

Exceptional service in the national interest

A Matrix-Free Approach for Algebraic Multigrid

Graham Harper
Center for Computing Research
Sandia National Laboratories

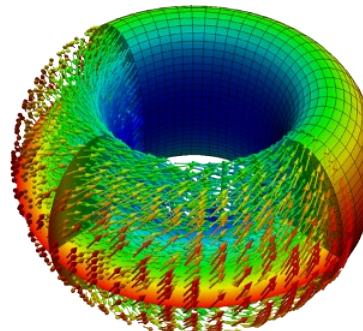
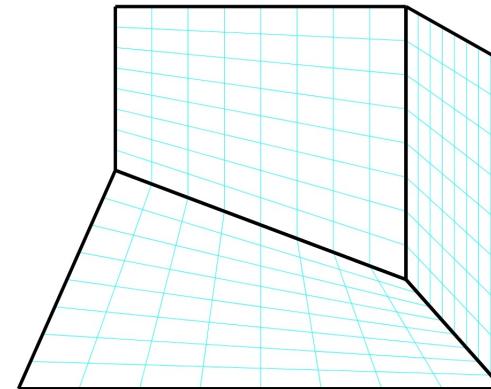
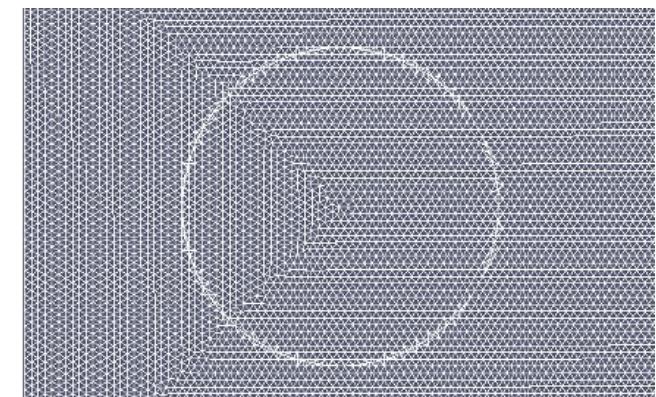
04/05/2022

Introduction & Motivation

- Collaborators: Ray Tuminaro, David Noble
- Funded by ASCR
- Motivating statements:
 1. Many large-scale high-performance finite element applications are memory-bound
 2. Matrix-free methods trade lower memory usage for higher computational cost
 3. Accelerators such as GPUs may be utilized more effectively in lower-memory scenarios
 4. Without preconditioning, matrix-free performance isn't worth it
- Approaches with GMG have been studied, less with AMG

Potential Approaches for Matrix-Free AMG

- Active subjects include p-coarsening, LOR
- Auxiliary operators
- AMG needs some sort of graph, explicit RAP
 - Limits benefits on simple scalar problems
 - Mesh graph (CG FEMs) or dual graph (DG FEMs)
 - Alleviate memory constraints via aggressive coarsening
- Applications of interest
 - GMG-AMG combinations
 - Hybrid-structure meshes (HHGs)
 - Collocated DOF multiphysics problems



$$\begin{bmatrix} A & B^T \\ B & -D \end{bmatrix}$$

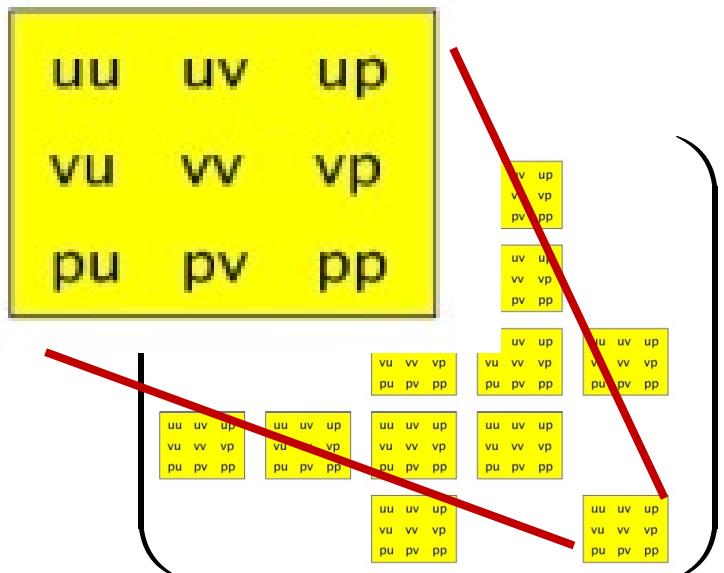
Potential Approaches for Matrix-Free AMG

