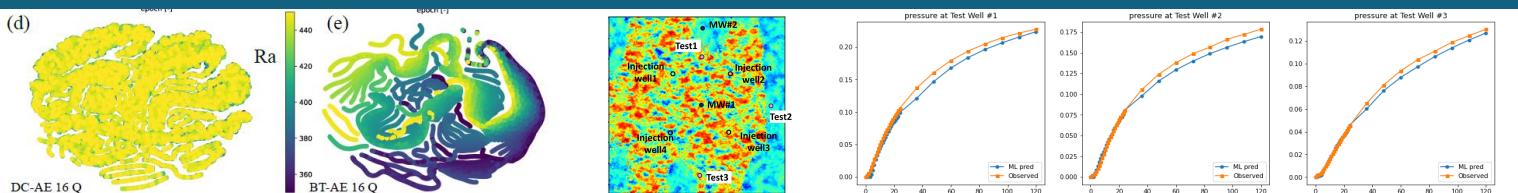


Physics-based Deep Learning Driven CO₂ Flow Modeling and Data Assimilation for Real-Time Forecasting

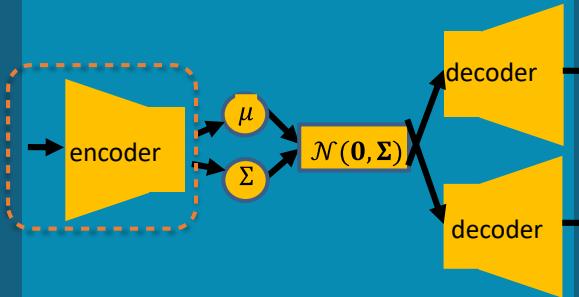


Hongkyu Yoon¹

Jonghyun Harry Lee², Teeratorn Kadeethum¹

¹Geomechanics Department, Sandia National Laboratories, NM

²Civil and Environmental Engineering, University of Hawaii at Manoa, HI



AAPG CCUS
March 2022

This work was supported by DOE Office of Fossil Energy and Carbon Management project -**Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications-Carbon Storage & Laboratory Directed Research and Development** program at Sandia National Laboratories.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation for Deep Learning Based Approach

Two major challenges for high-dimensional forward and inverse problems for real-time forecasting

1. Computational burdens with matrix calculations (e.g., Jacobian)

=> Effective dimension reduction

2. # of forward model simulations for inverse modeling

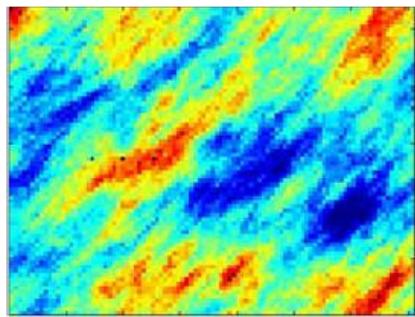
=> ML-driven fast, reduced order predictive modeling

Specific Goals: Machine learning-driven CO_2 modeling by combining **fast ML-based forward modeling** with (ensemble-based) **data assimilation** (EnDA), resulting in real-time history matching of CO_2 operations and **forecasting CO_2 and pressure plume development**

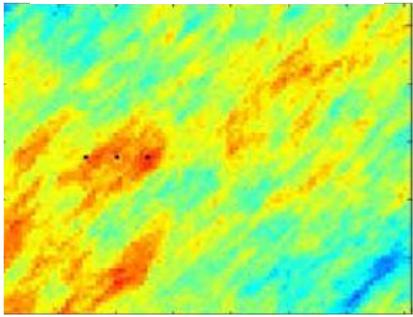
Parameter estimation and uncertainty quantification

History matching (CO₂ Injection at Cranfield, MS)

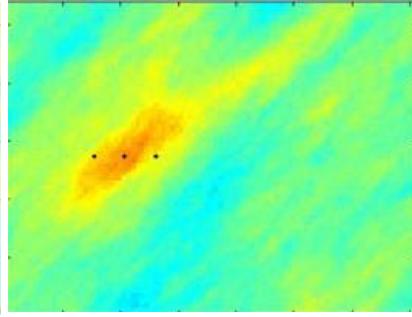
Synthetic Truth



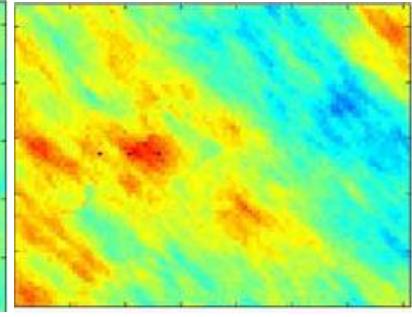
Calibration-constrained NSMC



Ensemble-based filtering method



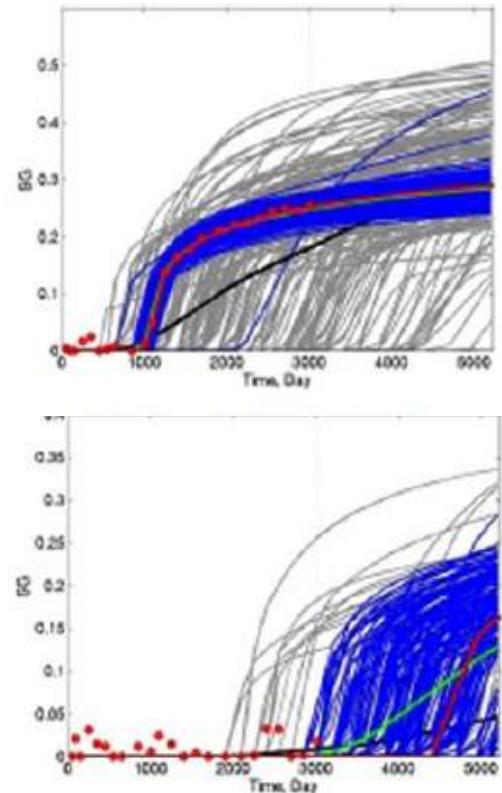
With incorrect prior data



Algorithm

Ensemble Kalman filter
Ensemble smoother
Ensemble smoother with multiple data assimilation
Ensemble Kalman filter with pilot point
ES4 with pilot point
Null-space Monte Carlo^b
Multiple calibration-constrained NSMC

