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Abstract—For the model-based control of low-voltage micro-
grids, state and parameter information are required. Different
optimal estimation techniques can be employed for this purpose.
However, these estimation techniques require knowledge of noise
covariances (process and measurement noise). Incorrect values
of noise covariances can deteriorate the estimator performance,
which in turn can reduce the overall controller performance.
This paper presents a method to identify noise covariances for
voltage dynamics estimation in a microgrid. The method is based
on the autocovariance least squares technique. A simulation
study of a simplified 100 kVA, 208 V microgrid system in
MATLAB/Simulink validates the method. Results show that
estimation accuracy is close to the actual value for Gaussian
noise, and non-Gaussian noise has a slightly larger error.

Index Terms—Voltage dynamics, noise covariance, noise iden-
tification, process noise, measurement noise

I. INTRODUCTION

Microgrids generally operate at low-to-medium voltage
ranges, and, as a result, the R/X ratio is relatively high [1].
This results in voltage being more sensitive to active power.
Different optimal controllers have been proposed to overcome
these challenges [2]–[4], but these require full states and
parameters information. States and parameters can be extracted
from a model of the system and time-series measurements,
but each of these have unknown error — termed as process
and measurement noise for the modeling and measurement
error, respectively. For optimal estimation, both information
should be combined in the right proportion based on the
error covariance. Different optimal filters/estimators exist, e.g.,
Kalman filter (KF), extended Kalman filter, unscented Kalman
filter, particle filter, moving horizon estimator, but each filter
requires knowledge of the covariance of the process and
measurement noise. Incorrect noise covariances can combine
the information in the wrong proportion and deteriorate the
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estimator performance [5], further reducing controller perfor-
mance. As the error is unknown, the value of error covariances
cannot be computed directly. Thus, it is necessary to identify
process and measurement noise covariance for optimal state
estimation.

Noise covariances identification techniques are divided into
four classes: Bayesian [6], maximum likelihood [7], covari-
ance matching [8], and correlation-based [9], [10]. In some
cases, Bayesian and maximum likelihood-based methods re-
quire higher computational costs. The covariance matching
technique requires less computational power, but it gives a
biased estimate of the true covariance. The correlation-based
technique presented in [9] and [10] gives an estimate with
higher variance. The improved autocovariance least squares
(ALS) method is presented in [11]. This method identifies
noise covariances with lower uncertainty and requires less
computational cost compared to other methods. We presented
state and parameter estimation for voltage dynamics of mi-
crogrids in [12] where we assumed known process and mea-
surement noise covariance. In this paper, we apply the ALS
method from [11] to identify noise covariances for voltage
dynamics of a microgrid.

The paper is organized as follows: Section II presents
the noise covariances identification technique. In Section III,
simplified voltage dynamics equations are presented. The
simulation setup is presented in Section IV, with results and
findings summarized in Section V. Section VI concludes the
paper.

II. AUTOCOVARIANCE LEAST SQUARES TECHNIQUE

In this section, the noise covariances identification technique
is explained. The technique requires design of a stable ob-
server, and the estimate provided by the observer will be used
to identify the noise covariances. We consider the state and
output equations of following form:

xk = Axk−1 + Buk−1 + Gwk−1 (1a)
yk = Cxk + vk (1b)

where xk is the state, uk is the input, yk is the measurement,
A is state matrix, B is input matrix, G is input matrix for
process noise wk, and vk is the measurement noise.

A. Observer Design

Let the covariance of measurement noise be Rv and that of
the process noise be Qw; the error dynamics of the observer
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as given in [11] is

εk = Āεk−1 + Ḡw̄k−1 (2a)

Yk = yk − Cx̂−k (2b)

where x̂−k = Ax̂k−1+Buk−1, Ā = A−ALC, Ḡ = [G, −AL],
w̄k = [w>k , v>k ]>, and L is the observer gain. The observer
gain is calculated using a guessed value of Qw and Rv , thus
the designed observer is non-optimal as the guessed values
are most likely to be far from correct values. However, this
does not affect the noise identification process as long as the
observer is stable as shown in [11]. Solution to following
equation gives state covariance P in steady state

P = APA> + GQwG
> −APC>(CPC> + Rv)−1CPA>.