- Specialized “probing” of a matrix-free operator
 - Combine with cheap graph coloring algorithms
 - Compute all matrix entries with few matvecs
- An example multiphysics application
 - Start with mesh nodal graph
 - Perform coarsening on the graph
 - Generate graph transfers using distances
 - Create coarse matrix using a specialized multiplication
 - Coarser levels are handled more traditionally
- Reduces overall memory constraints

AMG for Multiphysics

Consecutive DOFs within nodes

$$[u_1 \ v_1 \ p_1 \ \cdots \ u_n \ v_n \ p_n]$$

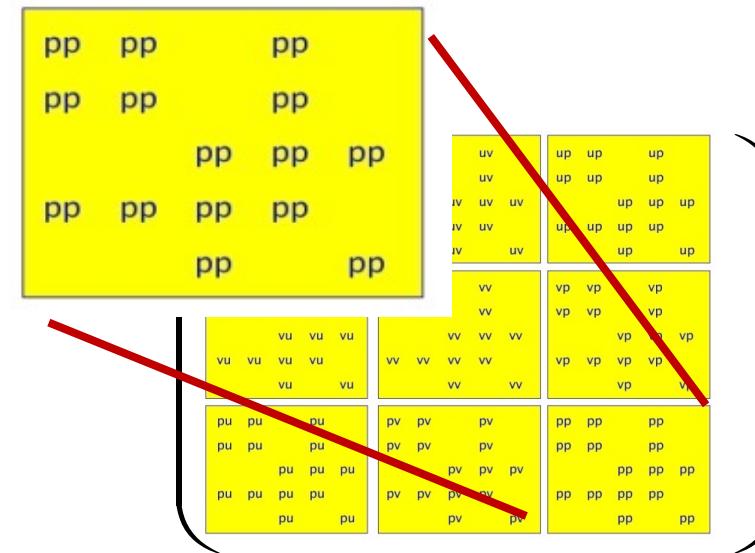


- Graph algorithms on nodes

$$\left(\begin{array}{cccccc} * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \end{array} \right)$$