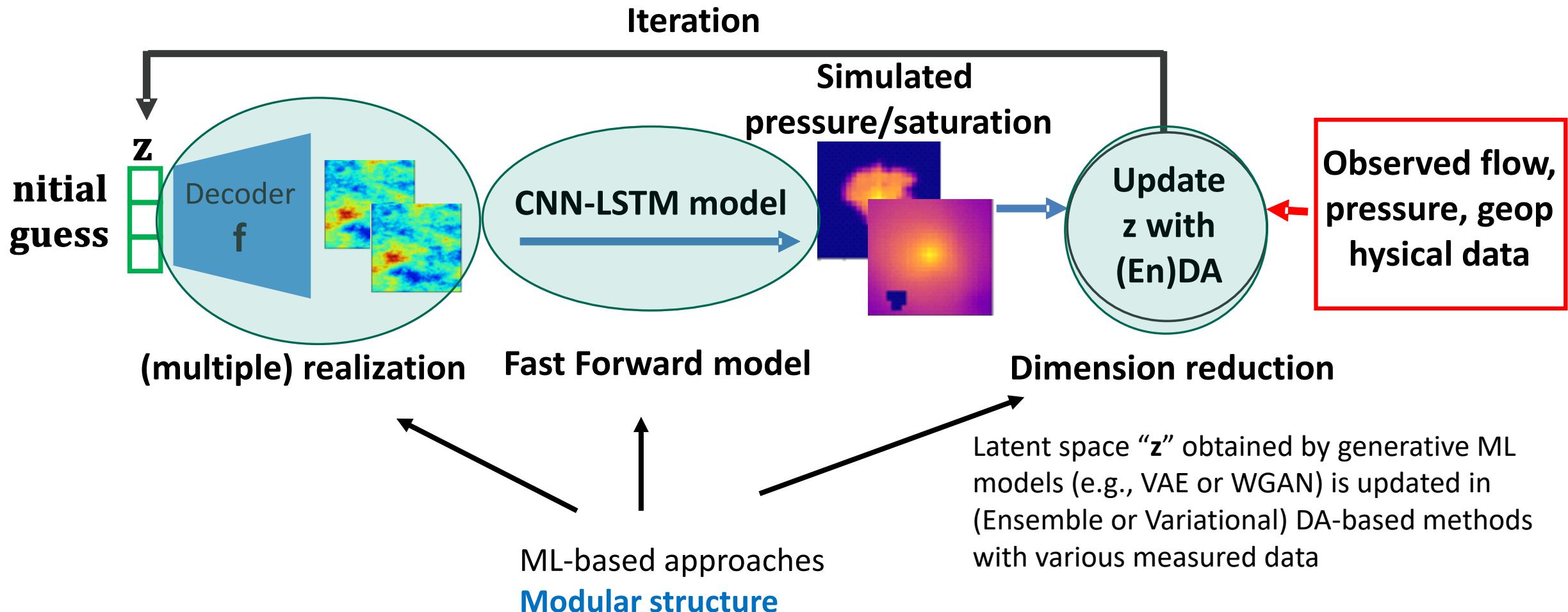
- With limited observation data, solutions with incorrect prior data can match the observed data well → more spatially representative data (e.g., geophysical sensing data, tracer test)
- Another possible solution => more robust ensemble member generation using machine learning



ML-based Data Assimilation Framework

4

- Data assimilation in **small nonlinear latent space of unknown parameters with $\dim(z)$**
- Forward model executions can be significantly reduced

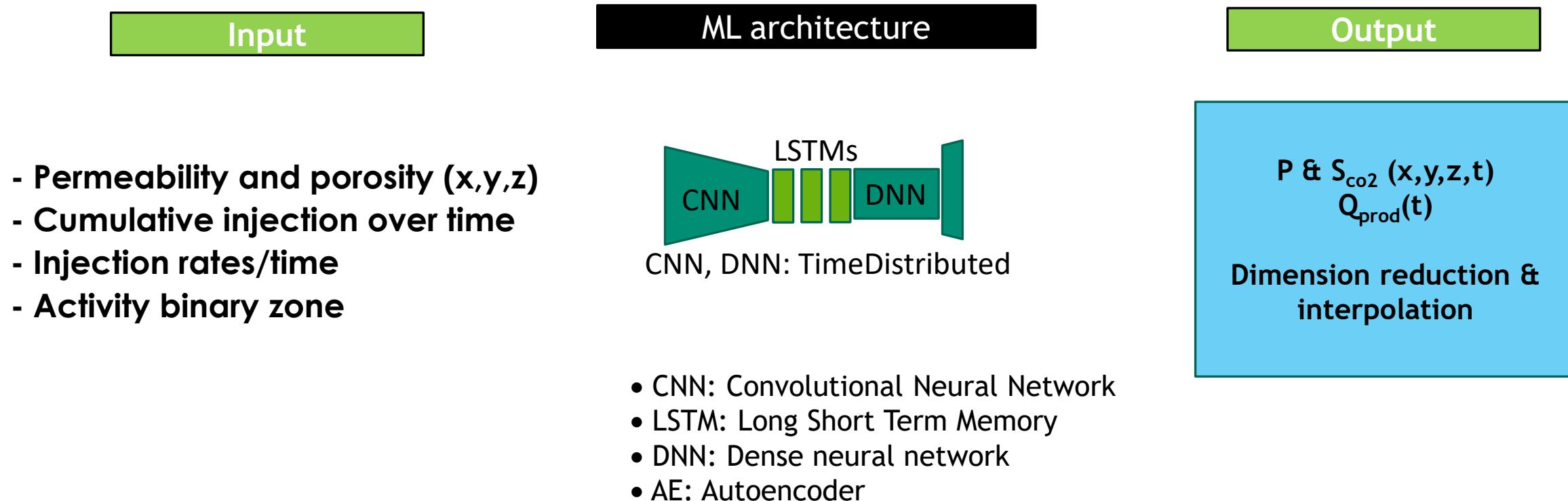


- **ML-based Forward Model**
- ML-based Data Generation
- Data Assimilation
- Summary

ML for Forward Reduced Order Models

Models for pressure, CO_2 saturation, and water production rate

CNN-LSTM-DNN



Physics-Based Loss Functions

- **Loss functions can be constructed through governing equations & physical constraints**

- We incorporated different terms from governing equations into the loss functions
- Flux, mass conservation, known quantities are used

