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Abstract

Variational inference (VI) with a mean-field approximation can sometimes be too re-
strictive but VI with high-fidelity surrogate posteriors, such as Gaussian mixture models
(GMMs) can be computationally prohibitive due to the increase in number of optimiza-
fion parameters. We propose a strategy for constructing a GMM approximation to an
intractable Bayesian posterior using global optimization and Laplace approximations.
We show how this can be used as an efficient initialization strategy for VI or as an al-
ternative approximation method.

Introduction

A frequent problem arising in statistical modeling is the analysis of intractable density
kernels. These are positive functions ¢(x) such that the constant Z = [ ¢(x) dx cannot
be computed to obtain a normalized probability density p(x) = ¢(x)/Z. Such intractable
kernels are encountered in Bayesian inference where a distribution over latent variables
z 1s inferred from observed variables x through a joint distribution p(x, z). The posterior
distribution over latent variables is given by Bayes rule

p(x|z)p(z)  p(x]|z)p(z)

p(x) J p(x | z)p(z) dz
where the marginal likelihood [ p(x | z)p(z) dz defines the normalization constant that
cannot be evaluated in closed form. An alternative to widely-used sampling-based ap-
proaches is to construct an approximation of an intractable density from a simpler para-
metric family. Variational inference seeks an approximation qg(z) € Fg in some paramet-

ric family Fg by minimizing an error measure with respect to 8 such as Kullback-Liebler
(KL) divergence

p(z|x) =

qg(z) = qggrlo Dk (q9(2) || p(z | x))

This recasts approximate inference as an optimization problem allowing for techniques
like gradient descent to be applied using gradient estimators of the Evidence Lower Bound
(ELBO) cost function

Dy (q9(z | %) || p(2)) = Eyyy | x) log p(x | 2)]

which is equivalent to minimizing the KL-divergence. This approach is often used to train
Bayesian machine learning models.

Challenges and motivation

Several challenges with VI motivate our GMM approximation method:

= Non-convexity of the ELBO: Minimizing the KL-divergence or, equivalently, the ELBO
represents a non-convex optimization problem that may exhibit multiple local minima.

= Capturing multimodality: For certain applications it is important to capture multiple
modes of the posterior with the VI approximation.

= Scalability: Poor scalability with VI is encountered using high-fidelity GMM
approximations gg(z) = Zé(:l N (z | ., )z € RY. Due to the large number of
parameters associated to the covariance matrix of each component
dim(X) =d(d+1)/2, VI with a GMM involves optimization in a parameter space
whose dimensionality grows like O(d?) making it intractable for large ML models.

Mixture model approximation procedure

We seek an approximation gg(z) to p(z | x) in the form of a Gaussian mixture model

K
a9(z) = Y mpN(z |y, Zy)

k=1
where 0 denotes the set of parameters @ = {mq, ..., Tx, U1, - - - P, 215 - - DK -

Global optimization Compute means as local minima of the cost function —log ¢(z)
through a global optimization procedure relying on multiple local searches. Local
searches initialized from samples of the prior p(z) or using a low-discrepancy Sobol
samples. The global optimization stage results in a set of local minima z7, .. ., z7- taken
as the centers uy, ..., ugr of a Gaussian mixture model with K components.

Local Laplace Approximations To estimate the covariance matrix of each component,
we employ the Laplace approximation such that

—1
3~ (Hy(p))
where f(z) = —log ¢(z) and H (z) denotes the Hessian of f evaluated at z. Low-rank
Hessian approximations can be used in high-dimensional settings to retain efficiency.