Consecutive DOFs within fields

$$[u_1 \ \cdots \ u_n \ \ v_1 \ \cdots \ v_n \ \ p_1 \ \cdots \ p_n]$$

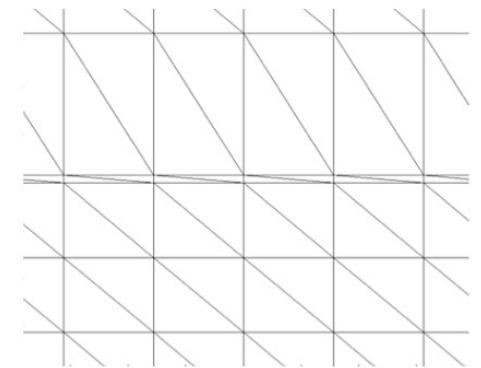


- Leads to blocked prolongator structure

The Distance Laplacian

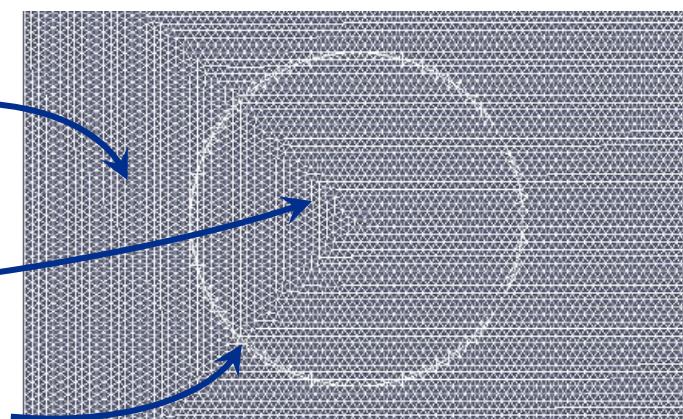
- Focus on multiphysics applications with collocated DOFs from here forward
- The distance Laplacian is defined by

$$L_{ij} = \begin{cases} -1/d(i, j), & i \neq j, A_{ij} \neq 0 \\ -\sum_{k \neq i} L_{ik}, & i = j \\ 0, & \text{otherwise} \end{cases}$$



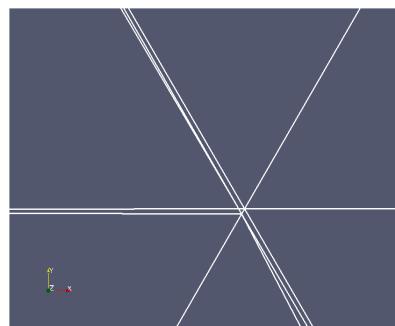
- Implemented in MueLu/ML with more features in progress

- 3 dofs/node (velocities, water pressure)
- 3 dofs/node (velocities, air pressure)
- 4 dofs/node (velocities, air & water pressure)



Matrix-Free Aspects of the Distance Laplacian

- Computing L_{ij} only requires mesh, connectivity
- Reduces overall problem size
- Generally applicable (using DOF information)
 - Interface problems
 - Multiple species
 - Stabilized-equal order
 - Poor mesh quality



Smoothed Aggregation AMG

- Smoothed aggregation = prolongator smoother * tentative prolongator

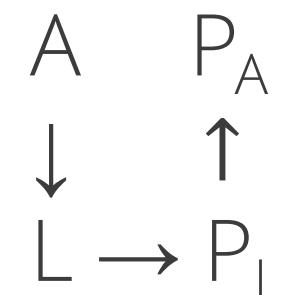
$$P_\ell = (I - \omega D_\ell^{-1} A_\ell) P_\ell^{(t)}$$

where

$$\omega = \frac{4}{3\lambda_{\ell,m}} \quad \lambda_{\ell,m} = \rho(D_\ell^{-1} A_\ell)$$

- Distance Laplacian SA-AMG:

- Replace A_1 with L
- “Unsmoosh” resulting P
- May resemble linear interpolation