Governing equations for two phase flow

$$\frac{\partial(\phi \rho_w S_w)}{\partial t} = \nabla \left(\rho_w \frac{k_{rw} k}{\mu_w} (\nabla P_w - \rho_w g z) \right) + \mathbf{q}_w$$

$$\frac{\partial(\phi \rho_{nw} S_{nw})}{\partial t} = \nabla \left(\rho_{nw} \frac{k_{rnw} k}{\mu_{nw}} (\nabla P_{nw} - \rho_{nw} g z) \right) + \mathbf{q}_{nw}$$

$$\begin{aligned} \text{Loss} = & \text{MSE}(\hat{P}, P) + \text{MSE}(\hat{S}_{nw}, S_{nw}) + \text{MSE}(\hat{q}_{pr}, q_{pr}) \\ & + \lambda_{flux} * \text{MSE}(\widehat{\text{Flux}}, \text{Flux}) \\ & + \lambda_{mass} * \text{MSE} \left(\widehat{\frac{\partial(M_{nw})}{\partial t}}, \frac{\partial(M_{nw})}{\partial t} \right) \\ & + \lambda_{binary} * \text{Binary Crossentropy}(\hat{S}_{nw}, S_{nw}) \\ & + \lambda_{bhp} * \text{MSE}(\hat{P}_{bhp}, P_{bhp}) + \lambda_{pr} * \text{MSE}(\hat{P}_{bhp}, P_{bhp}) \end{aligned}$$

MSE: Mean Square Error

Results – Pressure, CO₂ Saturation & Production Rate

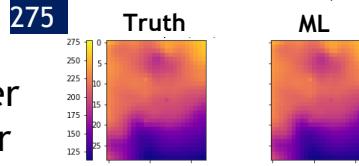
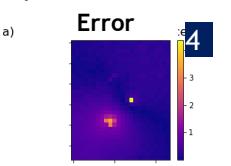
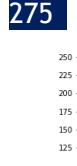
Upper layer

Middle layer

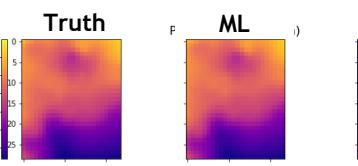
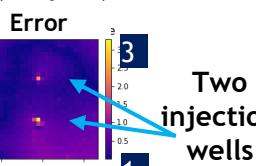
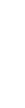
Bottom layer

Pressure

End of Injection (30yrs)

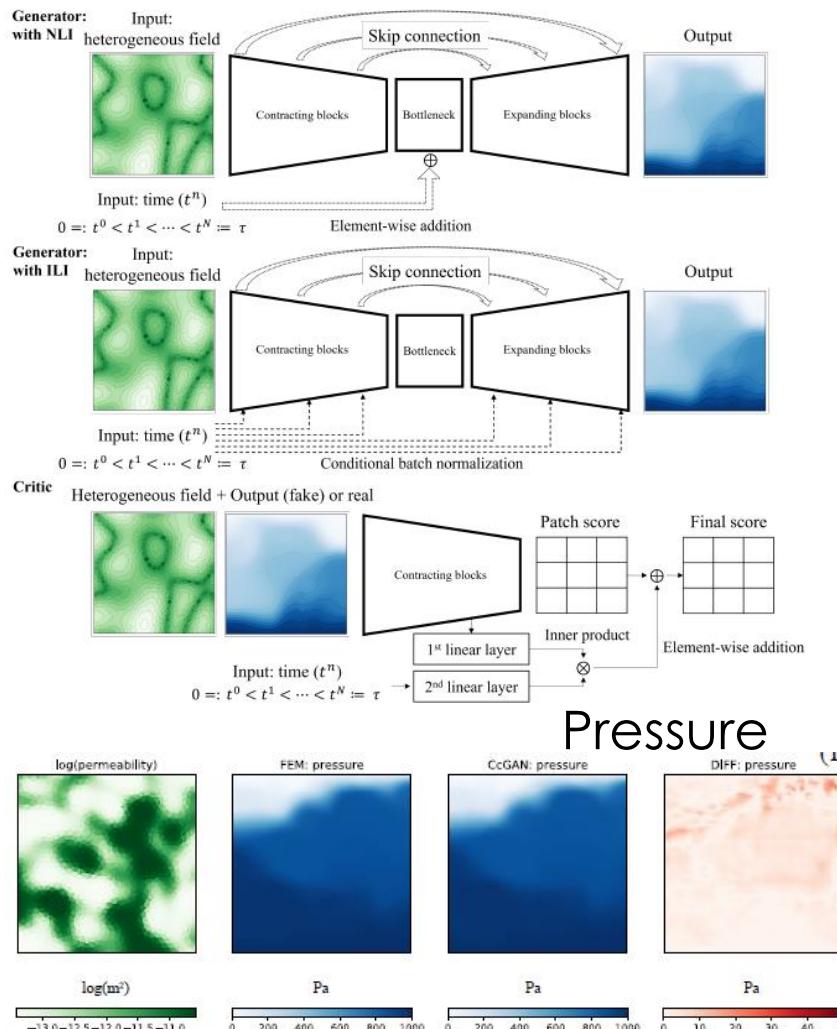
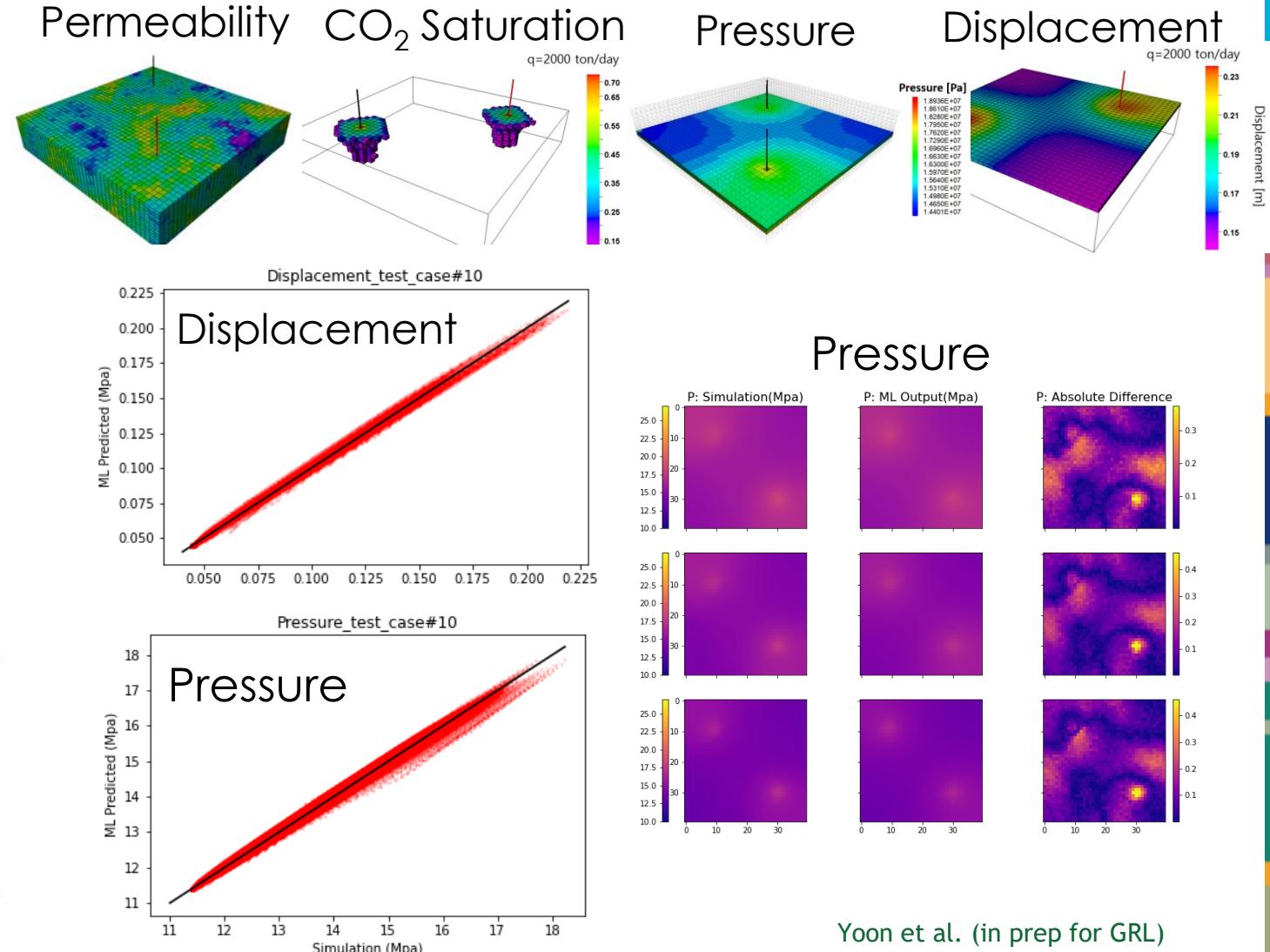