(3)

From the value of P , the observer gain is calculated as

L = PC>(CPC> + Rv)−1. (4)

B. Noise Covariance Identification

The noise covariance identification technique is based on
the method given in [11]. From the estimate provided by the
observer, Y can be calculated with autocovariance given by

Ĉj =
1

Nd − j

Nd−1∑
i=1

YiY
>
i+j (5)

where a non-negative integer j represents the lag and Nd

represents the number of data points. The autocovariance can
be calculated for different values of lag. For stationary data,
the autocovariance becomes non-significant after a certain
lag [13]. Let the maximum lag for significant autocovariance
be N − 1, then an autocovariance matrix (ACM) is created as

R̂(N) =

 Ĉ0 . . . ĈN−1
...

. . .
...

Ĉ>N−1 . . . Ĉ0

 . (6)

The mathematical expression for autocovariance presented
in [11] can be equated to the calculated ACM, and the
equations can be solved for Qw and Rv . However, the number
of equations depends upon the maximum lag chosen, which is
generally greater than the number of unknowns. Thus, we seek
to solve the least-squares optimization problem such that the
sum of the square error in each equation is minimized instead
of solving the equations. As given in [11], the least-squares
optimization problem can be written as

min
X

∣∣∣∣A X − b̂
∣∣∣∣2
2

(7)

where

A =
[
D(G⊗G)|D(AL⊗ L) + [Ψ⊕Ψ + In2

yN
2 ]Iny,N

]
,

D = [(O ⊗ O)(In2
x
− Ā⊗ Ā)−1 + (Γ⊗ Γ)Inx,N ],

O =


C
CĀ

...
CĀN−1

 ,Γ =


0 0 0 0
C 0 0 0
...

. . .
...

CĀN−2 . . . C 0

 ,

b̂ = vec
(
R̂(N)

)
,Ψ = Γ

[
N⊕
j=1

(−AL)

]
,

and X =

[
vec(Qw)
vec(Rv)

]
.

Here ⊗ represents the Kronecker product, ⊕ the Kronecker
sum,

⊕
the direct sum, vec(·) the columnwise stacking of

matrix into a vector, and In,N the permutation matrix of size
(nN)2×n2 whose elements aij are either 0 or 1. The elements
must follow the condition:

vec

(
N⊕
i=1

X

)
= In,N vec(X) ∀ X ∈ Rn×n. (8)

The solution to (7) is given as

X̂ = (A >A )−1A >b̂, (9)

which gives the estimate of Qw and Rv that are denoted by
Q̂w and R̂v , respectively.

III. SIMPLIFIED VOLTAGE DYNAMICS

Fig. 1: Schematic representing an ESS connected to a microgrid. The
ESS is represented as CC-VSI for modeling purposes.

In this section, a simplified model for voltage dynamics
of a microgrid system is derived and then transformed into
a form suitable to apply the noise covariances identification
technique. The simplified model is used as a prediction model
for noise covariances identification. The single line diagram
of an inverter-based energy storage system (ESS) connected
to a microgrid is shown in Fig. 1. The inverter is modeled as
an average controlled current source (neglecting the current
control loop of the inverter), while the grid is represented by
the Thevenin equivalent voltage source with voltage vg and
equivalent resistance and inductance represented by R and
L, respectively. At the point of common coupling (PCC), a
capacitor C is added that is a part of the inverter filter. The
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voltage across the capacitor is represented by vc, the current
to the grid by ig , and the inverter current by iinv .

