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Trusted and Trust-In Al systems

In high consequence environments, Trust between operators and Al becomes critical

Trusted systems should be:
* Resilient

* Robust

* Adaptable

* Ergonomic
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Detectron 2 Object Detection

Facebook object detection API
Facilitates training collections of object detection models with pre-initialized weights

We trained 8 candidate models on our COCO formatted dataset
Model hyperparameters and training schedule were NOT optimized

Data separated into a 90/10 train/test split, after stratifying to minimize class imbalances

Dataset
These whole vehicle scans collected on a Multi-Energy Portal
Hand annotations for 5 classes:

Model Name Model Family | Model Outputs

. .
Trabl!er Faster RCNN Class, Score, Box
[ J
C.a n Faster RCNN Class, Score, Box
* Tire
Faster RCNN Class, Score, Box
* Flatbed

) - _ ) RetinaNet Class, Score, Box
e Target (Mixed material objects of interest) e T ——
R_101_C4 3x Mask RCNN Class, Score, Box, Mask
R_101_DC5_3x Mask RCNN Class, Score, Box, Mask

Mask RCNN Class, Score, Box, Mask

h




Graph Theoretic Ensembling

1) Collect inferences ------------ 2) Split inference graph
and build an | T I into cliques, and score 1= l_[(-l =)
inference graph ' @ : each clique s
: Orange ,’::j_:_ _i o J:
| ® il . -
: - '\“i' SR A 3) If models disagree on a ‘
S Looovepple T classification, calculate a (1 — H(1 — 5-_)) 1_1(1 —5)
o @&y categorical confidence seC SEC
JENE - score to weight clique
S — selection

Clique: A fully induced subgraph, or a complete graph
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neural network
encoder

sampling

z~N(p o) x=d(z)

neural network

decoder

Sedans

Tankers

Figure from Joseph Rocca: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Post-hoc Correction

Simple experiment:

. Tires Trailers
* Runinference on our test dataset (Blue) Lo o
. . | — T - *
* For each ‘tire’ detection, swap the label to W
‘trailer’ (probability 25%), and recalculate mAP
0.8 4
(Black) e
. . 8=
* Repeat the experiment, but before running the &
ensemble, expose trailer and tire inferencesto % %°]
=]
the post-hoc similarity correction. Deprecate o
. . =T
the confidence of potentially erroneous c 041
. . . lLI
inferences prior to ensembling (Red) =
021 Ensemble Models
= GIC Ensemble
—— Ensemble with post-hoc correction
DI:I 1 1 1 ) ) )
1 2 3 1 2 3
Mumber of Erroneous Models Mumber of Erronecus Models




Conclusions

Key Takeaways

* We can develop trusted and resilient systems for NII

* using off the shelf capabilities

* The judicious combination of tools in scalable ways

* will be the key to widespread adoption

* Ensembles of object detection models are fast to train and implement

* Post-hoc correction using image similarity or any other distribution
style test may provide orthogonal checks and balances