End of Simulation (99yrs)



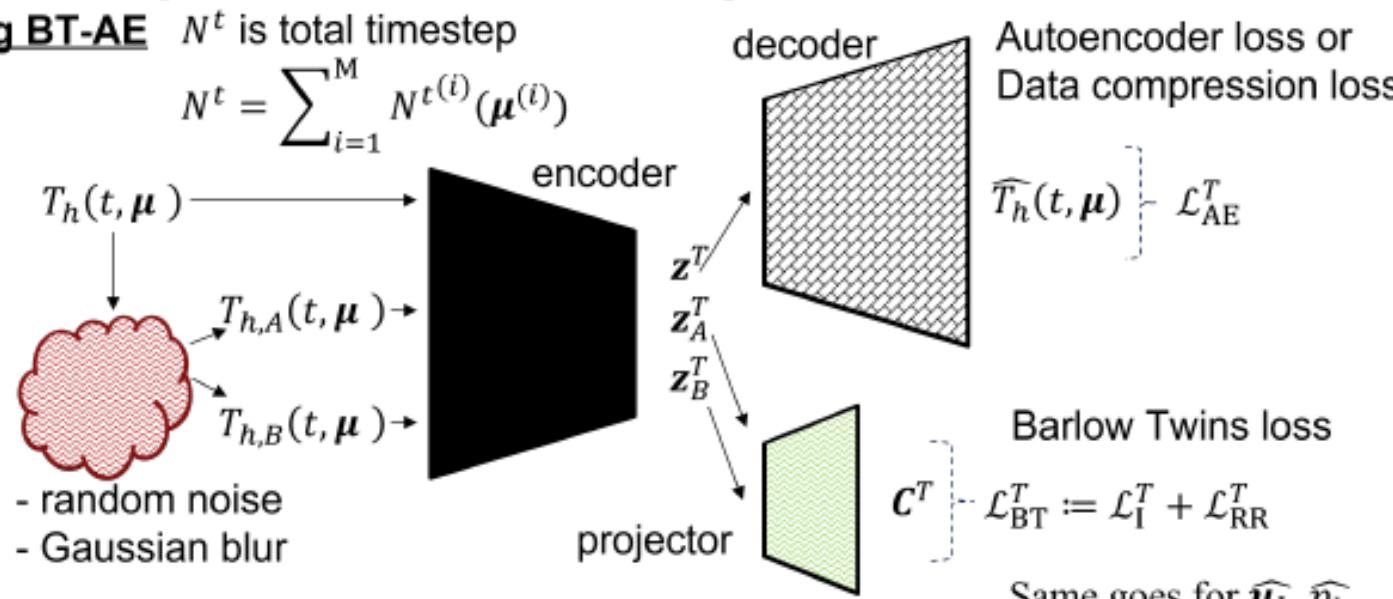
ML approaches for coupled poro-elasticity processes

- Continuous conditional generative adversarial networks (CcGAN) for time-dependent PDEs
- CNN-LSTM-DNN reduced order modeling for coupled processes

