

Neural networks capture the deformation of lattice metamaterials

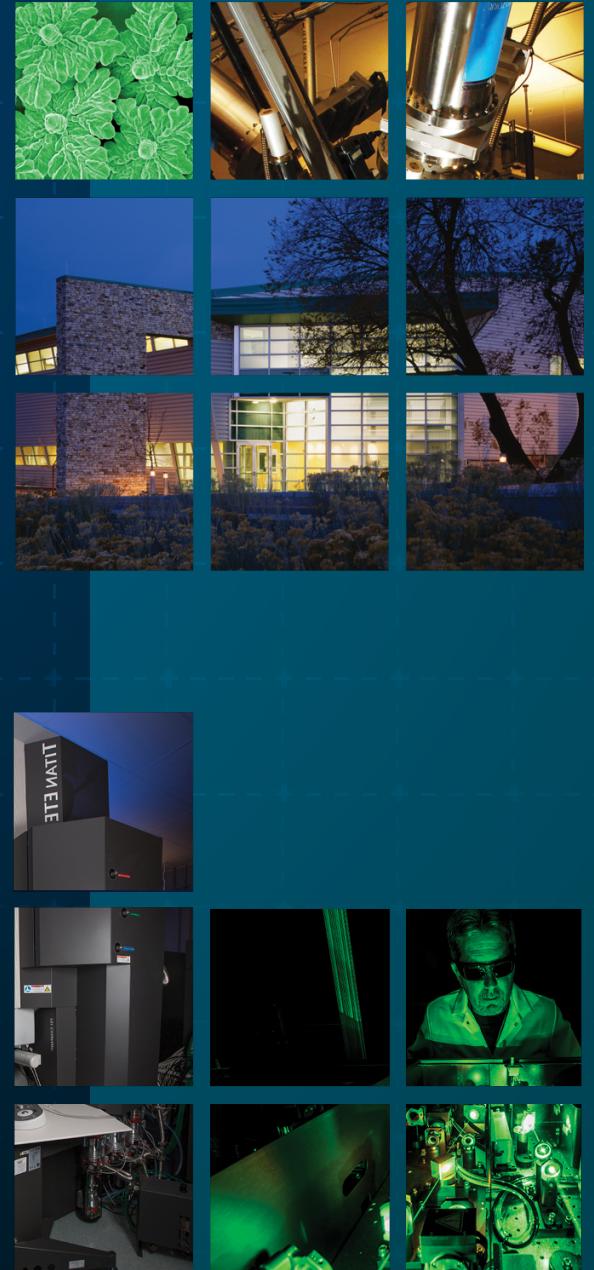
PRESENTED BY

Brad L. Boyce

Sandia
National
Laboratories

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



BIG SCIENCE AT THE NANOSCALE

CINT is a user facility providing cutting-edge nanoscience and nanotechnology capabilities to the research community.

Access to our facilities and scientific expertise is **FREE** for non-proprietary research.

Research areas:

- Quantum Materials Systems
- Nanophotonics and Optical Nanomaterials
- ***In-Situ Characterization and Nanomechanics***
- Soft, Biological, and Composite Nanomaterials

**To learn more and
apply to use the facilities, visit:
<https://cint.lanl.gov>**

- Comprehensive nanoscience capabilities
- Free access with a successful 2-page user proposal

Nanobrücken 2021

Nanomechanical Testing Conference

February 23–24, 2021 | 16:00 - 21:00 CET / 9:00AM – 2:00PM CST

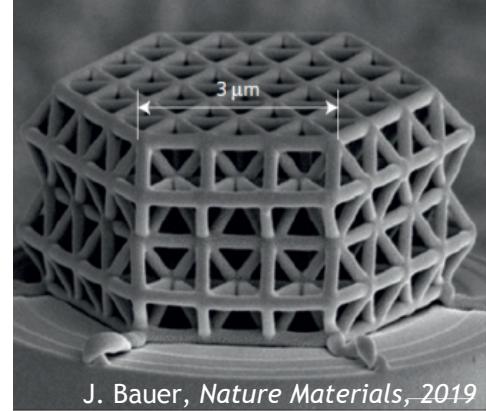
Nanocrystalline Cu
Cyclic fatigue loading at 300 Hz

↑
Loading direction

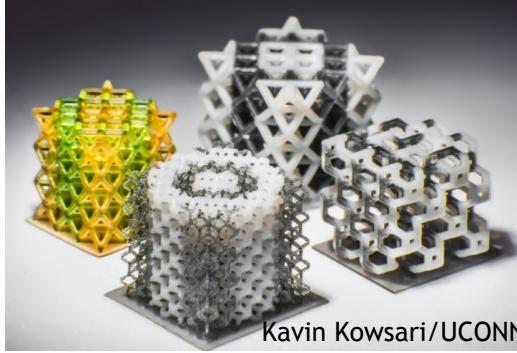
100 nm

Lattices: tailorable properties

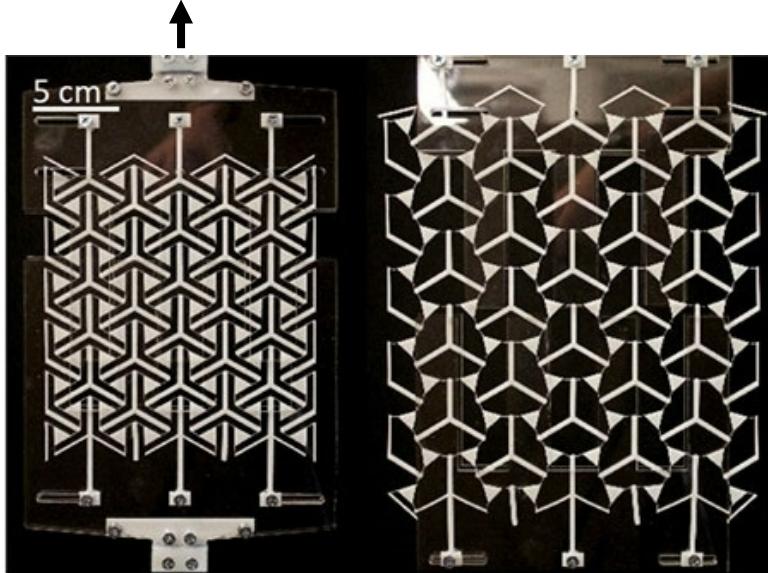
© HRL Laboratories, LLC/Photo by Dan Little



