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Motivation: Trajectory Guidance

* Orders of magnitude improvement in landing precision required to enable

human Mars missions
» Long-term goal: robust trajectory optimization under uncertainty

V' 2012 Curiosity gy
- pRitssd 2008 Phoenix
62x 12 mi

~ 1997 Pathfinder
125x 44 mi

1976 Viking

174 x 62 mi

Surface Elevation (mi)

-2 -1 0

Mars landing precision over time



Motivation: Trajectory Guidance @

e Current focus: uncertainty propagation for high-fidelity trajectory simulation
* High dimensional inputs — e.g., atmosphere conditions, vehicle state
* Multiple quantities of interest (Qols) — e.g., landing location, flight time
 Model: Program to Optimize Simulated Trajectories Il (POST2)

Monte Carlo (MC) simulation

Heatshield Payload
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Outline: Model Tuning for MFUQ @

* Model tuning is important

* How we can do it optimally (In Progress)

e Application to trajectory simulation
* Optimal time step selection for lo-fi models
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Approximate Control Variates (ACV)u @

M Q: hi-fi model

Q =Q(2) + z a; (@l(zll) — QL(ZLZ)) gn'fcf'eﬁﬁfaetlir

a;: CV weights

* Multilevel Monte Carlo (MLMC)(2] and Multifidelity Monte Carlo (MFMC)3]
are instances of this estimator

* New ACV estimators(y based on independent sampling (ACV-IS), multifidelity
sampling (ACV-MF) and their corresponding generalizations (GIS, GMF)

 Estimator is unbiased (wrt E[Q])
» ACV estimator variance: Var|Q| = Var|Q|(1 — Ricy)

[1] Gorodetsky, A A., et al. Journal of Computational Physics (2020) [3] Peherstorfer, B, et al. SIAM Journal on Scientific Computing (2016)
[2] Giles, M B. Operations Research (2008) [4] Bomarito, G. F., et al. Journal of Computational Physics (2022)



ACV-MF Estimator Variance

Var[Q] = Var|Q](1 — Ricy—_mr)

cov of lo-fi models w.r.t. each other cov of lo-fi models w.r.t. hi-fi

)

1
Ricy-mr() = Vario [diag[F(#)] e c]"[C o F(#)] ™ [diag[F(#)] e c]

~—_ ! P

Matrix representing ACV-MF sampling strategy

Variance minimization for sample allocation:

argmin Var|Q|(N,7) st Wtota(nN,7) < wtarget

N,7 / \

Estimator cost Computational budget

e



ACV-MF Estimator Variance @

Introduce model tuning parametersﬁ

cov of lofi models w.r.t. each other cov of lofi models w.r.t. hifi

1 )

Ricvur () = o [diag IF@)] o €] [€B) o F@)] " [diaglF )] o e(B)

In general, these are not known a priori and must be estimated

 Can reformulate generally in terms of only model correlations
* Model costs are also a function of  (potentially known)



Optimization Approach*

argmin Var[@](N,F,’E) s.t. WtOtal(N,F,E) < ptarget
N,7, B

» Build global surrogate for ¢(8) from pilot samples
* N¢yn: number of values of tuning parameters to investigate
* Nyiioe: number of pilot samples at each set of tuning parameters
* Local quadratic interpolant

* Assume known relationship of model costs
* Gradient based-optimization (SLSQP)

*work in progress
* Currently based on single iteration from pilot samples for all Niypn, Npijot



Analytical Examplepn

e @Goal: study the effect of hyperparameter,
8,, for lo-fi model, @, on estimator variance

Hi-fi and lo-fi models

Q = A(cos Bx® + sinfy>)

Q; = A{(cos 01x3 + sinf,y?)
Q, = A,(cos B,x + sinb,y)

Model costs:

w=1
w, = 1073

logw; = logw, + log V;j:}gogw (6 —06,)

A,A4,A,, 0,0, are constants

[1] Gorodetsky, A A., et al. Journal of Computational Physics (2020)
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Estimators Variance

Analytical Examplepn
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Model tuning can greatly affect estimator variance

[1] Gorodetsky, A. A., et al. Journal of Computational Physics (2020)

w;: model cost
p1 : correlation between @ and @
p1» : correlation between Q4 and Q-

12



rajectory Simulation Example

Goal: Predict the flight time of an umbrella heatshield . Model Cost vs. Time Step
reentering the Earth’s atmosphere within computational budget o
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Goal: Predict the flight time of an umbrella heatshield

reentering the Earth’s atmosphere within computational budget

Determine mid-fidelity time step through joint optimization:
argmin Var[é](N, 1,7, Atl) s.t. WtOtal(N, 1, TZ'Atl) < Wtarget

Narmalized Cost

N, 1,1y, Aty 1o-

Compare correlation surrogate models with varying amounts
of data

1. Ngyp=24, Npyjjor = 200

2. Ntun=24i Npilot =50

3. Npun=6, Npjjor = 200

> Reference case (Ref Surr) with all data: Ny, =24, Np;j0c = 500

PLfe Pz
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w;: Q1 model cost
p; : correlation between Q, and Q
p1 : correlation between Q; and Q,

rajectory Simulation Example

Model Cost vs. Time Step
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Results: Most Accurate Surrogate

* Optimization using Ny, = 24, Npjjor = 200 to build correlation surrogate models; 200 random trials

Estimator Variance vs. Time Step
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Optimal model tuning is achievable using surrogates for correlation
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Variance
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Results: Sparser Grid

* Optimization using N, = 6, Npjjor = 200 to build correlation surrogate models; 200 random trials

Estimator Variance vs. Time Step
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Smoothness is important for gradient-based optimization
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Results: Fewer Pilot Samples

* Optimization using Nyyn = 24, Nyjj0c = 50 to build correlation surrogate models; 200 random trials

Estimator Variance vs. Time Step
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Statistical variability impacts optimization
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Results: Two Tunable Lo-Fi Models

Optimal Estimator Variance vs. Time Step Sizes

High-fidelity (Q): timestep = 0.001 3.390

Mid-fidelity (Q4): timestep = 0.001 < At; < 0.25 2.399

Low-fidelity (Q,): timestep = 0.001 <= At, < 0.25 1.966

1.690

e Estimator variance was calculated directly w 1.477

for each (Atq, At,) pair using MFMC and ) 1.262

ACV-MF and the optimal (minimum) value 1126
was plotted
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Optimal ACV method (model graph) can be function of hyperparameters

Best Estimator Variance (s¢)
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Conclusions

* Model tuning can greatly affect estimator variance

* Optimization requires estimation (or knowledge) of
correlations/costs as a function of tuning parameters

e Quality of the correlation surrogate is an important factor in tuning
parameter optimization

 Future Work:

* Automating sample allocation + model tuning optimization — implementation
in Dakota

* Global optimization with adaptive surrogate refinement
 All-at-once optimization with model hierarchy



Questions? &

* Email: james.e.warner@nasa.gov
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