Grid current ig and capacitor voltage vc can be taken as state
variables, and the dynamics of the system can be represented
as:

dig,abc
dt

=
vc,abc − vg,abc − ig,abcR

L
(10a)

dvc,abc
dt

=
iinv,abc − ig,abc

C
(10b)

With the application of Park’s transformation and neglecting
the zero component, we get the following state-space repre-
sentation of the system in dq0 frame:

digd
dt

= −R

L
igd + ωigq +

vcd
L
− vgd

L
(11a)

digq
dt

= −ωigd −
R

L
igq +

vcq
L
− vgq

L
(11b)

dvcd
dt

= − igd
C

+ ωvcq +
iinvd
C

(11c)

dvcq
dt

= − igq
C
− ωvcd +

iinvq
C

(11d)

In the above equations, state variables are igd, igq, vcd, and
vcq , and the input variables are iinvd and iinvq .

Equation (11) has four state variables, however vgd and vgq
are also time-varying so they should also be estimated. Thus
we can also incorporate vgd and vgq as state variables. Because
the dynamics of vgd and vgq are governed by a load change in
the microgrid which is stochastic and variation in their value
is relatively small, we assume a constant process model for
vgd and vgq . The state equations can then be written as

d

dt


igd
igq
vcd
vcq
vgd
vgq

 =


−R

L ω 1
L 0 − 1

L 0
−ω −R

L 0 1
L 0 − 1

L
− 1

C 0 0 ω 0 0
0 − 1

C −ω 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




igd
igq
vcd
vcq
vgd
vgq

+


0 0
0 0
1
C 0
0 1

C
0 0
0 0


[
iinvd
iinvq

]
. (12)

The above equation can be discretized, and process and
measurement noise can be incorporated. The final discrete-
time equations take the form of equation (1), where wk

represents the process noise, vk the measurement noise,
xk = [igdk igqk vcdk vcqk vgdk vgqk]> the state vector,
and uk = [iinvdk iinvqk]> the input vector. Because each
element of wk appears in each equation, we choose G = I4×6,
where Im×n represents an identity matrix of size m × n.
Similarly, igd, igq, vcd, and vcq are measurable; hence we
choose C = I4×6.

Fig. 2: Simulation setup of the test system to extract the data to
identify noise covariances.

IV. SIMULATION SETUP

A simulation study was carried out to validate the ap-
proach by comparing the identified noise covariances with the
known applied noise. The setup is illustrated in Fig. 2 and
was modeled in MATLAB/Simulink. The microgrid system
considered is 100 kVA, 208 V with a 40 kVA inverter. The
system parameters are summarized in Table I. Continuous-time
state equations were discretized using Runge-Kutta method
of order 4. The sample time for the observer was selected
based on the time constant of the system [14]. A standard
phase-locked loop (PLL) from Simulink was used to extract
the instantaneous angle of vc to transform variables in abc to
dq0 frame. Gaussian noise of a known covariance is added
to these transformed values and used as measurements which
are then fed to the designed observer. Because process noise
corresponds to modeling error, we used incorrect parameter
values to induce modeling error/process noise. Simulation
parameters along with noise covariances are summarized in
Table I. The guessed value of noise covariances in Table I were
used to calculate the observer gain. The estimates provided
by the observer and the measurements were logged. The ALS
technique was applied offline to the logged data to get Q̂w

and R̂v . Python’s numpy library was used to perform matrix
operations on the data.