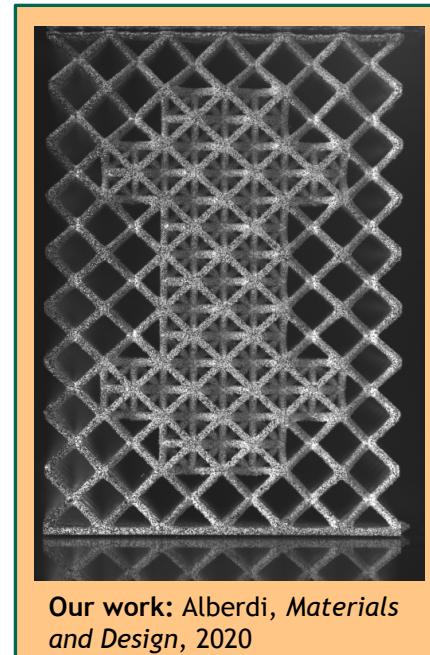
J. Bauer, *Nature Materials*, 2019



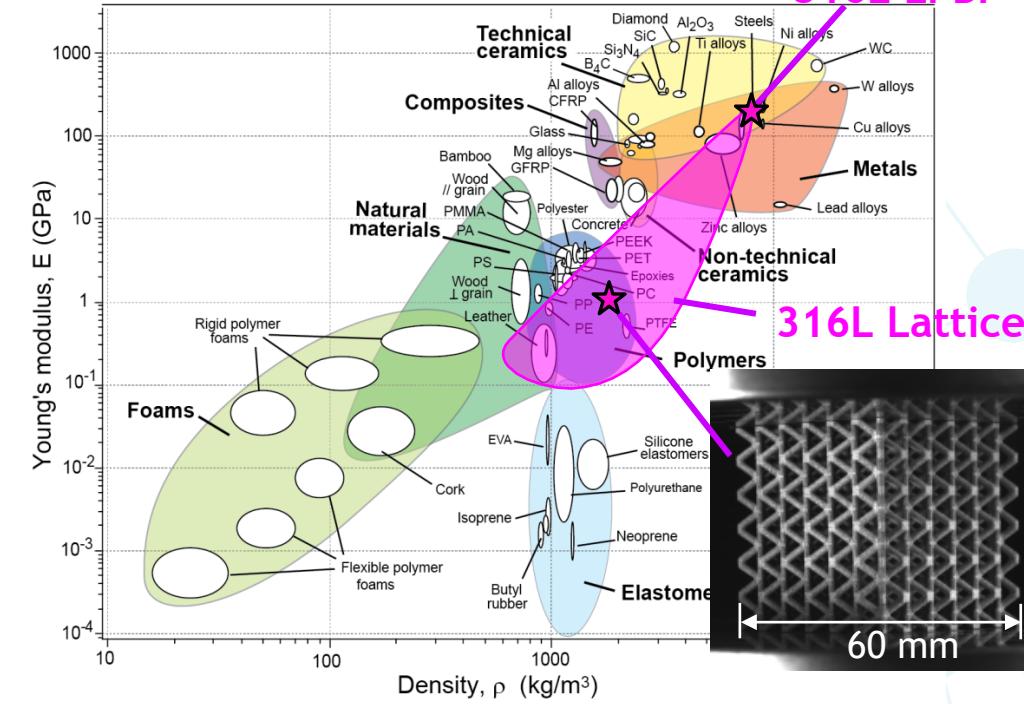
Kavin Kowsari/UConn



X. Shang, *J. Materials Research*, 2018

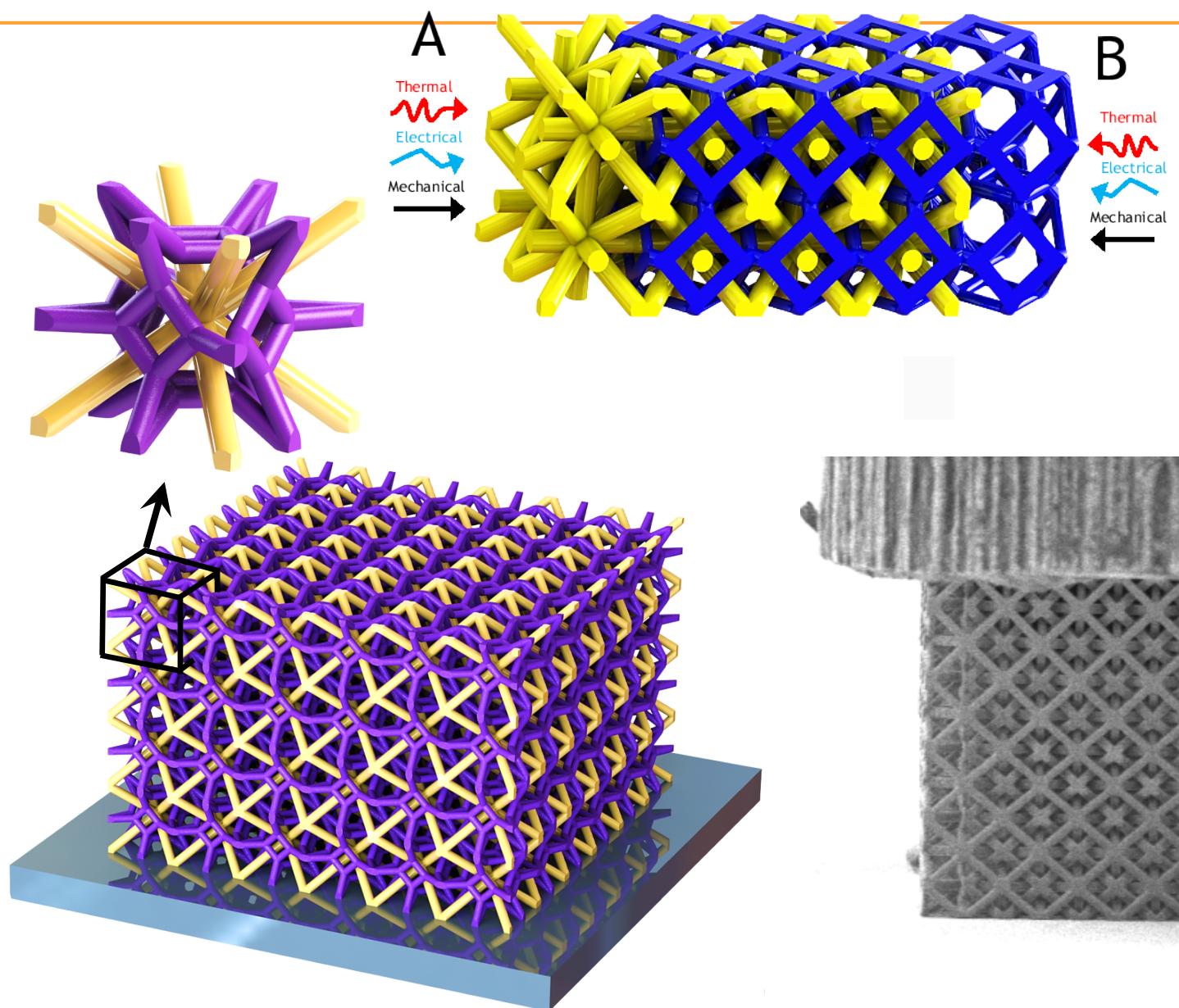
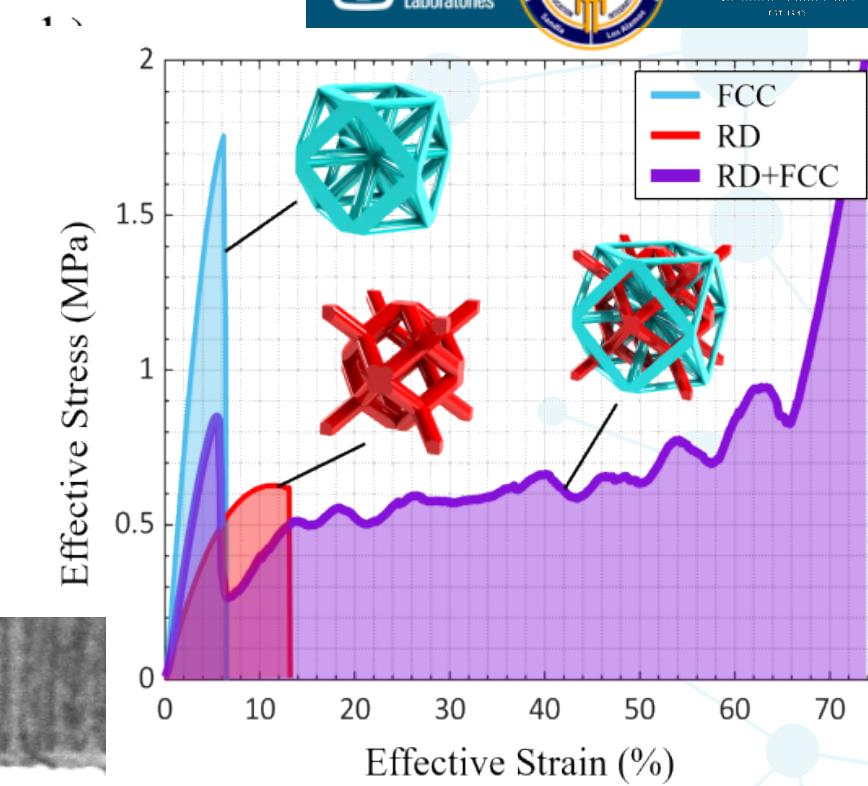


Our work: Alberdi, *Materials and Design*, 2020



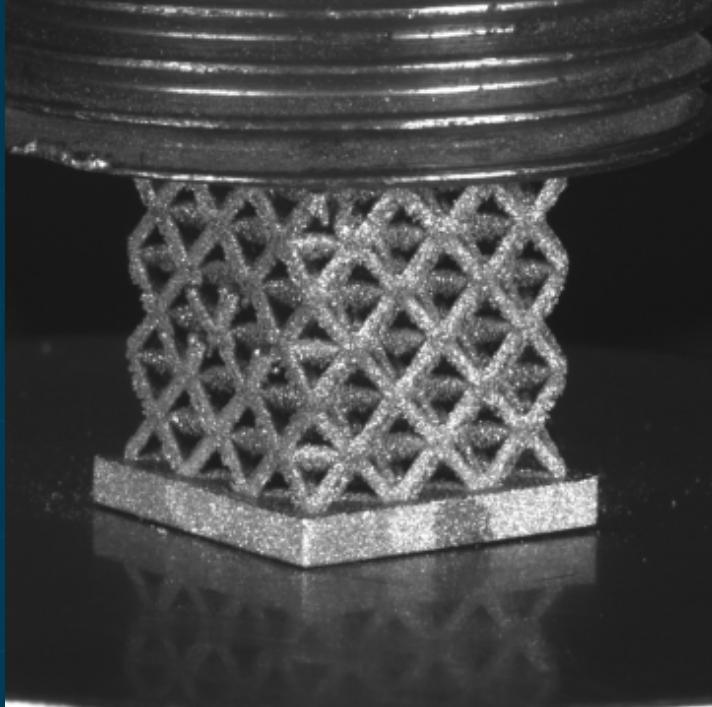
How do we design and manufacture lattices to be good plastic energy absorbers?

Interpenetrating Lattices...



