait for the reorganization, which happens immediately
after the staging server receives the data from the writer, to
be completed. As the writer stops putting data to the staging
server and the server finishes the reorganization in advance,
they start to benefit from reorganized replicas at the server.
The read time of them becomes shorter than the other two
from time step 7 and converges from time step 9. This also
explains the large span of the error bar of RASIA and SAHR
in Figure 8. As for the second reader, because the first reader

did not cache the heterogeneous replica at the server in the
initial time step, SAHR always uses the RAD method and thus
spends more time in the first time step than other methods that
use cache.

3) Metric 3 - Data size of reading subset domain: Be-
sides the scenario where the entire data domain is read, the
mere need for a subset of data domain is representative for
applications such as interactive visualizations and descriptive
statistical analysis [29]. Reorganizing the data as requested
saves both computation and storage overhead. How the subset
data size results in terms of time and memory also draw
our interest. Thus, we only read a geometric core, whose
coordinates are {1023=¢ 1024+d} jn each dimension, of the
entire domain as the subset data. The three distances(d) used
were:

o d=128: readers only read a 128 x 128 x 128 cube from the
geometric core of the entire data domain.

e d=256: readers only read a 256256256 cube from the
geometric core of the entire data domain.

e d=512: readers only read a 512x512x512 cube from the
geometric core of the entire data domain.

In Figure 9, we show the I/O time per time and memory
consumption step among proposed reorganization methods
with different sizes of subset domain to read. It is observed
that all the methods perform identically on the writer side. For
the first reader, while RAD and RASAR require longer time as
subset size increases, RASIA and SAHR stay constant because
of the computation in advance. Although SAHR typically
requires slightly more read time than RASIA, it uses the
memory more efficiently by collecting the data access pattern.
RAD only uses the memory for the original data despite
the always longer read time. RASAR saves only the part of
reorganized data as reader queried, which consumes up to the
double size of the original data. However, RASIA always saves
the entire data domain in another layout, which remains stable
memory usage to the double size of the original data.

From the above-mentioned test cases, a trade-off is drawn
with respect to the available resources and the features of the
workflow planned to run. Apart from the main applications, if
the additional resource for the staging server is very limited,
RAD turns to perform the best in both time to the solution
and the memory usage, since others are likely to be slow
due to the heavy workload at the server and even breaks
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to read

down due to the insufficient memory size. Applications with a
longer cycle time benefit from the reorganization in advance as
RASIA works. For the situation where applications only need
a subset of data, RASAR outperforms others by computing
as needed. SAHR presents its advantage in adaption to a
particular workflow by balancing memory consumption and
I/O time.

B. Strong scaling comparison to existing Kokkos backends

Besides the experiment to explore the trade-offs between
different data reorganization placements, we compare the
SAHR method implemented in our heterogeneous data staging
system with two other existing backends of inter-application
data exchange based on the file in Kokkos framework: StdFile
(C++ standard I/O binary files who need ad-hoc data reor-
ganization if layouts between applications are mismatched.),
Parallel HDF5 [30] (HDFS5 files who need ad-hoc data reor-
ganization if layouts between applications are mismatched.).
Because the data coupling through the file system does not
support asynchronous I/O between applications, writer, reader,

and the second reader are running in sequence in all the
cases of this test. To simulate a typical extreme scale in-
situ workflow, such as XGC1 [31], FLASH [32], according
to [33], a strong scaling test is performed with the detailed
configuration described in Table II.

In Figure 10, we show the result of strong scaling com-
parison among C++ standard I/O, HDF5, and DataSpaces
in the fixed data domain for both homogeneous and het-
erogeneous data exchange between writer and reader. It is
clearly observed that DataSpaces outperforms the other two
existing baseline approaches by the I/O time reduction of 27%-
79% and 77%-98% for the writer and reader respectively,
except for DataSpaces SAHR, which sacrifices a little at
writer side but gains the overhead hide at reader side with
the performance identical to homogeneous data get. This is
expected because data storage and management in DataSpaces
avoids the involvement of secondary storage. In contrast to
the result of fixed scale experiments, DataSpaces shows great
overall scalability and acceptable overhead with the increasing
number of application processors from 300 to S5k in total,



TABLE 11
EXPERIMENTAL SETUP CONFIGURATIONS OF DATA DOMAIN, CORE-ALLOCATIONS AND SIZE OF THE STAGED DATA FOR STRONG SCALING TESTS

Data Domain 1024 x 1024 x 1024
No. of Parallel Writer Cores (Nodes) 256(8) | 512(16) | 1024(32) | 2048(64) | 4096(128)
No. of Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)
No. of 2nd Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)
No. of Staging Cores (Nodes) 16(4) 32(8) 64(16) 128(32) 256(64)
Total Staged Data Size (15 Time-steps) 120 GB
Cycle Time 20 second
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Fig. 10. Strong scaling comparison of I/O time per time step among C++ standard I/O, HDF5 and DataSpaces

compared to the existing baseline approach.

From our strong scaling workflow simulations, we can
infer that file-based in-situ data exchange between applications
performs poorly at the extreme scale due to the unnecessary
involvement of the file system. In addition, heterogeneous
workflow makes file-based in-situ data exchange difficult to
provide portability from both performance and development
perspectives. On the contrary, our heterogeneous staging ser-
vice is able to tackle these cases easily and provide an I/O time
reduction of up to 97% in comparison to C++ standard I/O and
HDF5. Also, our staging service provides the common APIs
for heterogeneous applications, so developers could easily
couple them by adding extra a few extra lines. In summary,
our staging service can effectively support heterogeneous
multi-component scientific workflow thus guaranteeing the
portability of the individual applications at the extreme scale,
by efficiently reorganizing the data on the fly.

VI. CONCLUSION AND FUTURE WORK

Although heterogeneous programming frameworks have
emerged as effective solutions for porting applications to
various platforms, they are not capable of assembling these
applications into a heterogeneous in-situ workflow while main-
taining individual portability. We propose four data reorgani-
zation methods, RAD, RASAR, RASIA, and SAHR, which
simplify the exchange of data between heterogeneous appli-
cations requiring different memory access layouts and then
implement these methods within the Kokkos Staging Space,

an extension of Kokkos’ original data abstraction based on the
DataSpaces data staging framework. We evaluate the Kokkos
Staging Space on the TACC Frontera system using a synthetic
benchmark; our experimental results give insight into the
effectiveness and trade-offs between the four methods under
different access frequencies and use patterns in the shared data.
We demonstrate that the Kokkos Staging Space outperforms
the existing file-based Kokkos data abstraction both in time-
to-solution and scalability for inter-application data exchange.
The source code for our prototype implementation of the
Kokkos Staging Space is publicly available at https://github.
com/Zhang690683220/kokkos-staging-space. As future work,
we plan to support more data reorganization types, such as the
transformation between Array of Structs(AoS) and Struct of
Arrays(SoA), and to evaluate these methods using a real-world
scientific workflow of heterogeneous components.
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