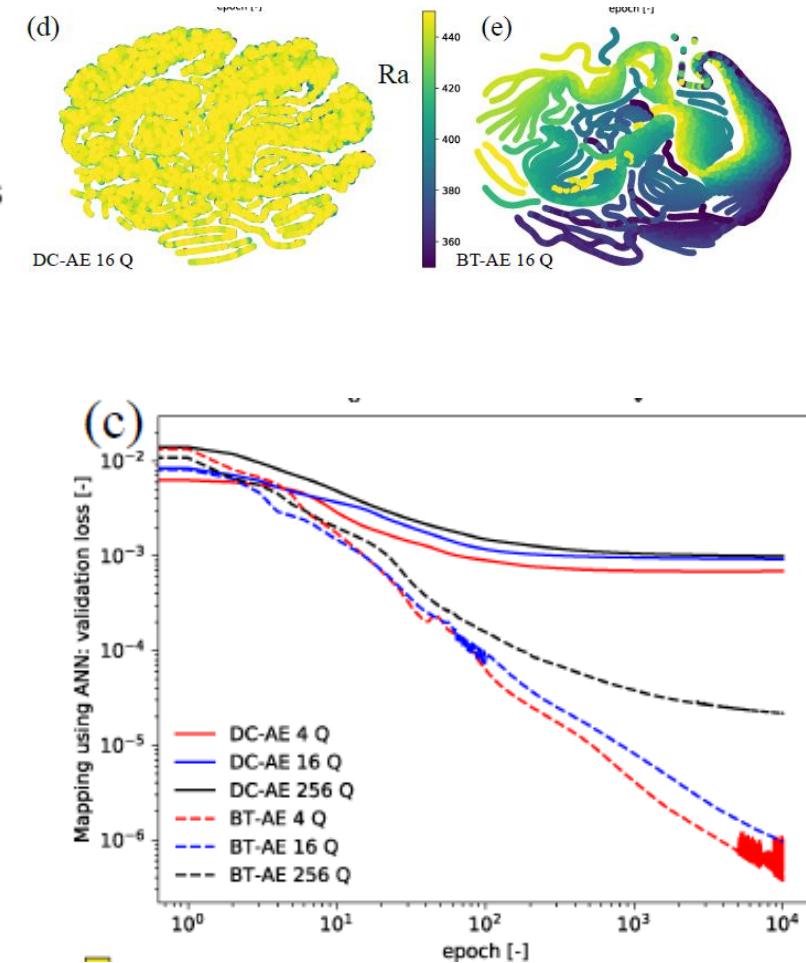


Self supervised ML (Barlow Twins)

3. Training BT-AE N^t is total timestep



DC-AutoEncoder BT-AE



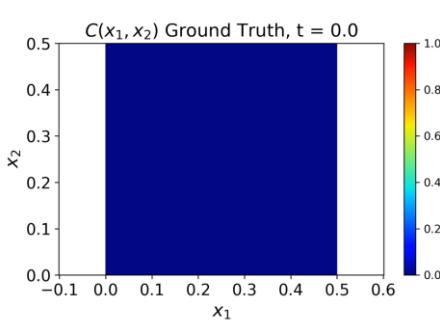
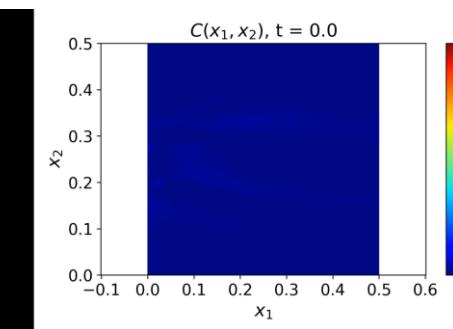
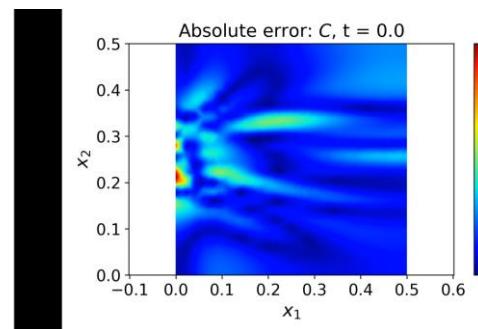
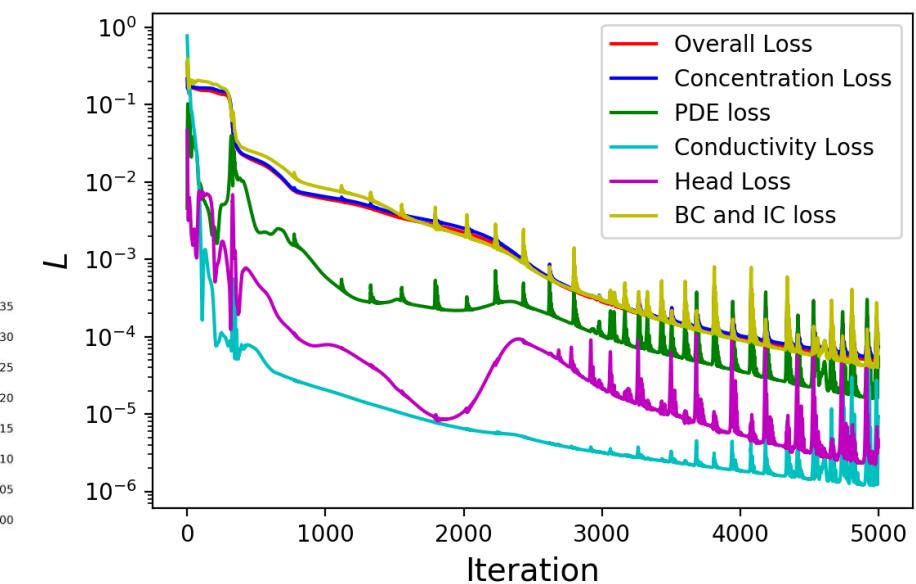
Physics-Informed Neural Networks (PINNs) for PDEs

11

- A form of neural networks known as **Physics-Informed neural networks (PINN)** to solve **partial differential equations (PDEs)** involved in fluid flow and reactive transport.
- A main idea of PINNs is to **incorporate governing equations of physics** in the form of **partial differential equations (PDEs) into the loss** via automatic differentiation (AD)

Input: Concentration data + head loss and conductivity +
Advection-Diffusion-Reaction equation + Darcy Equation