The ridiculous proposition

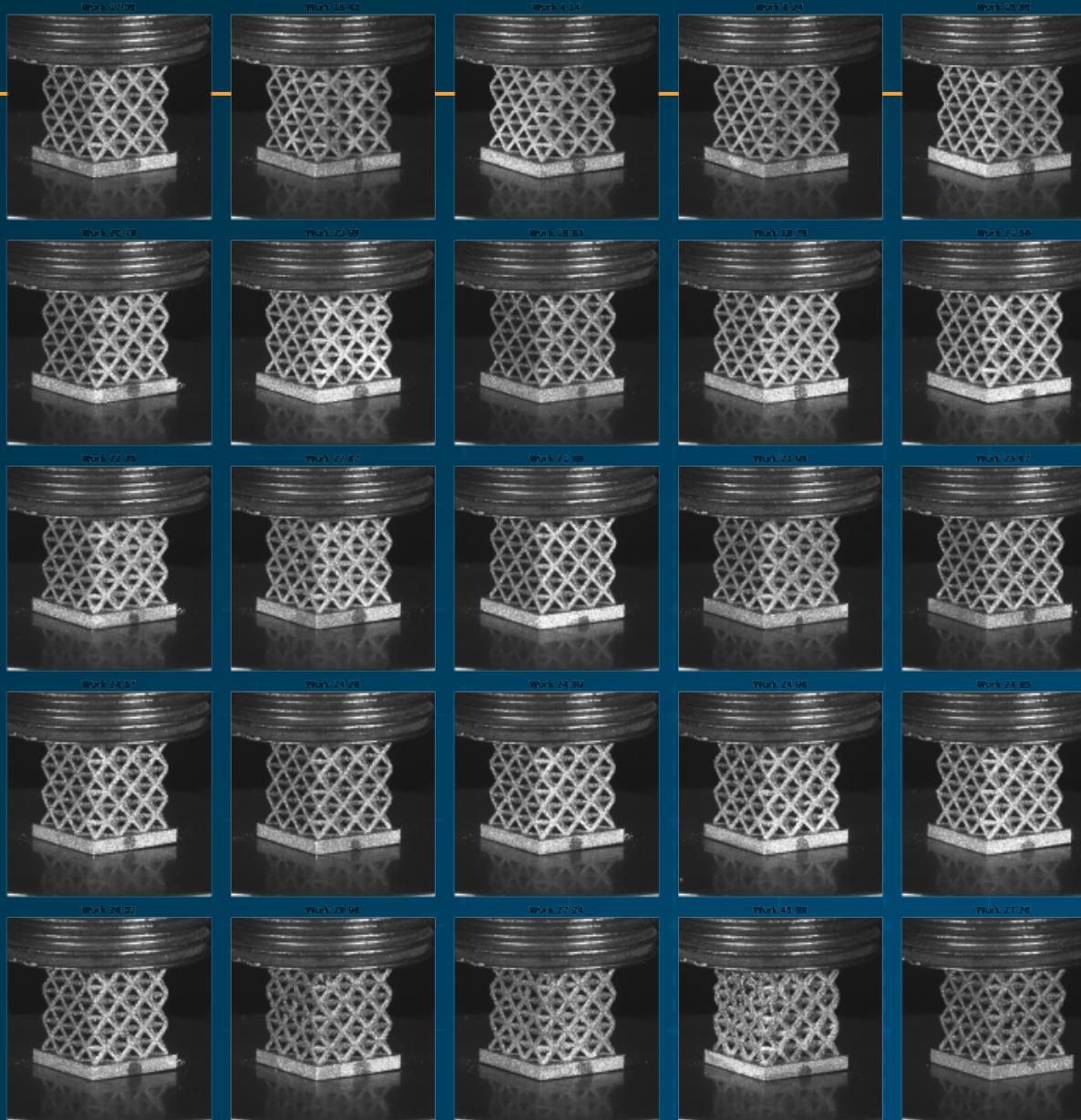
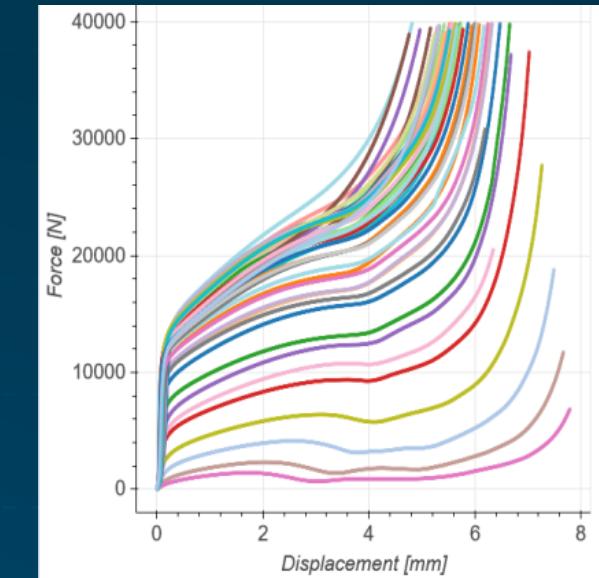
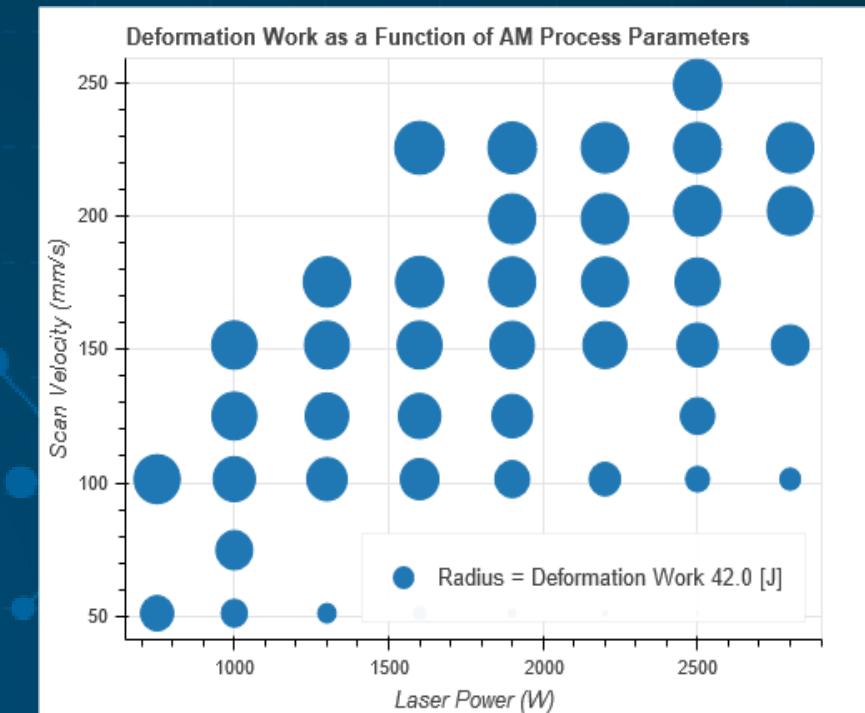
Initial image



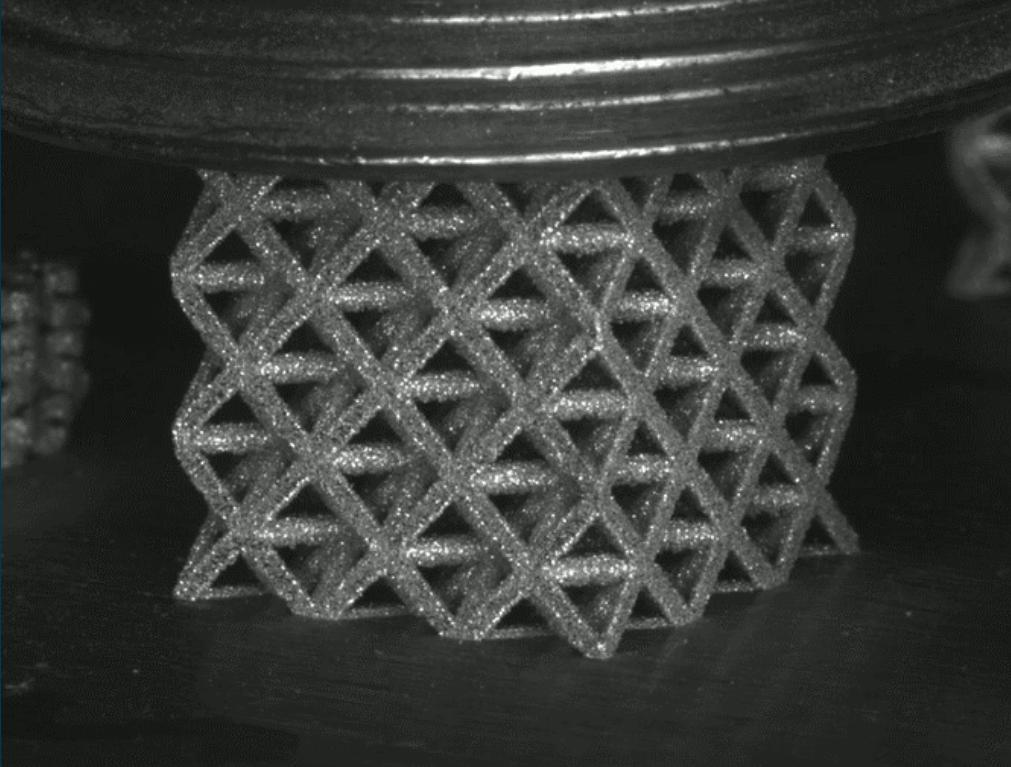
prediction

How much
energy will it
absorb
when crushed?

