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“Critical Nodes” Project 

vTitle: Critical Node Identification, Vulnerability 
Modeling, and Topology Optimization for the Electric 
Grid 

vFunding source: Laboratory Directed Research 
and Development (LDRD)
vResilient Energy Mission Campaign (2021-2027)
vOther investment areas outside of  energy systems

vCurrently in year 2 of  3

vTwo goals:
vIdentifying critical (or vulnerable) nodes
vInvestment decision making methodology

Power System Resilience Investment Projects

“Energy Storage Restoration” Project

vTitle: Improving Grid Resilience with Optimal 
Restoration Utilizing Energy Storage

vFunding source: Energy Storage Program
vLead by Dr. Babu Chalamala
vFunded through DOE OE (Dr. Imre Gyuk)

vCurrently in year 2 of  3

vBlack-Start restoration using Mobile Energy 
Storage
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Goal: Develop Sandia capabilities to identify electric grid critical nodes and their vulnerability 
levels to various threats and to develop a decision-making methodology to improve resilience. 

vIdentifying critical nodes
vInterdiction analysis (determining worst N-k attacks)
vDown select possible N-k attacks (combinatorial explosion in k)

vCascading outage analysis
vTemporal clustering to determine component outages resulting in full collapse

vDecision making methodology
vThree-stage scenario-based stochastic investment optimization

“Critical Nodes” Project 



Three-Stage Resilience Optimization Problem

1st Stage
(Investment)

Decides investments 𝑥.
Minimizes Conditional Value at Risk (CVaR).

min
!∈𝒳

𝐶𝑉𝑎𝑅$% (ℓ(𝑥, 𝑓) (ℓ(𝑥, 𝑓) = min
&∈𝒵(!)

𝔼*|$ 1ℓ(𝑧, 𝑥, 𝑒) 1ℓ(𝑧, 𝑥, 𝑒) = min
,∈𝒴(!,&,*)

ℓ(𝑦, 𝑒)

2nd Stage
(Preemptive Action)

Decides pre-emptive action 𝑧.
Minimizes expected value.

3rd Stage
(Restoration)

Decides restoration variables 𝑦.
Minimizes deterministic value.
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Two-Stage Preemptive Action Optimization

min
&∈𝒵

𝔼* 1ℓ(𝑧, 𝑒) 1ℓ(𝑧, 𝑒) = min
,∈𝒴(&,*)

ℓ(𝑦, 𝑒)

2nd Stage
(Pre-Emptive Action)

Decides pre-emptive action 𝑧.
Minimizes expected value.

3rd Stage
(Restoration)

Decides restoration variables 𝑦.
Minimizes deterministic value.

vGiven a warning an event may occur, how to optimally prepare your 
system for that event, and optimally recover from the event. 

vExample 1: given a 24-hour warning a hurricane will strike a specific 
city, how to optimally dispatch limited flood walls around substations, to 
minimize load shed. 

vExample 2: given a 24-hour warning a winter storm will occur, how to 
redispatch your generators to minimize load shed. 
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In partnership with University of Texas,
Brent Austgen [1] Brent Austgen, John Hasenbein and Erhan Kutanoglu, "Impacts of Approximate Power Flow Models on Optimal Flood 

Mitigation in a Stochastic Program", Proceedings IISE Annual Conference and Expo, 22-25 May 2021



Not Pre-positioning flood barriers 
in advance of a hurricane

Pre-positioning flood barriers 
in advance of a hurricane

Two-Stage Preemptive Action Optimization

min
&∈𝒵

𝔼* 1ℓ(𝑧, 𝑒) 1ℓ(𝑧, 𝑒) = min
,∈𝒴(&,*)

ℓ(𝑦, 𝑒)

2nd Stage
(Pre-Emptive Action)

Decides pre-emptive action 𝑧.
Minimizes expected value.

3rd Stage
(Restoration)

Decides restoration variables 𝑦.
Minimizes deterministic value.
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In partnership with University of Texas,
Brent Austgen [1] Brent Austgen, John Hasenbein and Erhan Kutanoglu, "Impacts of Approximate Power Flow Models on Optimal Flood 

Mitigation in a Stochastic Program", Proceedings IISE Annual Conference and Expo, 22-25 May 2021



Investments Targeting Winter Storms: Application to Uri
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1st Stage
(Investment)

Decides investments 𝑥.
Minimizes Conditional Value at Risk (CVaR).

min
!∈𝒳

𝐶𝑉𝑎𝑅$% 1ℓ(𝑥, 𝑓) 1ℓ(𝑧, 𝑥, 𝑒) = min
,∈𝒴(!,&,*)

ℓ(𝑦, 𝑒)

3rd Stage
(Restoration)

Decides restoration variables 𝑦.
Minimizes deterministic value.