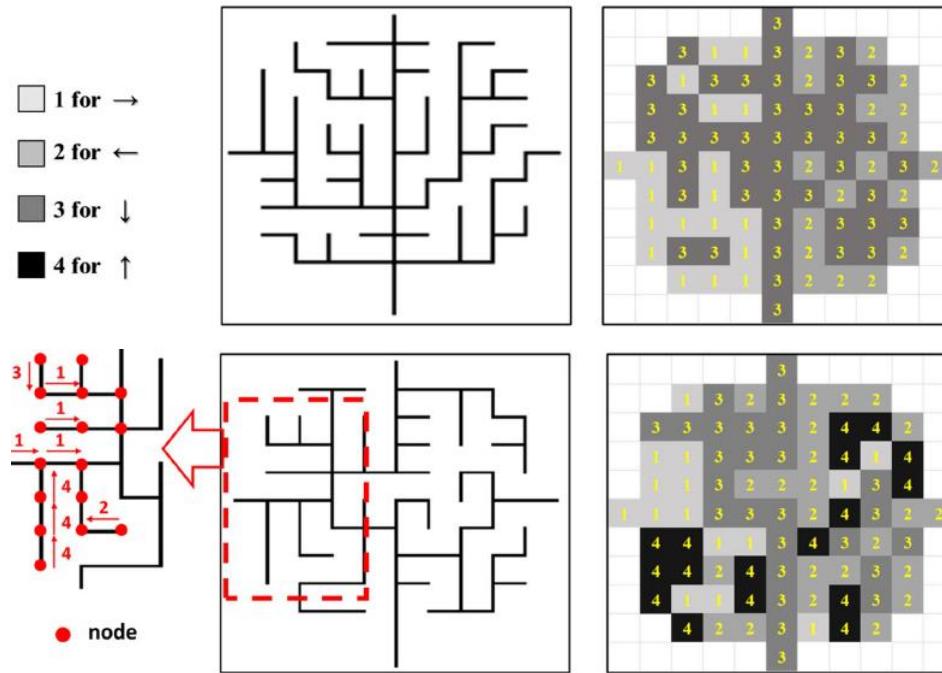
Prediction: Permeability field is estimated inversely



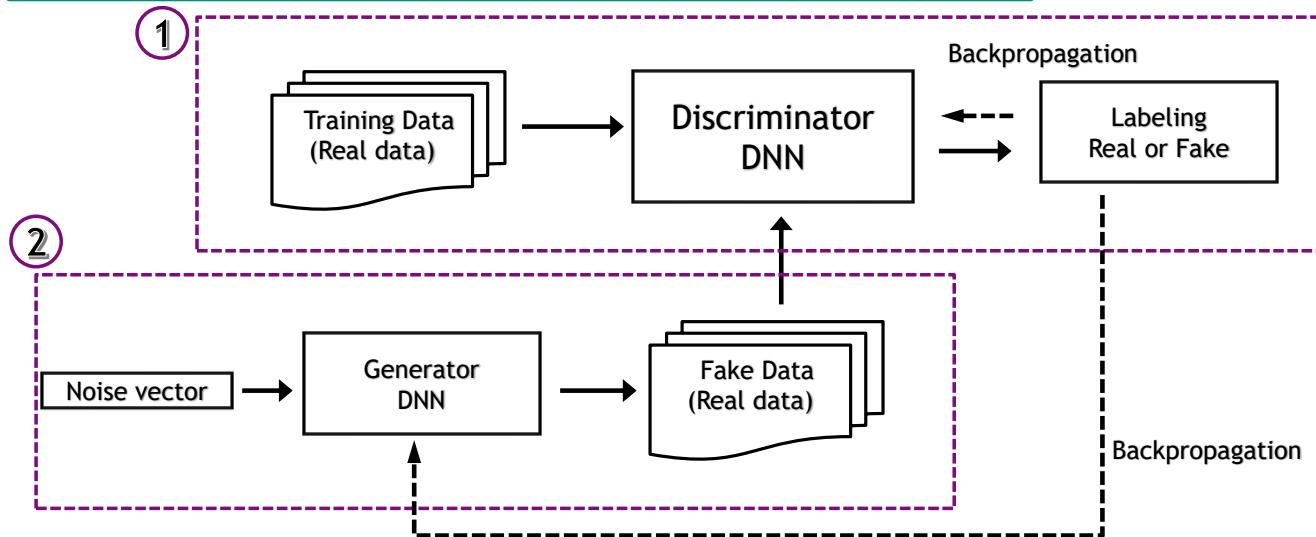
- ML-based Forward Model
- **ML-based Data Generation**
- Data Assimilation
- Summary

Connectivity-Informed Drainage Network Generation

13



Generative Adversarial Networks (GANs)

