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CINT is a user facility providing cutting-
edge nanoscience and nanotechnology
capabilities to the research community.

Access to our facilities and scientific
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Lattices: tailorable properties
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How do we design and manufacture
lattices to be good plastic energy
absorbers?

Our work: Alberdi, Materials
and Design, 2020




Interpenetrating Lattices...
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The ridiculous proposition

Initial image

ey

prediction

How much
energy will it

absorb
when crushed?




A convenient dataset...
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Example images for both octet and gyroid structures

48 octet lattices 43 gyroid metamaterials



Source data: initial images before deformation

Non-traditional source data: camera images of the as-printed

lattices
Oblique view Top-down height map Top-down image




Correlations with feature dimensions was not strong

Gyroid Lattice

Neither surface roughness
nor strut/wall thickness
correlated very well with
deformation response
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Deep convolutional neural network

Input Image

D_'] convolution+ReLU
—] max pooling

- fully connected+ReLU

| softmax

Residual Network Model: ResNet 16

fast.ai library (wrapper around pytorch)

Predicted
Deformation
Energy
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Challenge with an ML approach

Very little data!
48 octet data points
43 gyroid data points

Solution: Subdivide images into representative
subimages




Avoid biased training!
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Results h

Oblique view Top-down height map Top-down image
_ _ R2=0.97 _
Q :__‘J_‘ _ _p~.‘
o < X Mean E_r_ror— 3.6J A
— s s 2 #
S = = o
] @O
a @
0 20 40 60 80 100120 0 20 40 60 80 100120 0 20 40 60 80 1
Actual Work [ Actual Work [J] Actual Work [J]
¢
=) 3 3 "
x x x
- s = =
i = = =
O @O @O

10 20 30 40 50 10 20 30 40 50 0 10 20 3
Actual Work [J] Actual Work [l Actual Work [l 1 5




Why did this work?

1) sufficient training data r . Surface roughness

. Strut diameter
,',.;_.- ~ Broken struts
e " What else???

2) careful sampling

3) source data has representative features = |
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Interpretability
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Original Image Hidden Layers from Neural Network
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Can such a tool inform topological design?

Qualification ML Property

Design Target Property ML sﬁl,ﬁ e
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Active-learning based lattice design:
two objectives: stiffness and elastic wave delay

Initial seed designs are randomly generated

Offspring are screened based on the CNN
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The initial designs are predicted by FEA (stiffness and effective wavespeed)
The FEA results train a CNN, which is 6 orders faster than FEA
The best solutions are hybridized by splicing two parents into offspring
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Experimental validation
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Take-home messages

1. Complex structure-property relationships can be
developed by a trained machine learning algorithm
instead of by expert-guided modeling.

2. Non-traditional source datasets may have
sufficiently encoded features that correlate to the
underlying structural parameters governing behavior.

3. While ML is accused of being a “black box”, the | _
causation may be partly explainable by analyzing the ke AT
intermediate transfer functions (hidden layers). ol

4. Such approaches may serve as fast screening tool, B e ®. 0. . g
useful not only for product acceptance, but also for L{ﬁ}«& 4

design.
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