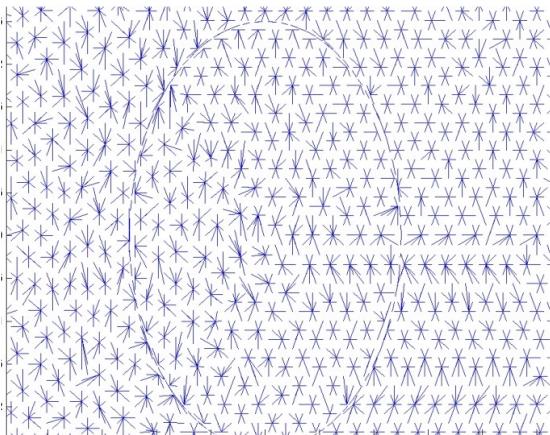


Strategies for SA-AMG

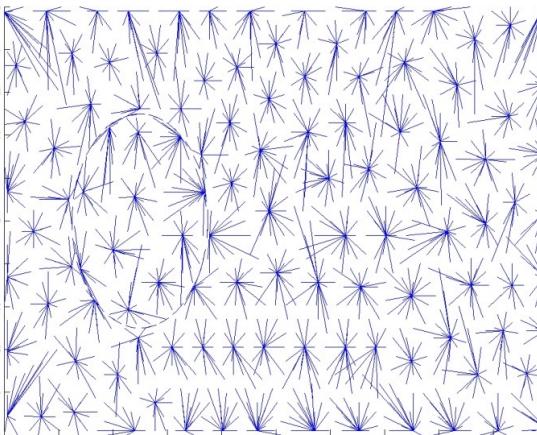
- Matrix-free case:
 - Eigenvalue estimate and diagonal are friendly
 - Smoothers need to be carefully chosen
 - Aggregates from mesh graph
- Aggressive coarsening:
 - Multiple prolongator smooths increases stencil
 - Dropping to fix any poor qualities
 - e.g. locate material jumps with A_{ii}/L_{ii}

Results – Distance Laplacian Only

- Rising bubble problem in Aria:



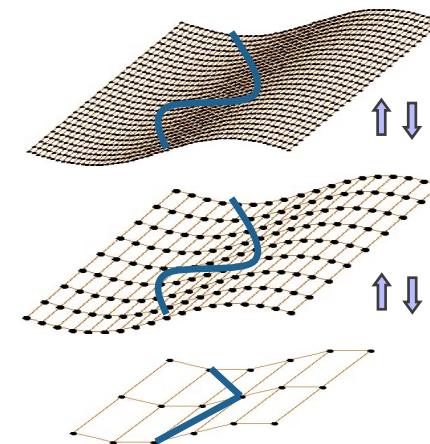
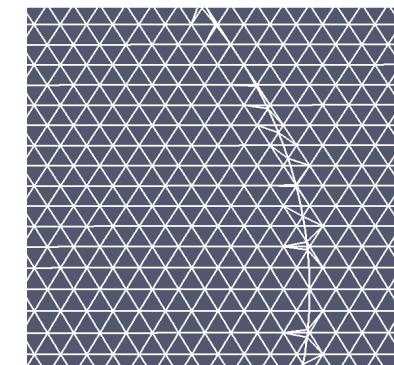
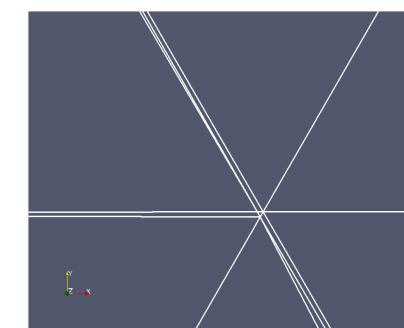
1st level aggregates



2nd level aggregates

- ILU relaxation to address smoothing concerns
 - Associated with incompressibility constraint
 - Tiny mesh spacing @ interface

method	iterations
ILU only	180
Unsmoothed/plain aggregation	25
Smoothed aggregation	19



Performance Portability for Matrix-Free Solvers

- Performance portability is important as new architectures arise
- Trilinos packages leverage Kokkos for performance portability

- We utilize
 - Intrepid2
 - Panzer
 - Tpetra
 - Belos
 - MueLu

```
apply(const MV& X,
      MV& Y,
      Teuchos::ETransp mode = Teuchos::NO_TRANS,
      scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
      scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const
{
    Y.scale(beta);

    Kokkos::DynRankView<double, PHX::Device>
        physbasisvals("phys basis vals", num_elems, num_basis, num_ip);
    Intrepid2::FunctionSpaceTools<PHX::Device::execution_space>
        ::HGRADtransformVALUE(phys_basis_vals, basis_vals);

    kokkos_view_Y(LIDs(e,i),c) += alpha*local_mass(i,j)*kokkos_view_X(LIDs(e,j),c);
}
```

- Best value for programmatic effort

Conclusion

- Distance Laplacian
 - Compressed representation of problem
 - Handles poor mesh quality well
- Smoothed aggregation
 - Versatile
- Matrix-Free
 - Plays well with each
 - Hybrid hierarchy approaches
- Plenty of combinations to explore
- Future work
 - Performance tests/improvement
 - Integration with MueLu

Thank you!

- Questions?