Figure: Cumulative Distribution Function for 
outage fraction of each generator type

Figure: Texas counties 
categorized as panhandle (red), 
coastal (blue), or neither (green) 

Scenario Generation
v A mixed random variable represents the 

fraction of available generation.
v Empirically constructed probability 

distributions from Winter Storm Uri data.
v Categorized generators with respect to fuel 

type and region.
v Introduced a random storm severity variable 

(not shown here).

[2] Brent Austgen, Manuel Garcia, Brian Pierre, John Hasenbein and Erhan Kutanoglu, “Winter Storm Scenario 
Generation for Power Grids Based on Historical Generator Outages” Proceedings of the IEEE PES T&D 
Conference and Exposition, New Orleans, LA, April 25-28, 2022



Figure: Number of investments by generator type for different values of 𝜖

Figure: Histogram of load loss with different 
budgets using validation scenarios
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Numerical Results
v Optimized over 3554 scenerios
v Validated results using 5000 out-of-sample scenarios
v Increasing budget significantly reduced load loss
v Adjusting CVaR to focus more on the tail results in 

more investment in “Gas Coastal” generator type. 
(The most outted generator type in Uri) 

Winterization Investment Results

[3] Manuel Garcia, Brent Austgen, Brian Pierre, John Hasenbein and Erhan Kutanoglu, “Risk-Averse Investment Optimization for Power 
System Resilience to Winter Storms” Proceedings of the IEEE PES T&D Conference and Exposition, New Orleans, LA, April 25-28, 2022
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Goal: Develop optimization models to improve grid resilience by utilizing large-scale 
energy storage throughout a multi-time period restoration process.

vBlack-Start Restoration with Mobile Energy Storage
vProcess of  restoring grid after a complete blackout
vMobile energy storage can assist in the process

vThree-Stage Decision Making 
vInvestment in mobile energy storage connection points in the grid
vPreemptive action to place mobile energy storage before an event occurs
vDispatching mobile energy storage during the restoration process

“Energy Storage Restoration” Project 



Black-Start Restoration Assisted by Mobile Energy Storage10

Black-Start Restoration Process
v Restore grid after complete black-out.
v Most generators require electric power to start-up 

(Cranking power).
v Few generators can start-up on their own.
v Grid components become energized, propagating 

from the generators, and eventually coalescing.

Mobile Energy Storage Assistance
v Energy storage can provide cranking power.
v Mobile energy storage can be pre-positioned or 

deployed after an event occurs.
Figure: Illustrating how energized components 
propagate during the restoration process.  Red 
components are energized.  Time increases as 

you move down and to the right.

[3] Joshua Yip, Manuel Garcia, Brian Pierre, Erhan Kutanoglu, and Surya Santoso, “Optimal Black-Start Restoration Assisted by Mobile 
Energy Storage” Proceedings of the IEEE PES General Meeting, Denver, CO, July 17-21, 2022



Black-Start Restoration Assisted by Mobile Energy Storage11

Experiments
v Model provided in reference. 
v IEEE 14 bus test case divided into three regions.
v Simulate black-start restoration for cases where 

each individual region experiences outages.

Results
v Significant decrease in average load 

energy unserved.
v Variance of  the outcome is smaller 

(Less outliers).

Figure: Box and 
whiskers plot of 
the load energy 

unserved for 
outages occurring 
in different zones.  
Light and heavy 

outages scenarios  
are considered.

Figure: One-line 
diagram for IEEE 
14 bus test case 
split into three 

regions that 
experience 

separate outage 
scenarios. 

[3] Joshua Yip, Manuel Garcia, Brian Pierre, Erhan Kutanoglu, and Surya Santoso, “Optimal Black-Start Restoration Assisted by Mobile 
Energy Storage” Proceedings of the IEEE PES General Meeting, Denver, CO, July 17-21, 2022



Thank you to all UT and Sandia colleagues

Thank you to our funding organizations

v Energy Storage Program at the U.S. Department of  Energy Office of  Electricity 
Delivery and Energy Reliability managed by Dr. Imre Gyuk

v Laboratory Directed Research and Development (LDRD) program at Sandia National 
Laboratories
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