TABLE I: Summary of parameters
Parameters Values Parameters Values

R 0.08 Ω Incorrect R 0.09 Ω
L 0.22 mH Incorrect L 0.33 mH
C 220 µF Incorrect C 120 µF

True Rv diag(2.6, 2.6, 17.3, 17.3)× 10−4

Guessed Qw diag(0.65, 2.1, 6.92, 6.92)× 10−5

Guessed Rv diag(0.65, 0.65, 24.2, 24.2)× 10−5

V. RESULTS AND ANALYSIS

A. Noise Covariance Identification

The simulation was run 500 times, each time with a different
random seed value with a runtime of 0.2 seconds. The data
obtained from each simulation were passed to the observer
separately. From the estimates provided by the observer and
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Fig. 3: Histogram of the identified noise covariances. First row shows histogram of process noise covariances and second row shows histogram
of measurement noise covariances.

the measurements, autocovariance is calculated. For most of
the scenarios, it was found that autocovariance after a lag of 6
was very low, so N = 6 was chosen. From the identification
of noise covariances we get from multiple simulation data,
a histogram is created as shown in Fig. 3. Note that the
figure shows the histogram only for diagonal elements of
noise covariances. To validate the process noise covariance,
we calculate the modeling error by solving for wk from (1)
with the true value of xk. The distribution of calculated process
noise is shown in Fig. 4.

Fig. 4: Distribution of process noise calculated from true value of
states (to validate the identified noise covariances).

The estimated and true/calculated mean are summarized in
Table II. The results show that the variance of the first three
process noise has a large error with respect to the calculated
value. This is because process noise was induced by using
the incorrect value of parameters that does not necessarily

follow a Gaussian distribution as shown in Figs. 4(a)–(c). As
the ALS method assumes that all noise are Gaussian, a large
discrepancy in process noise is observed. The variance of the
last term of process noise is lower because the corresponding
distribution is closer to Gaussian as observed in Fig. 4(d).
Gaussian measurement noise was introduced for this study,
and hence the error is smaller for their variance identification.

TABLE II: Comparison of true and identified noise covariances
components

Noise True/Calculated Identified mean Error (%)

Qw11 0.37× 10−4 0.48× 10−4 29.7
Qw22 0.027× 10−4 0.0350× 10−4 22.9
Qw33 9.79× 10−4 11.3× 10−4 13.4
Qw44 10.2× 10−4 10.9× 10−4 6.42
Rv11 2.6× 10−4 2.84× 10−4 9.23
Rv22 2.6× 10−4 2.80× 10−4 7.69
Rv33 17.3× 10−4 20.2× 10−4 16.8
Rv44 17.3× 10−4 16.3× 10−4 5.78

B. Estimation with Identified Noise Covariances

After the noise covarianced are identified, state estimation
with KF was performed on two cases. In the first case, the
guessed value of noise covariances are taken (which are far
from true values). In the second case, the identified noise
covariances are used. The first case is named “incorrect KF”,
and the second case “correct KF”. While implementing KF, we
assumed that there is uncertainty in the parameters so incorrect
values of R, L, and C were used (i.e., the values in Table I).
The performance of KF under these two conditions are shown
in Fig. 5. Normalized root mean square error (NRMSE) was
used to characterize the error of the estimates with respect to
true values, shown in Table III. The results show that KF with
identified noise estimates the states closer to the true value;
KF using identified noise covariance performs better than with
the incorrect values of covariance.
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Fig. 5: Comparison of state estimates provided by correct and incorrect KF; KF with identified noise tracks true states more closely.

TABLE III: Comparison of NRMSE of state estimates provided by
correct and incorrect KF

States NRMSE (%) States NRMSE (%)
Correct KF Incorrect KF Correct KF Incorrect KF

igd 12.5 18.3 vcd 16.3 31.3
igq 14.5 22.0 vcq 18.9 27.8

VI. CONCLUSIONS

The paper presented a process and measurement noise
identification technique for voltage dynamics estimation of mi-
crogrids. A simplified model was used to model the microgrid
and was employed to identify noise covariance. The method
was able to accurately identify Gaussian noise, as well as
identify the non-Gaussian process noise. The identified noise
covariance are of same order as those calculated. The larger
discrepancy in calculated and identified covariance is due to
the non-Gaussian distribution of process noise. Further, KF
was implemented using incorrect (“guessed”) and identified
values of noise covariances, and it was found that KF using
the identified noise covariances closely tracks the true states.
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