Determining distinct modes \We let the null hypothesis be that x* belongs to compo-
nent kie., * ~ N(x | pp, Xp). Letting Dy (x*, N (x | pi, X)) be the Mahalanobis
distance between x* and the local Gaussian distribution, then we have
P(Dpy(x*, N (x| py, Bg)) > d | Hp) = 1 — x*(d,n)

Setting a threshold for the p-value provides a criterion for a new Gaussian component
to be distinct from those already discovered.
Computing the weights Solve the constrained least squares problem

N

K
argmin » ~ { @(z;) — > 7N (2 | ppZp) p St 7 >0
=l k=1

for the unnormalized weights 7y, ..., 7. Letting Z = Zszl T, we can from the nor-
malized approximation to p(z) as qg(z) = 2521 TN (z | pi2r) where . = 7./ Z.

Global sensitivity analysis

Variance-based sensitivity analysis allows decomposition of a function’s f(Xy,..., X})
variance as V(f) = >_; V(fi) + >_; 2_;=: V(fij) + - which provides a global measure
of how each of the k input factors contributes to its variability. Typically this is applied
to a nonlinear model function but here take a nonstandard approach of applying it to
an approximation procedure to obtain a global measure of robustness over a space of
applications with f taken to be the approximation error. We define as input factors the

following parameters which control aspects of the true posterior we are trying to approx-
imate with a GMM:

Parameter Description Distribution S ST
d Dimension U{8,9,10} 0.17+ 1073 0.65 £ 102
K No. of components — U{3,4} 0.13+ 1073 0.30+ 1073
d.  Weight decay U[1.3,2] 0.17+ 1072 0.37 £ 102
Corr. coefficient U[0.1,0.7] 0.00 £ 107" 0.65 £ 102

C
A Component overlap ~ U[107%,107%] 0.00 £ 10~ 0.02 4+ 10~*

The resulting first and total order sensitivity indices S, St are listed in the final two
columns and reflect how each parameter affects the approximation accuracy by alone
and through interactions with other factors. The indices reveal that interactions between
parameters creating modes with small basins of attraction provide the most significant
effect on the approximation accuracy.

Low-dimensional example

We can construct a low-dimensional, multimodal posterior in the context of a simple non-
inear regression problem where we fit a model f(x;wi,w2) = cos(2mwix1) cos(2mwox9)

to data D = {(x;,y; = [f(x4,&1,02) + e)}f\flsampled from the same function at
unknown true frequencies wiy,ws. Posterior defined by likelihood p(D | wi,w2) =

vajl N (y; | f(x;,w1,ws), o) with a Gaussian prior.
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(b) GMM approximation
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(a) True posterior

Above, we see the true 2D posterior, the GMM approximation from our algorithm, and
an example contour plot of the multistart locations.

High-dimensional scalability study

We study the scalability of VI coupled with the GMM Initialization procedure by car-
rying out VI on a high-dimensional, synthetic posterior displaying non-Gaussian trends
intended to emulate a realistic modeling application. To achieve this behavior, we em-
ploy the Sinh-arcsinh distribution induced by a nonlinear transformation Y = l4+ocF(Z)
of a standard normal random variable Z
F(Z) - sinh(.(arcsinh.(Z )+ s)t)

2 sinh(arcsinh(Z2)t)
where [, o represent the location and scale, respectively, and s, t control the skewness
and tail behavior. This allows for the construction of a multimodal synthetic posterior
with controllable non-Gaussian trends. We then compare scalability between randomly
initialized VI (cold-start) with VI initialized using our GMM approximation (warm-start)
for randomly generated synthetic posteriors of dimensions 15, 30, and 60.
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The figure above shows the Jenson-Shannon divergence (JSD), scaled to lie in the in-
terval [0, 1], between the GMM surrogate posterior and the true posterior as a function
of total CPU runtime. JSD can be thought of as a symmetric and normalized version
of KL-divergence. VI with warm-start sees at a six-fold acceleration in convergence as
well as a lower final JSD approximation error.

Conclusion

Our approach for approximating intractable posteriors with GMMs through global op-
timization and Laplace approximations can be used to improve the scalability of VI for
high-fidelity mixture distributions and may serve as a more efficient alternative to VI in
certain applications.
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