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Abstract

Variational inference (VI) with a mean-field approximation can sometimes be too re-

strictive but VI with high-fidelity surrogate posteriors, such as Gaussian mixture models

(GMMs) can be computationally prohibitive due to the increase in number of optimiza-

tion parameters. We propose a strategy for constructing a GMM approximation to an

intractable Bayesian posterior using global optimization and Laplace approximations.

We show how this can be used as an efficient initialization strategy for VI or as an al-

ternative approximation method.

Introduction

A frequent problem arising in statistical modeling is the analysis of intractable density

kernels. These are positive functions φ(x) such that the constant Z =
∫

φ(x) dx cannot

be computed to obtain a normalized probability density p(x) = φ(x)/Z . Such intractable

kernels are encountered in Bayesian inference where a distribution over latent variables

z is inferred from observed variables x through a joint distribution p(x, z). The posterior
distribution over latent variables is given by Bayes rule

p(z | x) = p(x | z)p(z)
p(x)

= p(x | z)p(z)∫
p(x | z)p(z) dz

where the marginal likelihood
∫

p(x | z)p(z) dz defines the normalization constant that

cannot be evaluated in closed form. An alternative to widely-used sampling-based ap-

proaches is to construct an approximation of an intractable density from a simpler para-

metric family. Variational inference seeks an approximation qθ(z) ∈ Fθ in some paramet-

ric family Fθ by minimizing an error measure with respect to θ such as Kullback-Liebler

(KL) divergence

qθ(z) = min
qθ∈Fθ

DKL(qθ(z) ‖ p(z | x))

This recasts approximate inference as an optimization problem allowing for techniques

like gradient descent to be applied using gradient estimators of the Evidence LowerBound

(ELBO) cost function

DKL(qθ(z | x) ‖ p(z)) − Eqθ(z | x) [log p(x | z)]
which is equivalent to minimizing the KL-divergence. This approach is often used to train

Bayesian machine learning models.

Challenges and motivation

Several challenges with VI motivate our GMM approximation method:

Non-convexity of the ELBO:Minimizing the KL-divergence or, equivalently, the ELBO

represents a non-convex optimization problem that may exhibit multiple local minima.

Capturing multimodality: For certain applications it is important to capture multiple

modes of the posterior with the VI approximation.

Scalability: Poor scalability with VI is encountered using high-fidelity GMM

approximations qθ(z) =
∑K

k=1 πkN (z | µk,Σk); z ∈ Rd. Due to the large number of

parameters associated to the covariance matrix of each component

dim(Σ) = d(d + 1)/2, VI with a GMM involves optimization in a parameter space

whose dimensionality grows like O(d2) making it intractable for large ML models.

Mixture model approximation procedure

We seek an approximation qθ(z) to p(z | x) in the form of a Gaussian mixture model

qθ(z) =
K∑

k=1
πkN (z | µk,Σk)

where θ denotes the set of parameters θ = {π1, . . . , πK,µ1, . . .µK,Σ1, . . . ,ΣK}.
Global optimization Compute means as local minima of the cost function − log φ(z)
through a global optimization procedure relying on multiple local searches. Local

searches initialized from samples of the prior p(z) or using a low-discrepancy Sobol

samples. The global optimization stage results in a set of local minima z∗
1, . . . , z∗

K taken

as the centers µ1, . . . ,µK of a Gaussian mixture model with K components.

Local Laplace Approximations To estimate the covariance matrix of each component,

we employ the Laplace approximation such that

Σi ≈
(
Hf (µi)

)−1

where f (z) = − log φ(z) and Hf (z) denotes the Hessian of f evaluated at z. Low-rank
Hessian approximations can be used in high-dimensional settings to retain efficiency.

Determining distinct modesWe let the null hypothesis be that x∗ belongs to compo-

nent k,i.e., x∗ ∼ N (x | µk,Σk). Letting DM (x∗, N (x | µk,Σk)) be the Mahalanobis

distance between x∗ and the local Gaussian distribution, then we have

P (DM (x∗, N (x | µk,Σk)) ≥ d | H0) = 1 − χ2(d, n)
Setting a threshold for the p-value provides a criterion for a new Gaussian component

to be distinct from those already discovered.

