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Motivation: Trajectory Guidance
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• Orders of magnitude improvement in landing precision required to enable 
human Mars missions
Ø Long-term goal: robust trajectory optimization under uncertainty

Mars landing precision over time
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Heatshield Payload

• Current focus: uncertainty propagation for high-fidelity trajectory simulation
• High dimensional inputs – e.g., atmosphere conditions, vehicle state
• Multiple quantities of interest (QoIs) – e.g., landing location, flight time
• Model: Program to Optimize Simulated Trajectories II (POST2)

Monte Carlo (MC) simulation
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Heatshield Payload

• Current focus: uncertainty propagation for high-fidelity trajectory simulation
• High dimensional inputs – e.g., atmosphere conditions, vehicle state
• Multiple quantities of interest (QoIs) – e.g., landing location, flight time
• Model: Program to Optimize Simulated Trajectories II (POST2)

High-fidelity (hi-fi) model

Low-fidelity (lo-fi) model
Medium-fidelity (med-fi) model

High-fidelity: timestep = 0.001

MFUQ



Lo-Fi 1
Lo-Fi 2
Lo-Fi 3

Lo-Fi Correlation With Respect to Hi-Fi for Each Trajectory QoI
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Heatshield Payload

• Current focus: uncertainty propagation for high-fidelity trajectory simulation
• High dimensional inputs – e.g., atmosphere conditions, vehicle state
• Multiple quantities of interest (QoIs) – e.g., landing location, flight time
• Model: Program to Optimize Simulated Trajectories II (POST2)

High-fidelity (hi-fi) model

Low-fidelity (lo-fi) model
Medium-fidelity (med-fi) model

[1] J. E. Warner et al. AIAA SciTech 2021. Ø Sub-optimal lo-fi models = sub-optimal MFUQ

Variance Reduction for Each Trajectory QoI

High-fidelity: timestep = 0.001

AIAA SciTech 2021[1]:MFUQ



Outline: Model Tuning for MFUQ
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• Model tuning is important
• How we can do it optimally (In Progress)
• Application to trajectory simulation
• Optimal time step selection for lo-fi models

Heatshield Payload

High-fidelity (hi-fi) model

Low-fidelity (lo-fi) model
Medium-fidelity (med-fi) model



Approximate Control Variates (ACV)[1]
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• Multilevel Monte Carlo (MLMC)[2] and Multifidelity Monte Carlo (MFMC)[3]
are instances of this estimator

• New ACV estimators[1] based on independent sampling (ACV-IS), multifidelity
sampling (ACV-MF) and their corresponding generalizations[4] (GIS, GMF)

• Estimator is unbiased (wrt 𝐸[𝑄])
• ACV estimator variance: 𝑉𝑎𝑟 (𝑄 = 𝑉𝑎𝑟 *𝑄 1 − 𝑅!"#$

[1] Gorodetsky, A A., et al. Journal of Computational Physics (2020)                                                             [3] Peherstorfer, B, et al. SIAM Journal on Scientific Computing (2016)
[2] Giles, M B. Operations Research (2008) [4] Bomarito, G. F., et al. Journal of Computational Physics (2022)

!𝑄 = $𝑄 𝑧 +'
./0

1

𝛼. $𝑄. 𝑧.0 − $𝑄. 𝑧.2
𝑄: hi-fi model
𝑄!: lo-fi models
"𝑄: MC estimator
𝛼!: CV weights



𝑅3456172 (𝑟) =
1

𝑉𝑎𝑟[𝑄]
𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄 8 𝑪 ∘ 𝑭 𝑟 60 𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄

ACV-MF Estimator Variance
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cov of lo-fi models w.r.t. hi-ficov of lo-fi models w.r.t. each other

Matrix representing ACV-MF sampling strategy

𝑉𝑎𝑟 !𝑄 = 𝑉𝑎𝑟 $𝑄 1 − 𝑅3456172

sampling ratios

argmin  𝑉𝑎𝑟 $𝑄 𝑁, 𝑟 s.t. 𝑊%&%'( 𝑁, 𝑟 ≤ 𝑊%')*+%

𝑁, 𝑟

Variance minimization for sample allocation:

Estimator cost Computational budget



𝑅!"#$%& (𝑟, 𝛽) =
1

𝑉𝑎𝑟[𝑄] 𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄(𝛽)
'
𝑪(𝛽) ∘ 𝑭 𝑟

()
𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄(𝛽)

ACV-MF Estimator Variance
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cov of lofi models w.r.t. hificov of lofi models w.r.t. each other

Introduce model tuning parameters 𝛽

In general, these are not known a priori and must be estimated

• Can reformulate generally in terms of only model correlations
• Model costs are also a function of 𝛽 (potentially known)



Optimization Approach*
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• Build global surrogate for 𝒄(𝛽) from pilot samples
• 𝑁%,-: number of values of tuning parameters to investigate
• 𝑁./(&%: number of pilot samples at each set of tuning parameters
• Local quadratic interpolant

• Assume known relationship of model costs
• Gradient based-optimization (SLSQP)