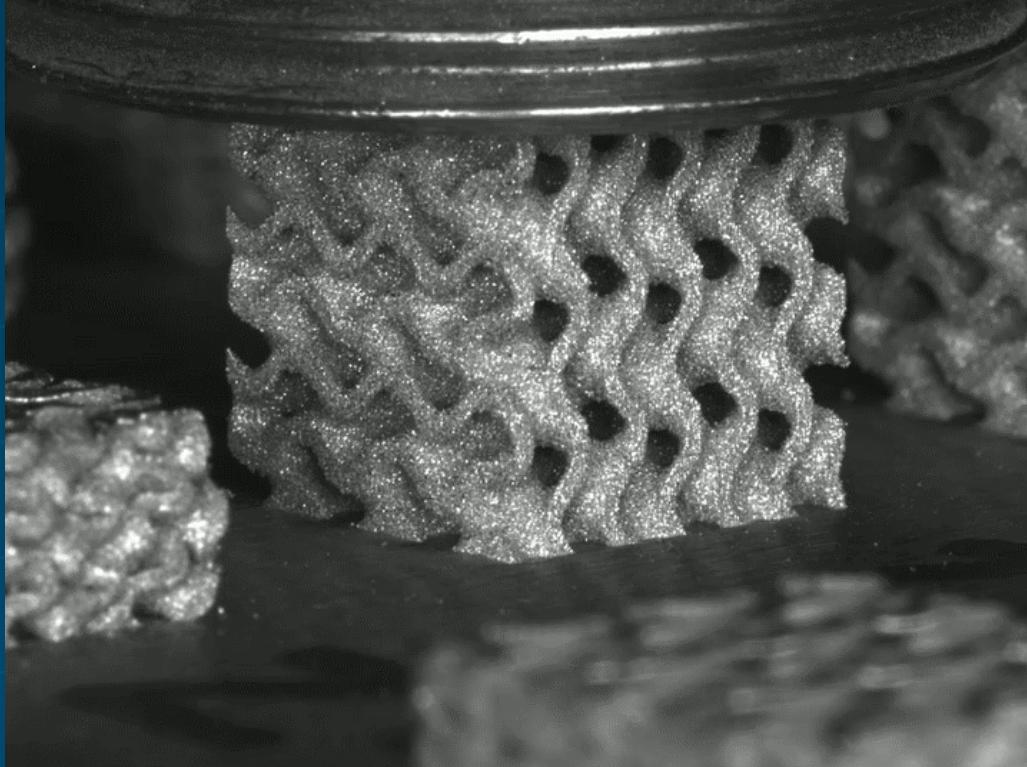
A convenient dataset...



Example images for both octet and gyroid structures

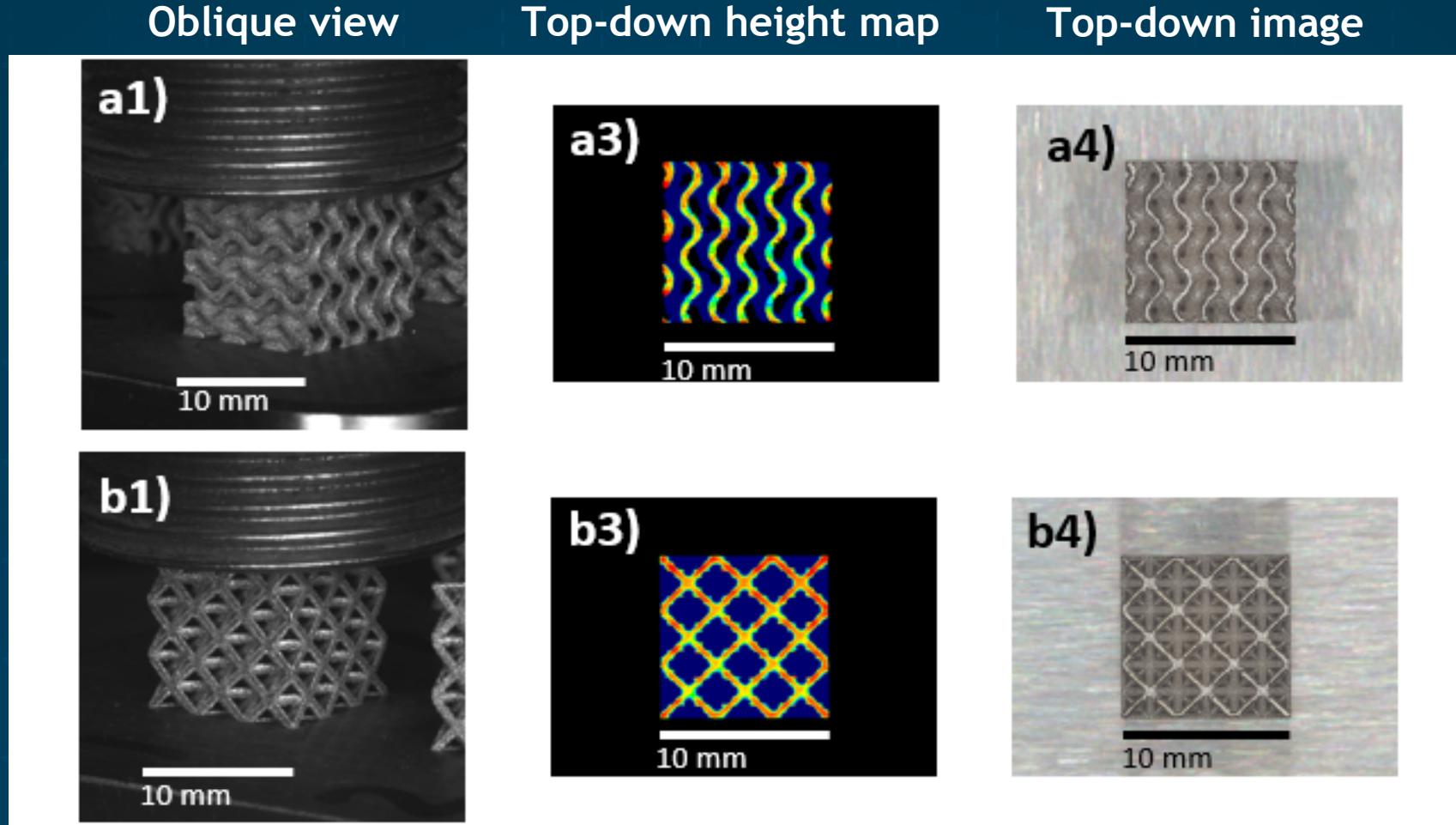


48 octet lattices



43 gyroid metamaterials

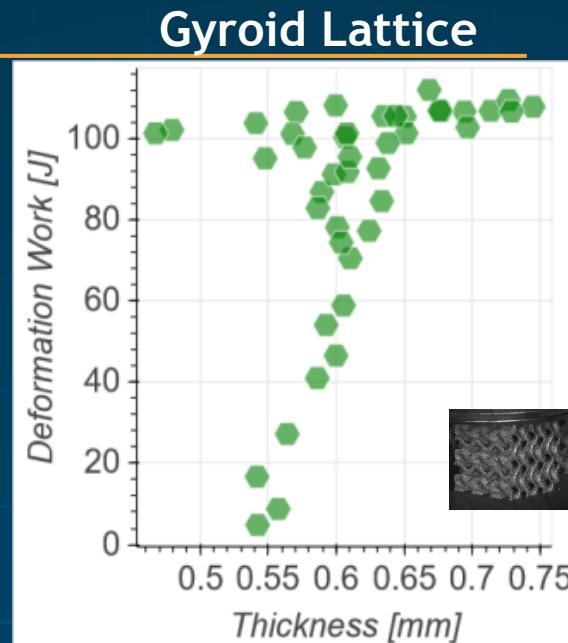
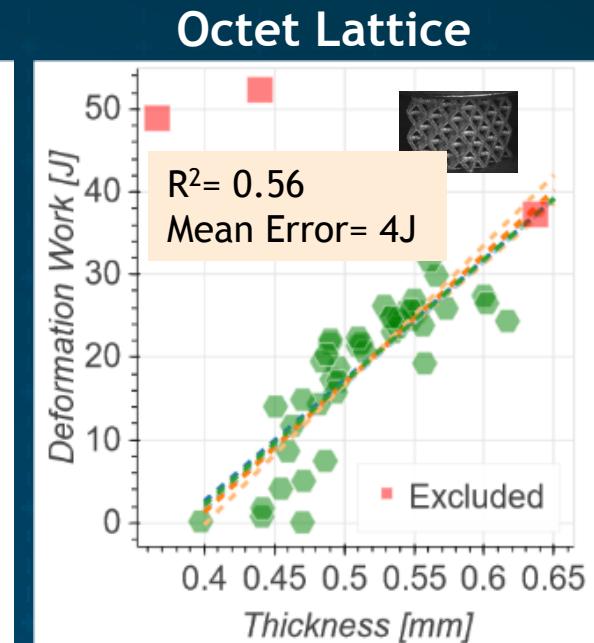
Non-traditional source data: camera images of the as-printed lattices



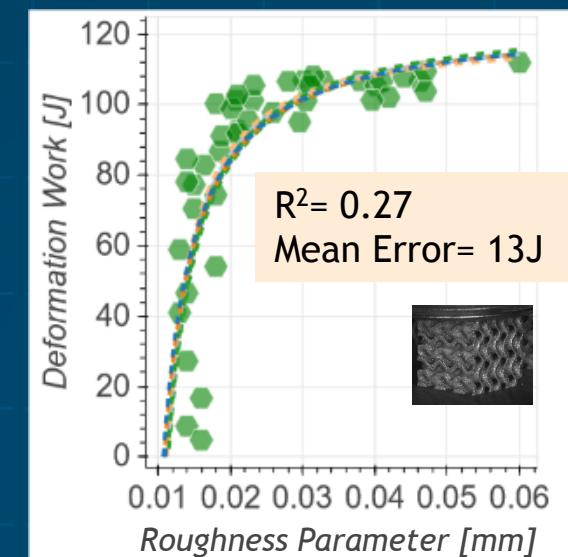
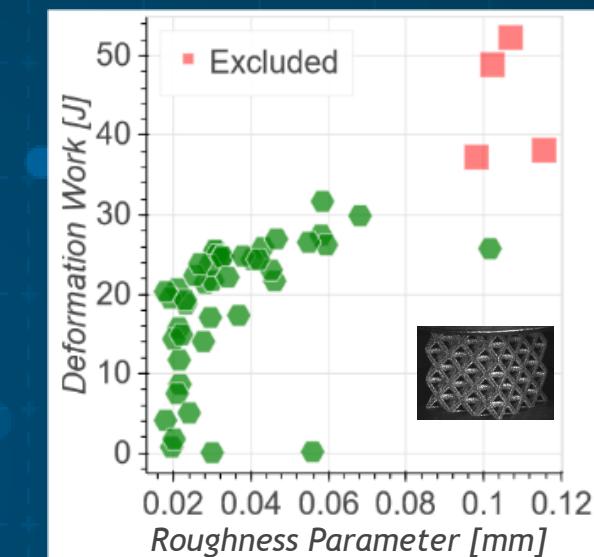
Correlations with feature dimensions was not strong