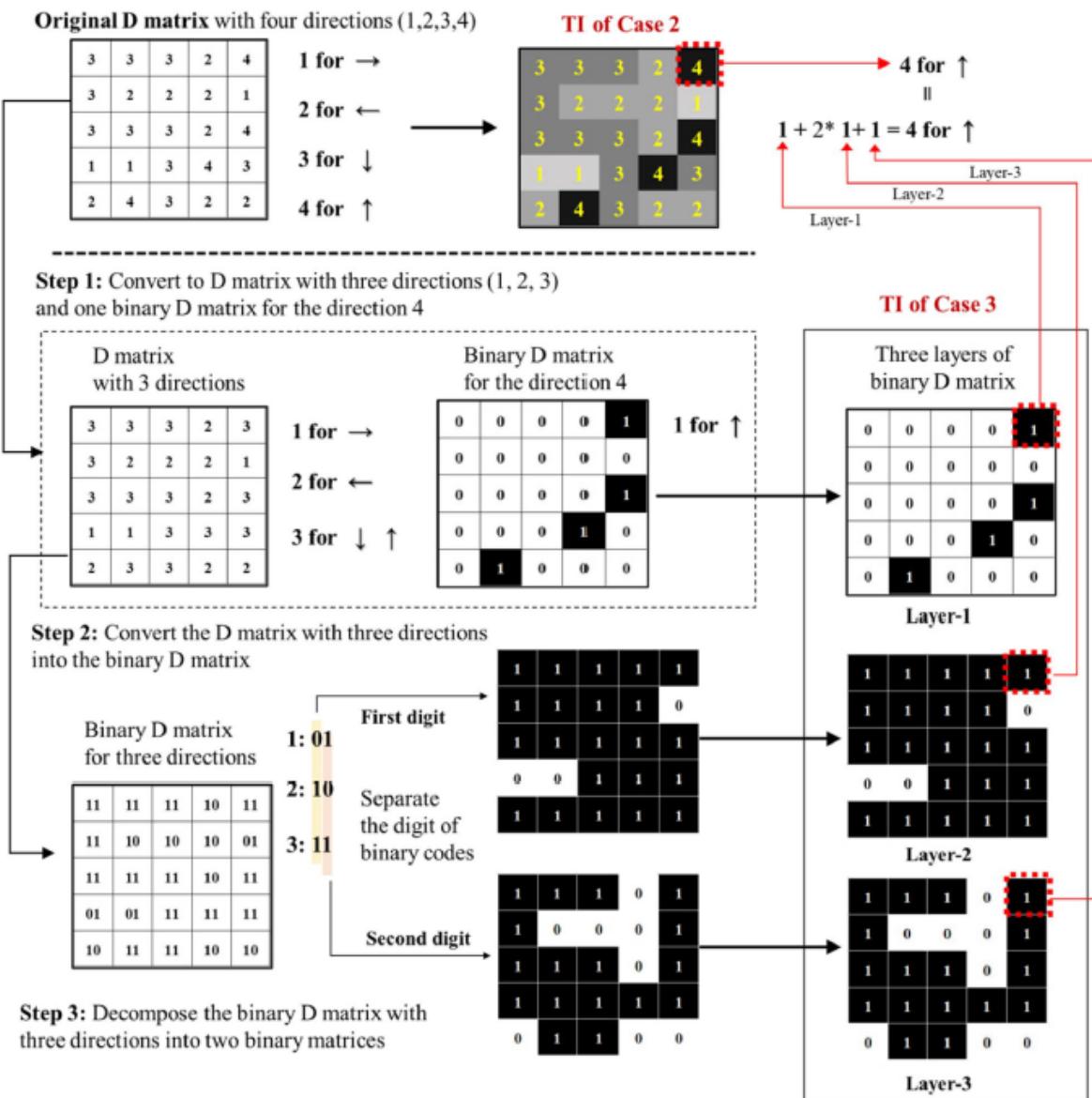


- **Generator (G):** try to fool the discriminator by generating real-looking images from a noise sample
- **Discriminator (D):** try to distinguish between real and fake images

- Training GANs: two player's game (Goodfellow et al., NIPS, 2014)
- Standard GAN is prone to mode collapse & unstable training
- Very active research topics
 - Better loss functions, more stable training (Wasserstein GAN, LSGAN, DCGAN, etc)

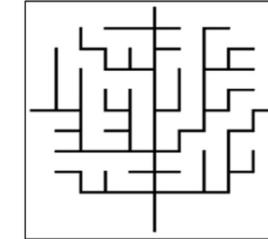
Connectivity-Informed Drainage Networks

14

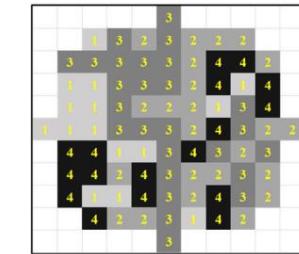


■ Three cases as training images

Case 1 – drainage network image



Case 2 – Directional drainage network index image



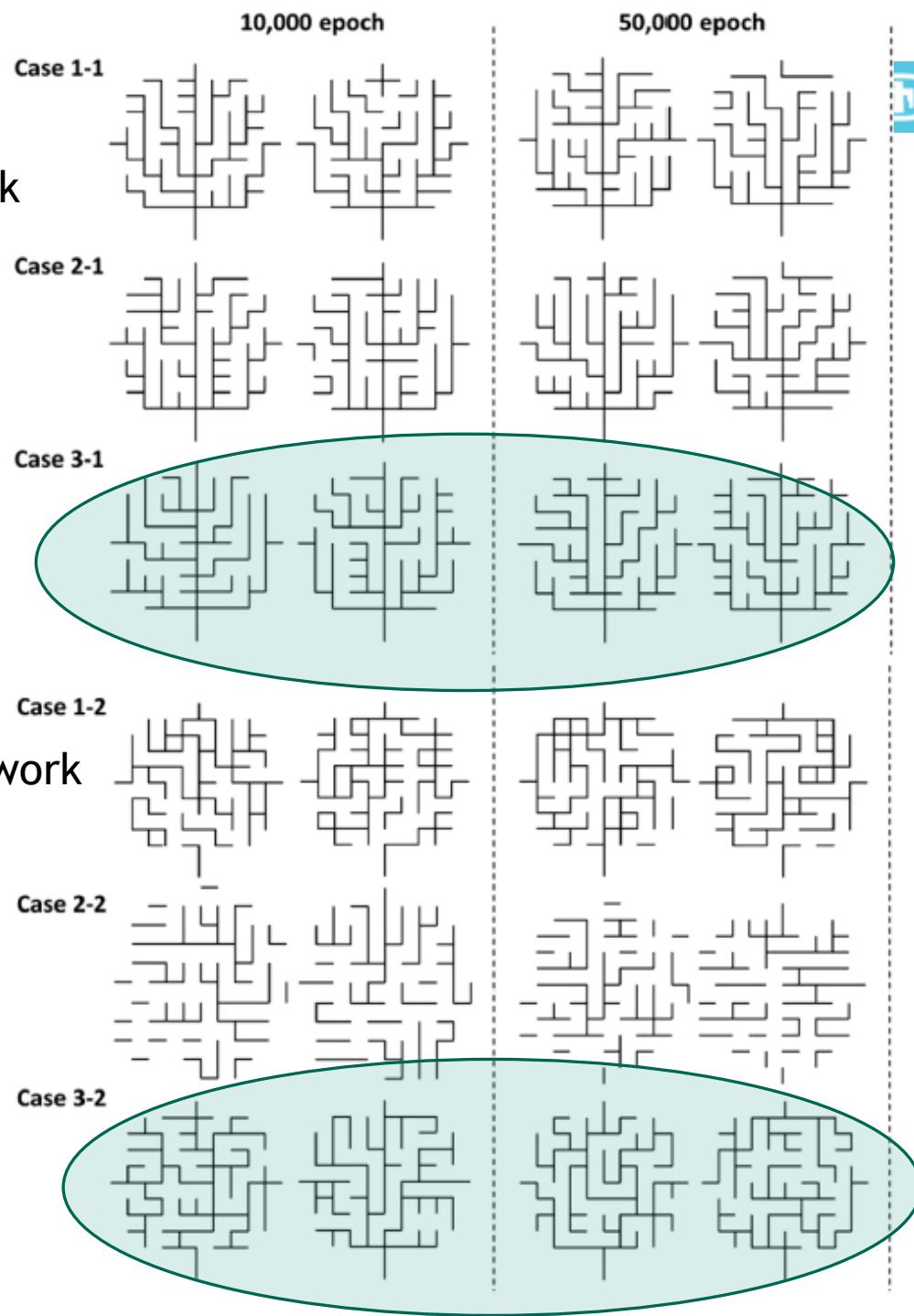
Case 3 – Three layers of binary D matrix