*work in progress
• Currently based on single iteration from pilot samples for all 𝑁%&', 𝑁()*+%

argmin  𝑉𝑎𝑟 $𝑄 𝑁, 𝑟, 𝛽 s.t. 𝑊%&%'( 𝑁, 𝑟, 𝛽 ≤ 𝑊%')*+%

𝑁, 𝑟, 𝛽



Analytical Example[1]
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𝑤": model cost
𝜌" : correlation between 𝑄" and 𝑄
𝜌"# : correlation between 𝑄" and 𝑄#

𝑄 = 𝐴(cos 𝜃𝑥, + 𝑠𝑖𝑛𝜃𝑦,)
𝑄- = 𝐴-(cos 𝜃-𝑥. + 𝑠𝑖𝑛𝜃-𝑦.)
𝑄$ = 𝐴$(cos 𝜃$𝑥 + 𝑠𝑖𝑛𝜃$𝑦)

Hi-fi and lo-fi models

Model costs:
𝑤 = 1
𝑤$ = 10/.

log𝑤- = log𝑤$ +
012 3!/0123

4!/4
𝜃- − 𝜃$

𝐴,𝐴", 𝐴#, 𝜃, 𝜃# are constants

[1] Gorodetsky, A A., et al. Journal of Computational Physics (2020) 

• Goal: study the effect of hyperparameter, 
𝜃!, for lo-fi model, 𝑄!, on estimator variance



Analytical Example[1]
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Model tuning can greatly affect estimator variance

[1] Gorodetsky, A. A., et al. Journal of Computational Physics (2020) 

𝑤": model cost
𝜌" : correlation between 𝑄" and 𝑄
𝜌"# : correlation between 𝑄" and 𝑄#
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Trajectory Simulation Example

Goal: Predict the flight time of an umbrella heatshield 
reentering the Earth’s atmosphere within computational budget

High-fidelity (𝑄): timestep = 0.001

Low-fidelity (𝑄#): timestep = 0.25
Mid-fidelity (𝑄"): timestep = 0.001 ≤ Δ𝑡" ≤ 0.25

𝑤!: 𝑄! model cost
𝜌! : correlation between 𝑄! and 𝑄
𝜌!" : correlation between 𝑄! and 𝑄"

Heatshield Payload

Model Cost vs. Time Step 

Model Correlation vs. Time Step           
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Trajectory Simulation Example

Goal: Predict the flight time of an umbrella heatshield 
reentering the Earth’s atmosphere within computational budget

argmin  𝑉𝑎𝑟 A𝑄 𝑁, 𝑟", 𝑟#, Δ𝑡" s.t. 𝑊$%$&' 𝑁, 𝑟", 𝑟#, Δ𝑡" ≤ 𝑊$&()*$
𝑁, 𝑟!, 𝑟", Δ𝑡!

• Determine mid-fidelity time step through joint optimization:   

• Compare correlation surrogate models with varying amounts 
of data
1. N+,-=24, N./01+ = 200
2. N+,-=24, N./01+ = 50
3. N+,-=6, N./01+ = 200
Ø Reference case (Ref Surr) with all data: N+,-=24, N./01+ = 500

𝑤!: 𝑄! model cost
𝜌! : correlation between 𝑄! and 𝑄
𝜌!" : correlation between 𝑄! and 𝑄"

Model Cost vs. Time Step 

Model Correlation vs. Time Step           



Results: Most Accurate Surrogate
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Optimal model tuning is achievable using surrogates for correlation

Estimator Variance vs. Time Step              Estimated Model Correlation vs. Time Step              

• Optimization using N+,- = 24, N./01+ = 200 to build correlation surrogate models; 200 random trials



Results: Sparser Grid
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Smoothness is important for gradient-based optimization

Estimator Variance vs. Time Step              Estimated Model Correlation vs. Time Step              

• Optimization using 𝐍𝐭𝐮𝐧 = 𝟔, N./01+ = 200 to build correlation surrogate models; 200 random trials



Results: Fewer Pilot Samples
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Statistical variability impacts optimization

Estimator Variance vs. Time Step              Estimated Model Correlation vs. Time Step              

• Optimization using N+,- = 24, 𝐍𝐩𝐢𝐥𝐨𝐭 = 𝟓𝟎 to build correlation surrogate models; 200 random trials



Results: Two Tunable Lo-Fi Models
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Optimal ACV method (model graph) can be function of hyperparameters

High-fidelity (𝑄): timestep = 0.001

Low-fidelity (𝑄#): timestep = 0.001 <= Δ𝑡# ≤ 0.25
Mid-fidelity (𝑄"): timestep = 0.001 ≤ Δ𝑡" ≤ 0.25

Optimal Estimator Variance vs. Time Step Sizes 

• Estimator variance was calculated directly 
for each (Δ𝑡", Δ𝑡#) pair using MFMC and 
ACV-MF and the optimal (minimum) value 
was plotted



Conclusions
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• Model tuning can greatly affect estimator variance
• Optimization requires estimation (or knowledge) of 

correlations/costs as a function of tuning parameters
• Quality of the correlation surrogate is an important factor in tuning 

parameter optimization
• Future Work:
• Automating sample allocation + model tuning optimization – implementation 

in Dakota
• Global optimization with adaptive surrogate refinement
• All-at-once optimization with model hierarchy



Questions?

• Email: james.e.warner@nasa.gov
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