Neither surface roughness
nor strut/wall thickness
correlated very well with
deformation response

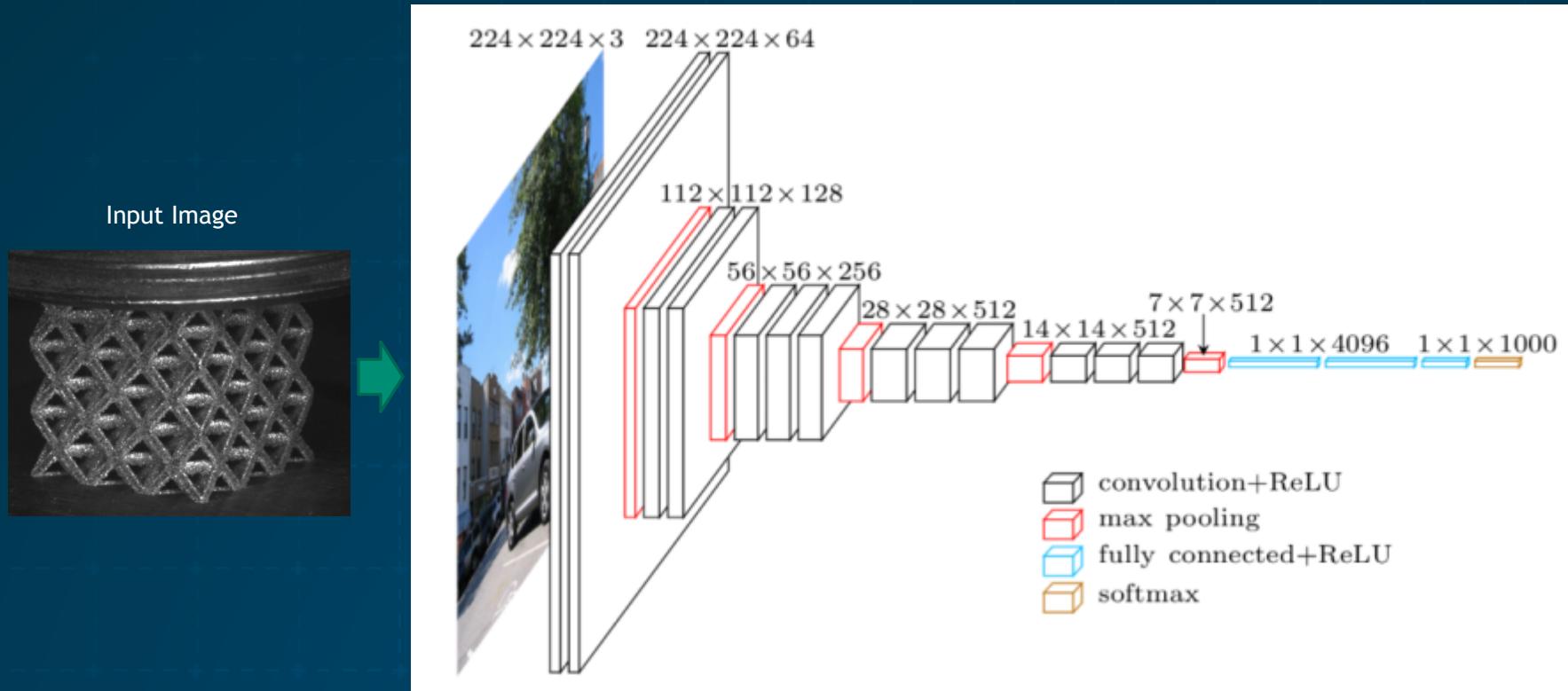
Thickness Effect



Roughness Effect



Deep convolutional neural network



fast.ai

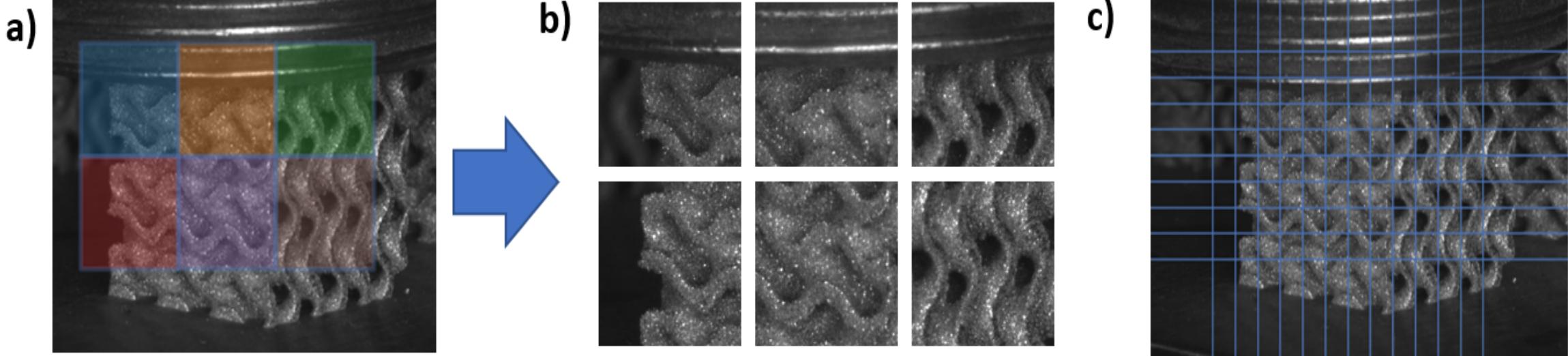
Residual Network Model: ResNet 16
fast.ai library (wrapper around pytorch)

Challenge with an ML approach

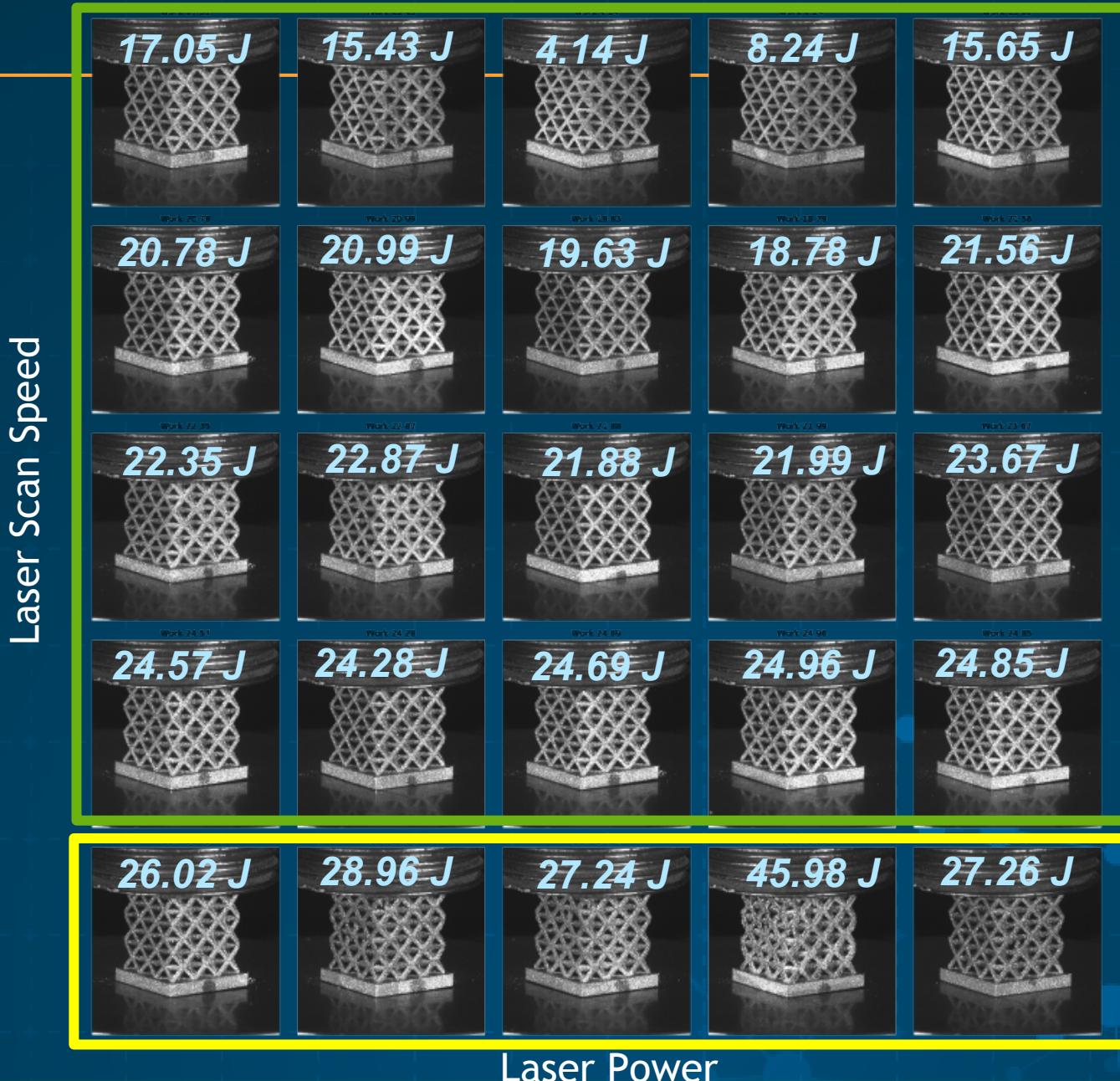
Very little data!

