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Background: Pulsed Neutron Generators

Neutron generators (NG): compact linear 
accelerators to produce neutrons via fusion 
reaction (D-D or D-T):

• Typically 100-500 kV acceleration 

potential

• Yield: 105 to 1011 n/s

• Pulse lengths: ~5 µs to CW

• Quasi-isotropic

• Neutron emission time and momentum 

may be tagged using the associated alpha 


Technical applications of neutron generators 
are diverse:

• Neutron activation analysis (NAA) and 

prompt gamma neutron activation analysis 
(PGNAA)


• Prompt fission neutron active interrogation 
(PFNAI) (D-D only)


• Delayed neutron active interrogation 
(DNAI)


• Neutron resonance transmission analysis 
(NRTA)


• Differential die-away analysis (DDAA)

Thermo Scientific MP320

106 n/s (D-D)

1000 Hz, ~100 µs pulse

Q = 3.27 MeV

Q = 17.58 MeV En = 14.06 MeV

(100% BR)

En = 2.45 MeV

(~50% BR)

Thermo Scientific P211

108 n/s (D-T)

100 Hz, ~10 µs pulse

D-T

D-D
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Primary NG-based Technologies of Interest

NAA:

• Sample irradiated with neutrons; activation products measured after irradiation (typical)

• 𝛽 and/or 𝜸 measurement 

PGNAA:

• Signature is prompt 𝜸-ray emission measured during irradiation

PFNAI:

• SNM interrogated w/ neutrons having energy lower than fission neutron end-point

• Presence of high-energy fission neutrons indicates SNM

DDAA:

• SNM interrogated w/ pulsed NG, neutrons detected after pulse exponentially “die away,” 

indicates fission chains → multiplicative SNM mass

PFNAI
PGNAA:

explosives detection DDAA

Runkle et al. NIMA 2012Lewis et al. Appl. Phys. Lett. 2014Im et al. JNST 2014
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NG-based Technology Relevance

NG-based technology discussed here 
primarily applied to nuclear 
nonproliferation, safeguards, and 
security:

• DNAI: 


• proven capability to measure 
uranium enrichment of thick/
shielded objects (safeguards)


• PFNAI/DDAA: 

• capability to detect attribute of 

shielded fissile material 
(nonproliferation, security)


• may be developed for uranium 
assay (safeguards)


• NRTA:

• capability to quantify actinide 

isotope composition 
(nonproliferation, safeguards, and 
security/arms control)

DNAI: U enrichment

J. Nattress et al. Phys. Rev. Applied 2018

NRTA: spent fuel characterization

Sterbentz & Chichester, INL Tech. Rep. 2010
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Traditional Temporal Analysis

• Traditionally, these analyses categorize 
events as prompt or delayed


• Conservative bound is used to exclude the 
category not desired


• Binary categorization loses valuable timing 
data


• Time profile of induced radiation unique to 
production pathway and/or half-life of 
induced species


• Event timestamp and energy orthogonally 
measured; combination theoretically 
improves sensitivity


• Finer analysis requires detailed 
knowledge of primary generator radiation 
time profile

Prompt:

PFNAI

PGNAA

Delayed:

DNAI

NAA

NRTA

DDAA
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ity

time
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Pulse Time Profiles of Neutron Generators

• Ion source tightly controlled to 
produce quasi-square pulse


• Most neutron generators achieve 
high output by utilizing high duty 
factor/pulse rate, yields low peak 
output


• Major drawback for DNAI, DDAA


• For high peak output, quasi-square 
pulse shape sacrificed, complex 
pulse shape arises


• Thermo Scientific P211: 

• 100 Hz, 10 µs pulse: 0.1% duty 

cycle!