Computing the weights Solve the constrained least squares problem

arg min
π

N∑
i=1

φ(zi) −
K∑

k=1
π̃kN (zi | µkΣk)

 s.t. ; π̃k ≥ 0

for the unnormalized weights π̃1, . . . , π̃K . Letting Z =
∑K

k=1 π̃k, we can from the nor-

malized approximation to p(z) as qθ(z) =
∑K

k=1 πkN (z | µkΣk) where πk = π̃k/Z .

Global sensitivity analysis

Variance-based sensitivity analysis allows decomposition of a function’s f (X1, . . . , Xk)
variance as V (f ) =

∑
i V (fi) +

∑
i
∑

j>i V (fij) + · · · which provides a global measure

of how each of the k input factors contributes to its variability. Typically this is applied

to a nonlinear model function but here take a nonstandard approach of applying it to

an approximation procedure to obtain a global measure of robustness over a space of

applications with f taken to be the approximation error. We define as input factors the

following parameters which control aspects of the true posterior we are trying to approx-

imate with a GMM:

Parameter Description Distribution S ST

d Dimension U{8, 9, 10} 0.17 ± 10−3 0.65 ± 10−2

K No. of components U{3, 4} 0.13 ± 10−3 0.30 ± 10−3

dπ Weight decay U [1.3, 2] 0.17 ± 10−2 0.37 ± 10−2

c Corr. coefficient U [0.1, 0.7] 0.00 ± 10−9 0.65 ± 10−2

λ Component overlap U [10−4, 10−2] 0.00 ± 10−9 0.02 ± 10−4

The resulting first and total order sensitivity indices S, ST are listed in the final two

columns and reflect how each parameter affects the approximation accuracy by alone

and through interactions with other factors. The indices reveal that interactions between

parameters creating modes with small basins of attraction provide the most significant

effect on the approximation accuracy.

Low-dimensional example

We can construct a low-dimensional, multimodal posterior in the context of a simple non-

linear regression problem where we fit a model f (x; ω1, ω2) = cos(2πω1x1) cos(2πω2x2)
to data D = {(xi, yi = f (xi, ω̃1, ω̃2) + ε)}Ns

i=1sampled from the same function at

unknown true frequencies ω̃1, ω̃2. Posterior defined by likelihood p(D | ω1, ω2) =∏Ns
i=1 N (yi | f (xi, ω1, ω2), σ) with a Gaussian prior.

(a) True posterior (b) GMM approximation (c)Multistart locations

Above, we see the true 2D posterior, the GMM approximation from our algorithm, and

an example contour plot of the multistart locations.

High-dimensional scalability study

We study the scalability of VI coupled with the GMM initialization procedure by car-

rying out VI on a high-dimensional, synthetic posterior displaying non-Gaussian trends

intended to emulate a realistic modeling application. To achieve this behavior, we em-

ploy the Sinh-arcsinh distribution induced by a nonlinear transformation Y = l+σF (Z)
of a standard normal random variable Z

F (Z) = sinh((arcsinh(Z) + s)t)
2 sinh(arcsinh(Z)t)

where l, σ represent the location and scale, respectively, and s, t control the skewness
and tail behavior. This allows for the construction of a multimodal synthetic posterior

with controllable non-Gaussian trends. We then compare scalability between randomly

initialized VI (cold-start) with VI initialized using our GMM approximation (warm-start)

for randomly generated synthetic posteriors of dimensions 15, 30, and 60.
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The figure above shows the Jenson-Shannon divergence (JSD), scaled to lie in the in-

terval [0, 1], between the GMM surrogate posterior and the true posterior as a function

of total CPU runtime. JSD can be thought of as a symmetric and normalized version

of KL-divergence. VI with warm-start sees at a six-fold acceleration in convergence as

well as a lower final JSD approximation error.

Conclusion

Our approach for approximating intractable posteriors with GMMs through global op-

timization and Laplace approximations can be used to improve the scalability of VI for

high-fidelity mixture distributions and may serve as a more efficient alternative to VI in

certain applications.
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