1. 48 octet data points
2. 43 gyroid data points

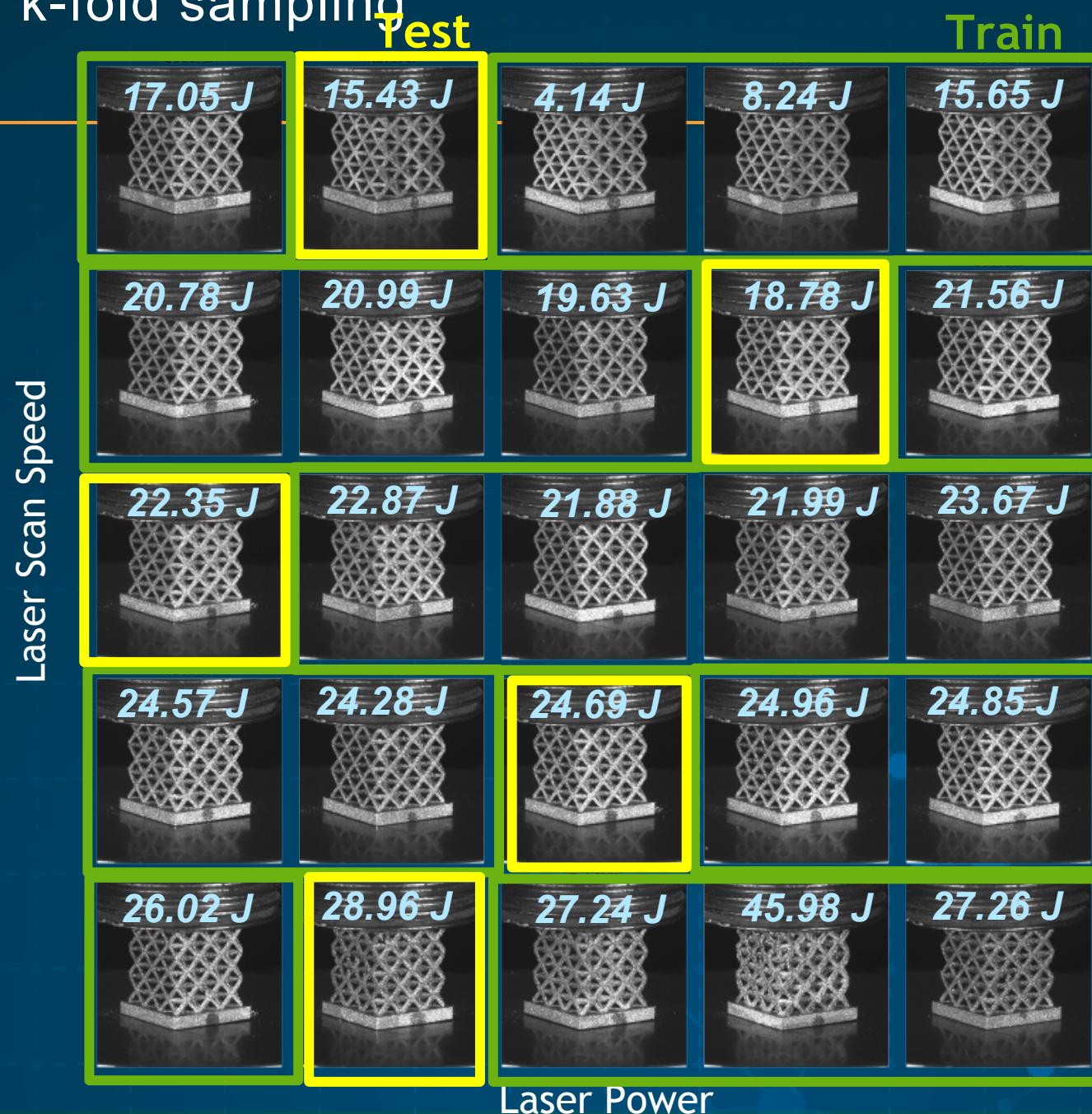
Solution: Subdivide images into representative subimages



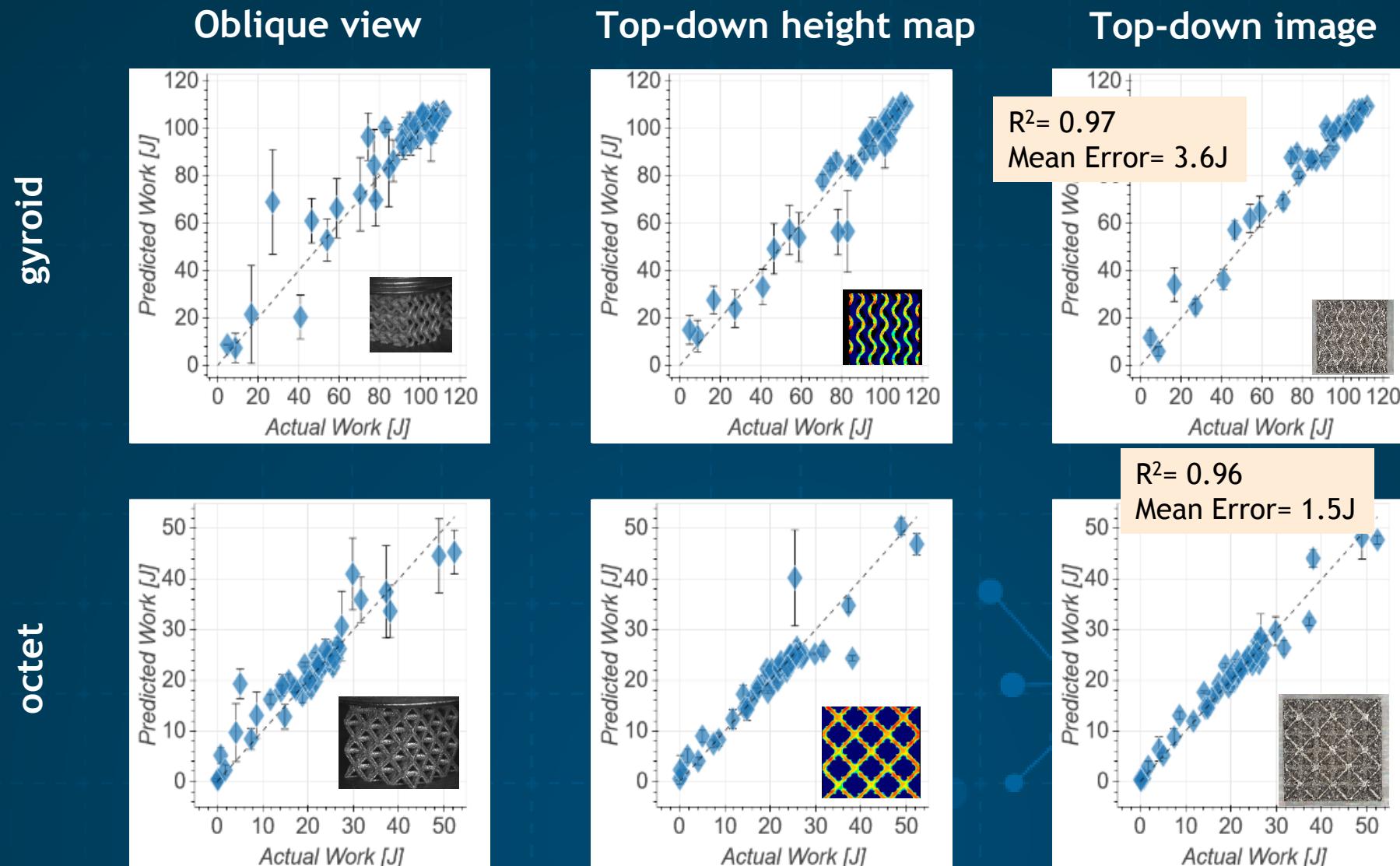
Avoid biased training!



