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Replacement of Liquid Electrolyte
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Liquid Electrolyte (LE)
• High ionic conductivity
• Fills void spaces
• Several heat release pathways
• Flammable solvent

Solid Electrolyte (SE)
• OK ionic conductivity
• Non-flammable (inherently safe?)
• Poor interfacial contact

Albertus, P., Babinec, S., Litzelman, S. et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries.



Solid-State Batteries, Why the Excitement?
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Two Primary Advantages
• Energy density
• Li-metal anode

• Safety
• Replacement of flammable liquid electrolyte

Shishir Jairam, Lux Research, October 27, 2021



Challenges Introduced by Removing Liquid Electrolyte
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Interfacial Resistance
• Voids

• Li-ion transport
• Li dendrite growth
• Volumetric energy density

Banerjee, A., Wang, X., Fang, C., Wu, E.A., and Meng, Y.S. (2020). Interfaces and Interphases in All-Solid-
State Batteries with Inorganic Solid Electrolytes.



Overcoming Interfacial Resistance
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Surface Treatment
• Heat, acid, mechanical

• Improve Li wetting, increase contact area

Interlayers
• Protective coating

• Increase solid electrolyte stability, enhance mechanical properties

Pressure
• ~10 MPa (100 atm)

• Decrease void space, maintain contact during volume expansion

Liquid electrolyte/ionic liquids
• Reduce interfacial resistance



How Safe Are All-Solid-State Batteries?
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Motivation
 All-Solid-State Batteries (ASSBs) are assumed to be inherently safe
• Flammable liquid electrolyte removed
• Interfacial resistance RIF is a key challenge

 Solid-State Batteries (SSBs) may use liquid electrolyte to reduce cathode RIF
• Concerns raised on safety impact
• How important are these concerns?



Scope
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 Safety quantified through thermodynamic calculations of heat release
• ASSB vs. SSB vs. LIB (Li-ion battery)

• Cathode – NMC111
• Solid electrolyte - LLZO
• Liquid electrolyte – LiPF6 in EMC
• Anode – Graphite or Li-metal

• Different failure conditions
• External heating
• Short circuit
• Mechanical failure of the solid electrolyte (SE)

• Ignore details of geometry and casing



Key Findings
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 Liquid electrolyte in SSBs
• Increase in heat release

• At low volume per electrode area, manufacturability and performance are more important
• SSB potential temperature rise below cascading propagation

Short circuit failure
• Higher potential temperature rise in ASSBs and SSBs than LIBs

• Heat release over smaller volume and mass

Mechanical failure of SE
• Gases from cathode contact Li-metal

• Significant heat release



Thermal Model
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Rxn# Reaction Description Reaction Equation
R1 Cathode decomposition 2MO2→2MO + O2

R2 Cathode-electrolyte 2C4H8O3 + 9O2→8CO2 + 8H2O
R3 Anode-electrolyte 4LiC6 + 2C4H8O3→4C6 + 3C2H4 + 2H2 + 2Li2CO3

R4 Cell discharge Li + MO2→LiMO2

R5 Anode-oxygen 4Li + O2→2Li2O

Relevant Reactions

Shurtz, R.C. (2020). A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry.
Shurtz, R.C., and Hewson, J.C. (2020). Review—Materials Science Predictions of Thermal Runaway in Layered Metal-Oxide Cathodes: A Review of Thermodynamics
Shurtz, R. (2021). Lithium-ion Battery Thermodynamic Web Calculator. https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/.

Failure Mode Reactions Involved
External heating R1, R2, and R3
Short circuit R4
Mechanical failure R1 and R5

Failure Modes

https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/


Heat Release vs. Liquid Volume Fraction (VF)
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All: short circuit heat release equal

ASSB: no heat release from external heating

LIB: heat release dependent on VF (20 to 40%)

SSB: Heat release negligible <8% VF
• Cathode pores filled with SE

ASSB: large heat release on SE mechanical failure



Thermal Model
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Cathode SE/Separator
Format δ (μm) VF AM δ (μm)

ASSB 
& SSB

Present-day 60 0.6 500
Advanced 60 0.6 50
Theoretical 1 60 0.6 20
Theoretical 2 100 0.7 20

LIB

Present-day 
through 
Theoretical 1

60 0.9 20

Theoretical 2 100 0.7 20

Increasing
Energy Density



Heat Release Dependence on Cell Format
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Present day: SSB heat release similar to ASSB

Advanced: Significant jump in ASSB/SSB heat release
     ASSB/SSB short circuit approaching LIB

Theoretical 1: ASSB/SSB short circuit exceeds LIB

Theoretical 2: Jump in ASSB/SSB worse than LIB

SSB –  external heating
ASSB/SSB –  short circuit
ASSB – mechanical failure
LIB –  external heating
LIB –  short circuit



Potential Temperature Rise

13Torres-Castro, L., Kurzawski, A., Hewson, J., and Lamb, J. (2020). Passive Mitigation of Cascading Propagation in Multi-Cell Lithium Ion Batteries.

External Heating: LIB highest
 SSB below typical propagation

Short Circuit: ASSB/SSB exceeds LIB at Theoretical 1

Mechanical Failure: ASSB approaches LIB



Conclusions
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 We consider thermodynamic heat release as our safety measure
• SSBs are not ALWAYS inherently safer than LIBs

 Potential temperature rise increases significantly with energy density
• Critical consideration for future ASSBs/SSBs

 High heat release from SE mechanical failure
• O2 reaction with Li-metal

 SSBs with <8% liquid electrolyte by cathode volume
• Heat release small enough that cost, manufacturability, and performance 

enhancements may allow for commercialization
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Can I abuse your batteries?

Request



Conclusions

16

 We consider thermodynamic heat release as our safety measure
• Fire safety depends on geometry and environment (future work)

 Potential temperature rise increases significantly with energy density
• Critical consideration for future ASSBs/SSBs

 High heat release from SE mechanical failure
• O2 reaction with Li-metal

 SSBs with <8% liquid electrolyte by cathode volume
• Heat release small enough that cost, manufacturability, and performance 

enhancements may allow for commercialization
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Questions?

Alex Bates
ambates@sandia.gov

https://www.linkedin.com/in/
alex-bates/
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Extending Scenario C to SSB and LIB
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Amount of liquid electrolyte per unit area, 
for reference
• SSB contains 0.6 μL cm-2 (@0.1 VF of LE)
• LIB contains 3.62 μL cm-2 (@0.3 VF of LE)

Rxn# Name Reaction
R6 Anode-carbon dioxide 2Li + 2CO2→Li2CO3 + CO
R7 Anode-water 2Li + 2H2O→2LiOH + H2



Heat Release Dependence on
Solvent and Energy Densities
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