• avg. output 108/s, peak >1011/s

• Excellent for DNAI, DDAA, 

PGNAA

• Challenge: pulse profile is non-

trivial
Preston et al. J. of Instr. 2013

Thermo A-325 pulse profiles
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Challenges in Measuring NG Primary Time Profile

Detector

D2 gas Tritiated targetFocusing electrodes

D+ e-

Atomic and 
bremsstrahlung x-rays:

<80 keV, likely to scatter 
in air

80-100 kV

Primary 14 MeV neutron

Scattered neutron:

“room return”

lower E, longer TOF

Activation 𝜸: prompt have 
different TOF, may be 
convolved w/ therm. time, 
delayed are loosely 
correlated w/ pulse time

Runkle et al. NIMA 2012

Secondary interactions can distort the measured 
time profile and spectrum, must be accounted for.
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Primary Method for Measuring Time Profile: 4He detector

4He scintillation detector
Shadow bar (2’ HDPE)P211 Neutron Generator

• 4He detector a strong candidate for pulse shape characterization:

• intrinsic low sensitivity to photons and electrons

• recoil-based detector to measure D-T neutron spectrum


• P211 NG measured with and without shadow bar to isolate the room return 
effects


• Shadow bar results identify portion of measured spectrum not impacted by 
room return


• P211 reference signal ~10 µs before radiation is emitted, digitized in same 
DAQ and compared against detector signal
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4He Detector Fundamentals

En
4He, E⍺=0

4He, 
E⍺=64%En

n

n’
~190 bar natural He

Scintillation light detected w/ multiple SiPMs

Scattering kinematics allow maximum energy 
transfer of 64% from neutron to 4He nucleus, which 
generates scintillation signal


Intrinsically low sensitivity to 𝜸-rays, no PSD required
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Generation of 4He Spectral and Temporal Data

𝝙t 𝝙t 𝝙t 𝝙t𝝙t 𝝙t𝝙t𝝙t𝝙t

Accept these 
inter-pulse times

𝝙t = 225 ns

For each set of pulses within a 225 ns window:








PHseg =
nch

∑
ch=1

PHchannel

tseg =
∑nch

ch=1 tchannel

nch
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Results: Shadow Bar Characterization

At recoil energies above 4 
MeV, >90% of the measured 
signal is direct signal from 
generator


Performing measurements 
with and without SB is 
impractical for realistic 
applications. 


Using a 4 MeV energy 
deposition requirement is a 
simpler alternative to measure 
the time profile in a single 
measurement


Edep = 4 MeV →En > 6.25 MeVAt recoil energies below 1.5 
MeV, >90% of the measured 
signal is room return
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Results: Time Profile Measurement

Pulse appears as superposition of two distinct pulses

Low-energy events 
overestimate 
prominence of second 
feature: impact of 
secondary radiation 
from first feature
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Results: Time Profile Measurement

Initial peak illustrates 
impact of room return:

• High energy: ~1 µs 

FWHM, peak @ 11.0 µs

• Low energy: ~1.5 µs 

FWHM, peak @ 11.2 µs


Rising edge is also clearly 
slower for low energy: room 
return has longer flight 
path/response time
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Result Confirmation: Organic Scintillator

Same measurement conducted w/ organic scintillator:

• 3.14 MeVee threshold:


• LO corresponding to 6.25 MeV proton recoil (Enqvist et 
al., NIMA 2013)


• Pile-up rejected

• Pulse shape discrimination applied to reject 𝜸-rays


OS time-profile showed visually good agreement w/ 4He results
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Conclusions and Further Work

• The direct, primary P211 neutron time profile was isolated from room 
return and measured with a 4He detector

• 4He detector validated for use as diagnostic of NG spectrum/time 

profile

• Allows for rapid characterization w/ no shadow bar measurement 

or PSD required

• P211 initial peak > 3x more intense than secondary peak, 

indicating peak output of > 1011 n/s. Fast falling edge of initial 
peak may be useful for intra-pulse DDAA and NAA.


• With time profile characterized, work can move to developing advanced 
temporal analysis of neutron active interrogation signatures

• Deconvolution of measured signature time profile and measured direct 

time profile

• Spectral “weighting” of measured signature based on measured direct 

time profile
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