Stratified k-fold sampling

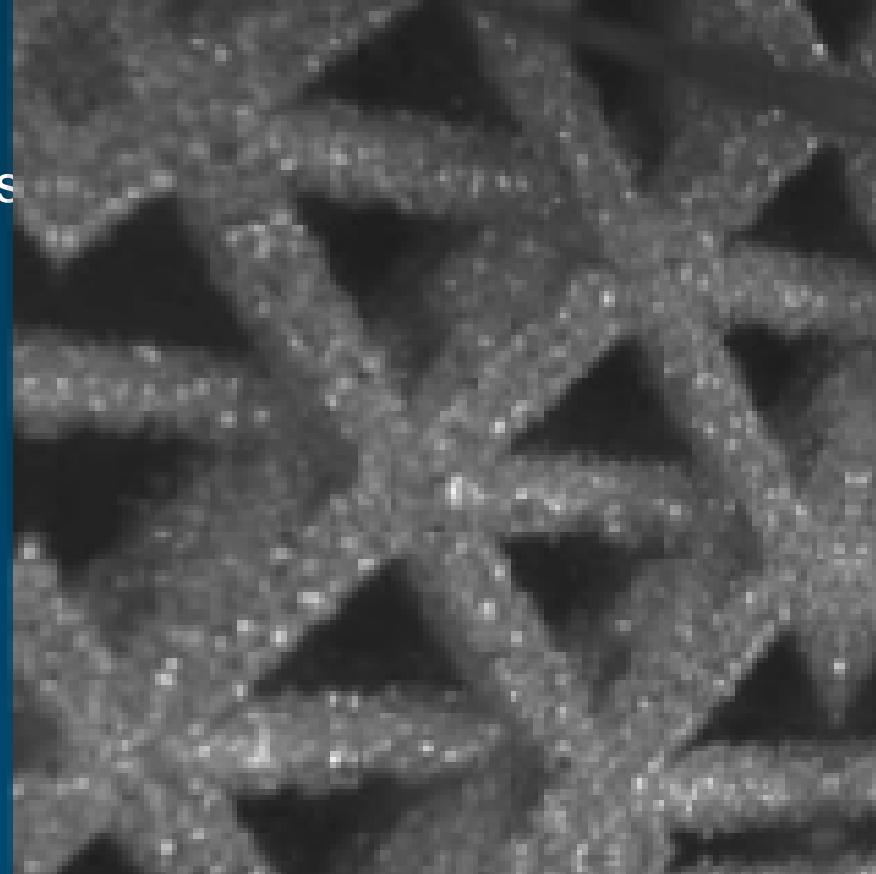


Results



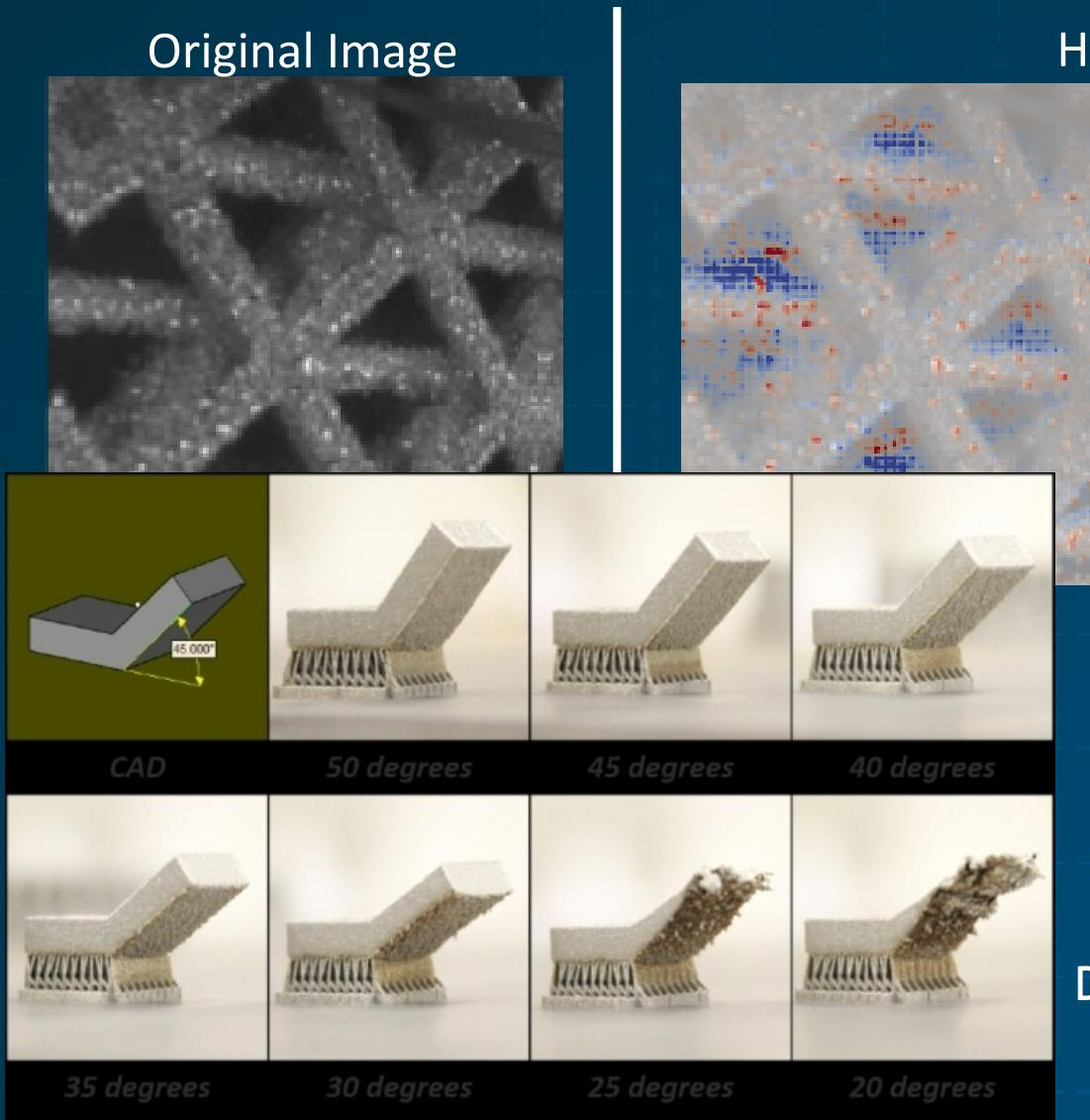
Why did this work?

- 1) sufficient training data
- 2) careful sampling
- 3) source data has representative features



*Surface roughness
Strut diameter
Broken struts
What else???*

Interpretability



More information

Email: blboyce@sandia.gov

Additive Manufacturing 35 (2020) 101217

Contents lists available at [ScienceDirect](#)

Additive Manufacturing

journal homepage: www.elsevier.com/locate/addma

 ELSEVIER

Research Paper

Deep Convolutional Neural Networks as a Rapid Screening Tool for Complex Additively Manufactured Structures

Anthony P. Garland^a, Benjamin C. White^a, Bradley H. Jared^a, Michael Heiden^a, Emily Donahue^b, Brad L. Boyce^{a,*}

^a Materials, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185-0889, Mexico
^b Computer Science, Sandia National Laboratories, Albuquerque, NM, 87185-0889, Mexico

ABSTRACT

Additively manufactured metamaterials such as lattices offer unique physical properties such as high specific strengths and stiffnesses. However, additively manufactured parts, including lattices, exhibit a higher variability in their mechanical properties than wrought materials, placing more stringent demands on inspection, part quality verification, and product qualification. Previous research on anomaly detection has primarily focused on using in-situ monitoring of the additive manufacturing process or post-process (ex-situ) x-ray computed tomography. In this work, we show that convolutional neural networks (CNN), a machine learning algorithm, can directly predict the energy required to compressively deform gyroid and octet truss metamaterials using only optical images. Using the tiled nature of engineered lattices, the relatively small data set (43 to 48 lattices) can be augmented by systematically subdividing the original image into many smaller sub-images. During testing of the CNN, the prediction from these sub-images can be combined using an ensemble-like technique to predict the deformation work of the entire lattice. This approach provides a fast and inexpensive screening tool for predicting properties of 3D printed lattices. Importantly, this artificial intelligence strategy goes beyond 'inspection', since it accurately estimates product performance metrics, not just the existence of defects.

