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CINT is a user facility providing cutting-
edge nanoscience and nanotechnology 
capabilities to the research community.

Access to our facilities and scientific 
expertise is FREE for non-proprietary 
research.

Research areas:
• Quantum Materials Systems
• Nanophotonics and Optical Nanomaterials
• In-Situ Characterization and 

Nanomechanics
• Soft, Biological, and Composite 

Nanomaterials

To learn more and
apply to use the facilities, visit:

https://cint.lanl.gov

• Comprehensive nanoscience capabilities
• Free access with a successful 2-page user proposal



3100 nm

Nanocrystalline Cu
Cyclic fatigue loading at 300 Hz

Loading direction



4

Lattices: tailorable properties
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316L Lattices

316L LPBF

60 mm

X. Shang, J. Materials Research, 2018

© HRL Laboratories, LLC/Photo by Dan Little J. Bauer, Nature Materials, 2019 
Kavin Kowsari/UCONN

Our work: Alberdi, Materials 
and Design, 2020

How do we design and manufacture 
lattices to be good plastic energy 
absorbers?
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Interpenetrating Lattices…

5 White…Boyce, Additive Manufacturing, 2021
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The ridiculous proposition

How much 
energy will it 

absorb
when crushed?

Initial image

prediction
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A convenient dataset…
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Example images for both octet and gyroid structures

43 gyroid metamaterials48 octet lattices
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Source data: initial images before deformation

 Non-traditional source data: camera images of the as-printed 
lattices

Oblique view Top-down height map Top-down image
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Correlations with feature dimensions was not strong

Neither surface roughness 
nor strut/wall thickness 
correlated very well with 
deformation response

Gyroid Lattice Octet Lattice
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R2= 0.27
Mean Error= 13J

R2= 0.56
Mean Error= 4J
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Deep convolutional neural network

Input Image

Predicted 
Deformation 
Energy

Residual Network Model: ResNet 16

fast.ai library (wrapper around pytorch)
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Challenge with an ML approach

 Very little data!

1. 48 octet data points

2. 43 gyroid data points

Solution: Subdivide images into representative 
subimages

Works, because lattice are made up of repeating unit cells!
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Laser Power

17.05 J 15.43 J 4.14 J 8.24 J 15.65 J

20.78 J 20.99 J 19.63 J 18.78 J 21.56 J

22.35 J 22.87 J 21.88 J 21.99 J 23.67 J

24.57 J 24.28 J 24.69 J 24.96 J 24.85 J

26.02 J 28.96 J 27.24 J 45.98 J 27.26 J

Train

Test

Avoid biased training!
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Stratified k-fold sampling
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20.78 J 20.99 J 19.63 J 18.78 J 21.56 J
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TrainTest
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Results

R2= 0.97
Mean Error= 3.6J

R2= 0.96
Mean Error= 1.5J

Oblique view Top-down height map Top-down image
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Why did this work?

 1) sufficient training data

 2) careful sampling 

 3) source data has representative features

Surface roughness
Strut diameter
Broken struts
What else???
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Interpretability

Hidden Layers from Neural NetworkOriginal Image

Downward-facing unsupported overhangs (courtesy: Protolabs)
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More information

 Email: blboyce@sandia.gov
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Can such a tool inform topological design?

ML Property

Target Property

Qualification

Design ML
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Active-learning based lattice design: 
two objectives: stiffness and elastic wave delay

• Initial seed designs are randomly generated
• The initial designs are predicted by FEA (stiffness and effective wavespeed)
• The FEA results train a CNN, which is 6 orders faster than FEA
• The best solutions are hybridized by splicing two parents into offspring
• Offspring are screened based on the CNN

Simulate

Train CNN

Generate 
New 

Designs
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Experimental validation

3270

3249

3250
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Take-home messages

1. Complex structure-property relationships can be 
developed by a trained machine learning algorithm 
instead of by expert-guided modeling.

2. Non-traditional source datasets may have 
sufficiently encoded features that correlate to the 
underlying structural parameters governing behavior.

3. While ML is accused of being a “black box”, the 
causation may be partly explainable by analyzing the 
intermediate transfer functions (hidden layers).

4. Such approaches may serve as fast screening tool, 
useful not only for product acceptance, but also for 
design.