1. Introduction

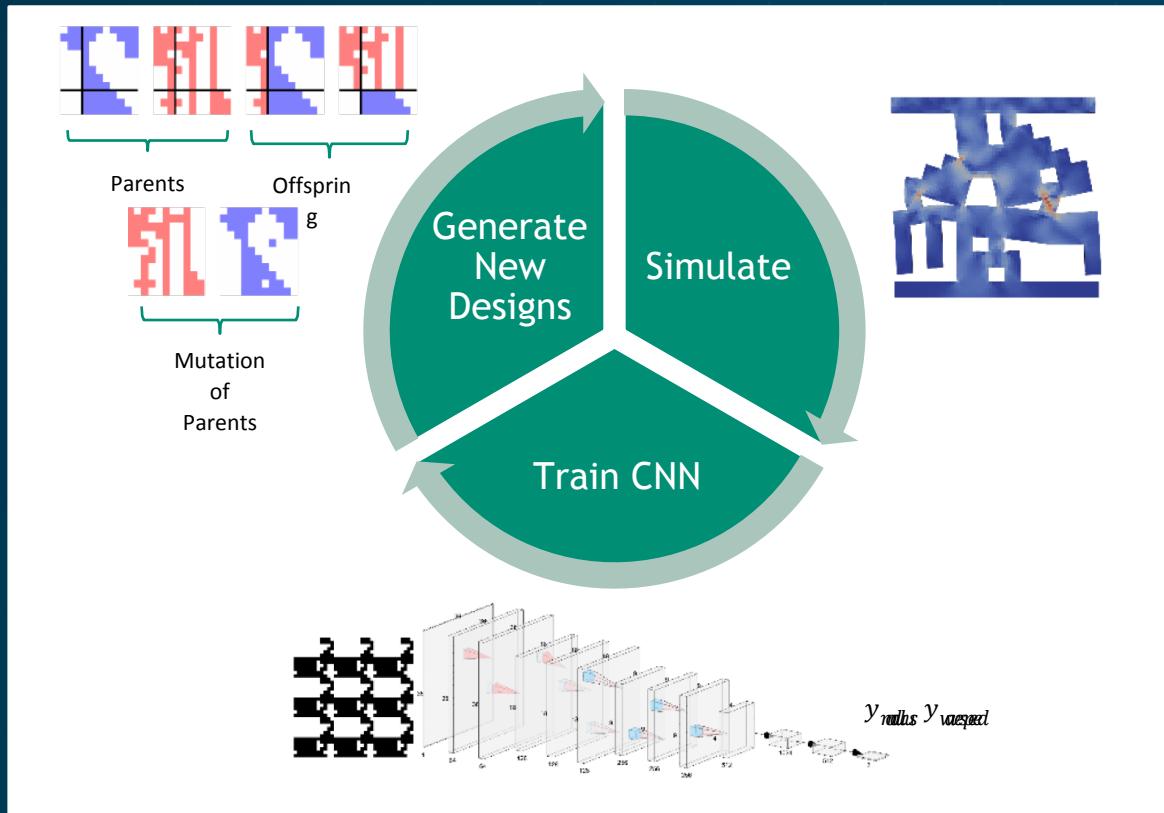
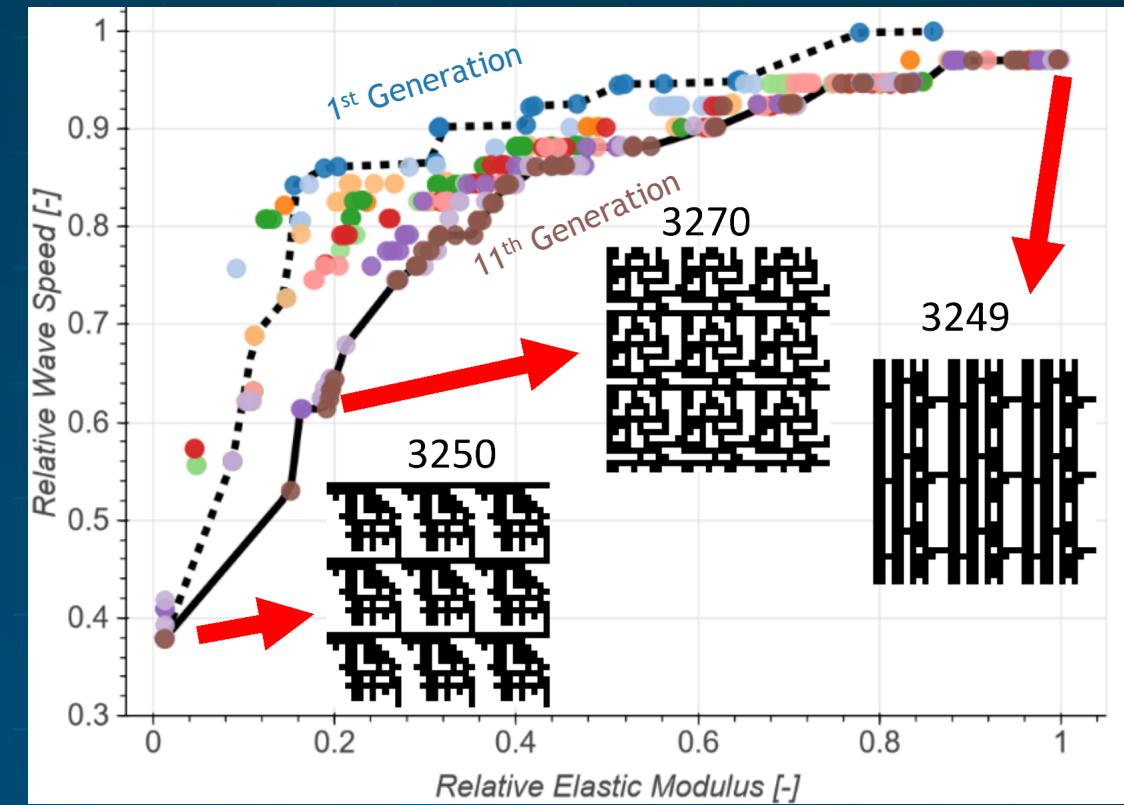
Additive manufacturing (AM) enables fabrication of complex free-form shapes including engineered lattices, such as gyroids and octet trusses, that are not possible or very difficult to fabricate with other traditional manufacturing methods [1]. Lattices are typically employed for two distinct purposes: (1) as support or "infill" to facilitate printability of cavities, overhangs, and suspended features, or (2) as structural qualification requirements [21].

The successful use of structural lattices is directly related to the ability to assure that the properties and shape of the printed lattice meet design requirements. To qualify AM parts, it is necessary to confirm that the component meets predefined physical performance requirements. A prerequisite for qualification is measuring part properties directly or by using a model to relate a secondary measured property to the true properties of interest. Measurements could include inspecting the final

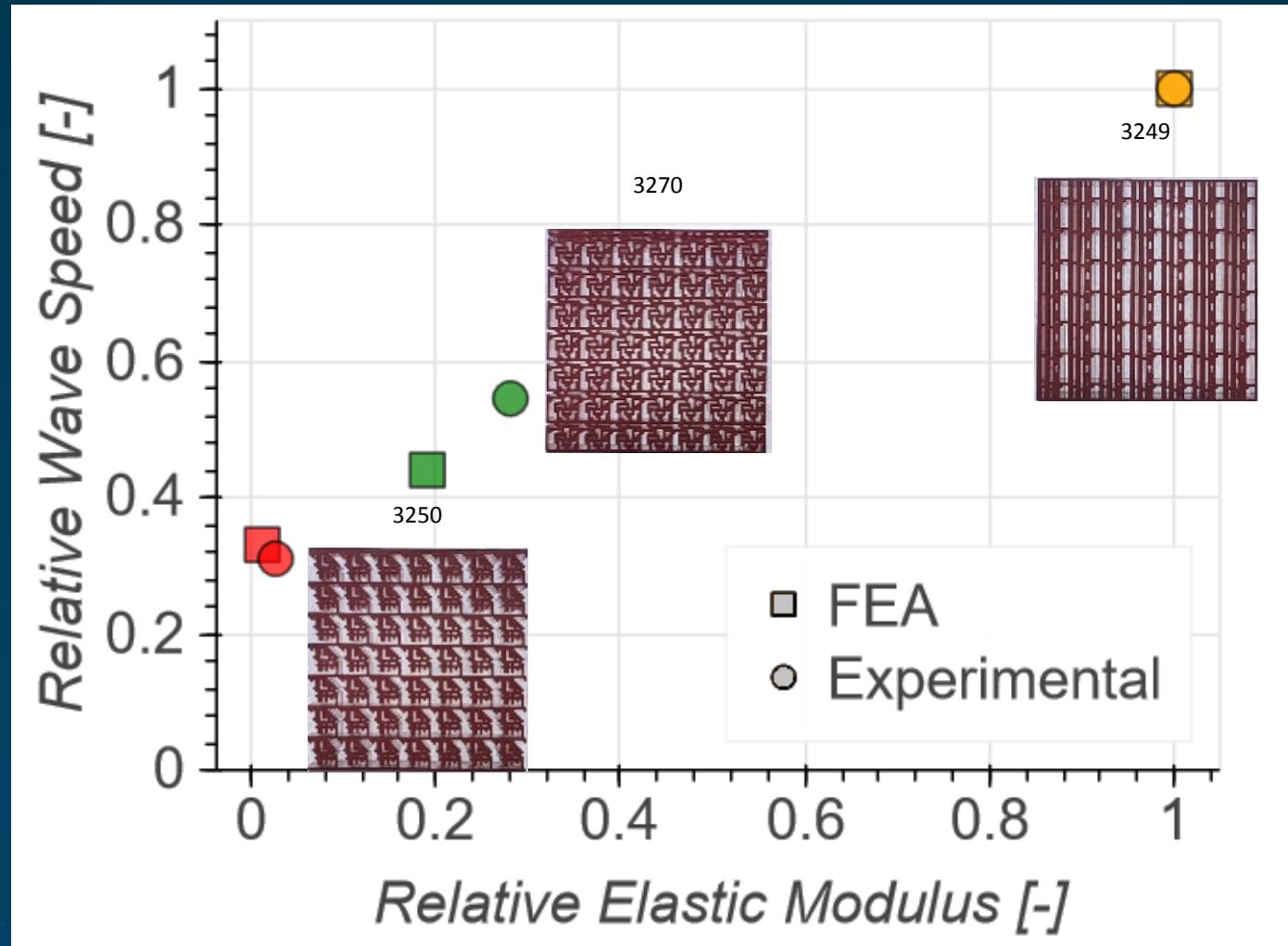
Can such a tool inform topological design?

Active-learning based lattice design: **two objectives: stiffness and elastic wave delay**

- Initial seed designs are randomly generated
- The initial designs are predicted by FEA (stiffness and effective wavespeed)
- The FEA results train a CNN, which is 6 orders faster than FEA
- The best solutions are hybridized by splicing two parents into offspring
- Offspring are screened based on the CNN



Experimental validation



Take-home messages

1. ***Complex structure-property relationships*** can be developed by a trained machine learning algorithm instead of by expert-guided modeling.
2. ***Non-traditional source datasets*** may have sufficiently encoded features that correlate to the underlying structural parameters governing behavior.
3. While ML is accused of being a “black box”, the ***causation*** may be partly explainable by analyzing the intermediate transfer functions (hidden layers).
4. Such approaches may serve as ***fast screening tool***, useful not only for product acceptance, but also for design.