- transform the physical information of the images (i.e., high-frequency features & connectivity between the neighboring nodes) into the efficient binary matrix layers

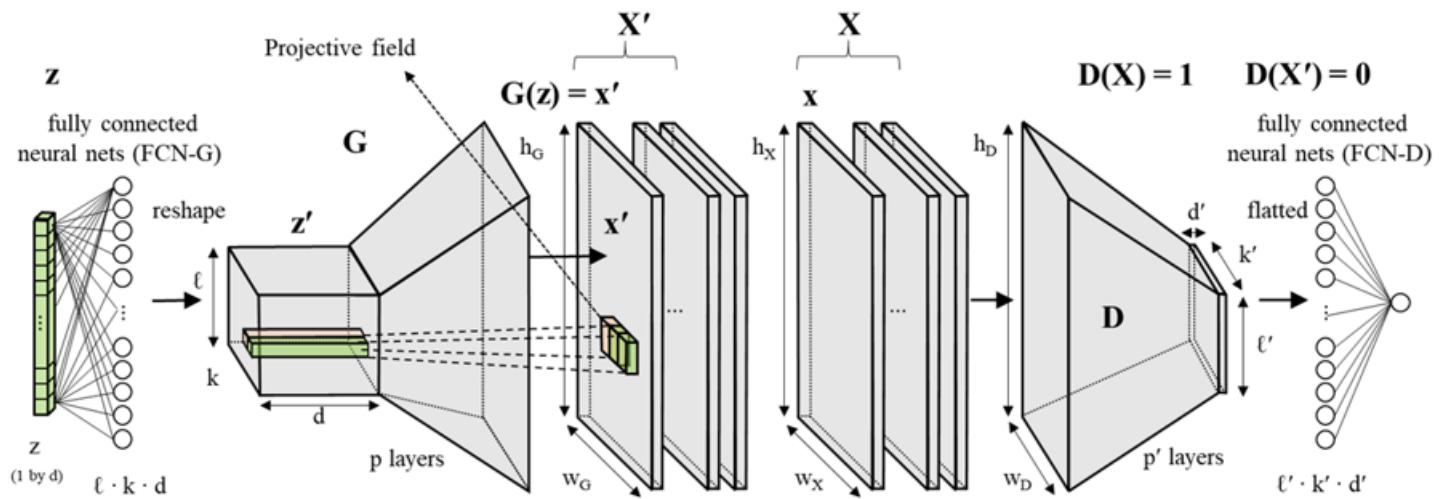
Generated Drainage Networks

- Connectivity-informed binary layers (case 3-1&3-2) outperform other cases
 - Better generation accuracy & computational cost
 - Complex network case demonstrates this more dramatically
 - a type of physics-informed prior knowledge for ML

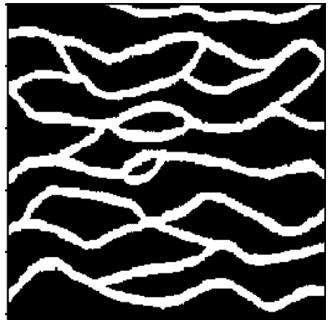
Simple network



Spatially Assembled GANs (SAGANs)

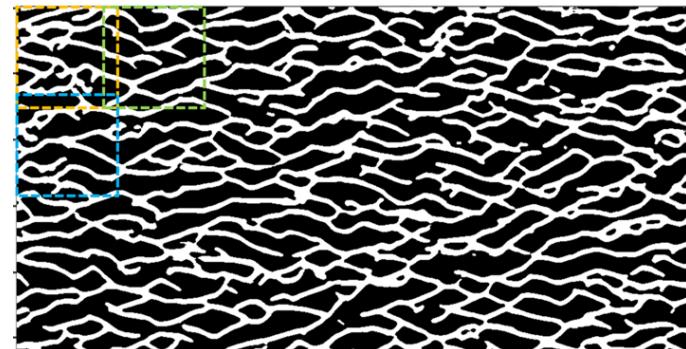
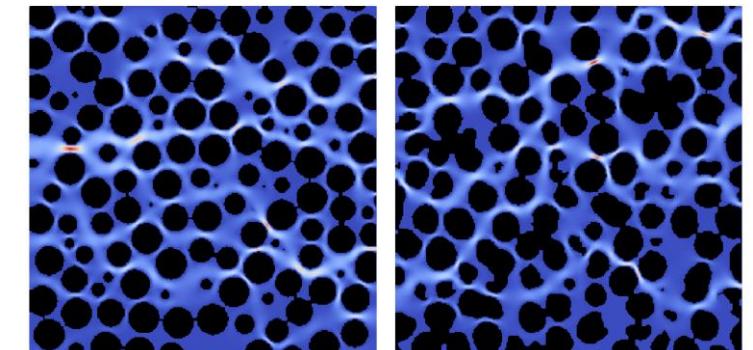


Training image



Training/Generation

Generated image

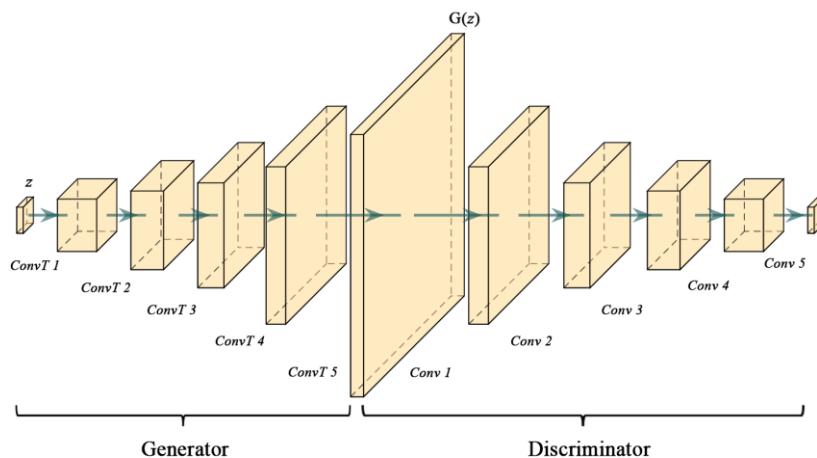
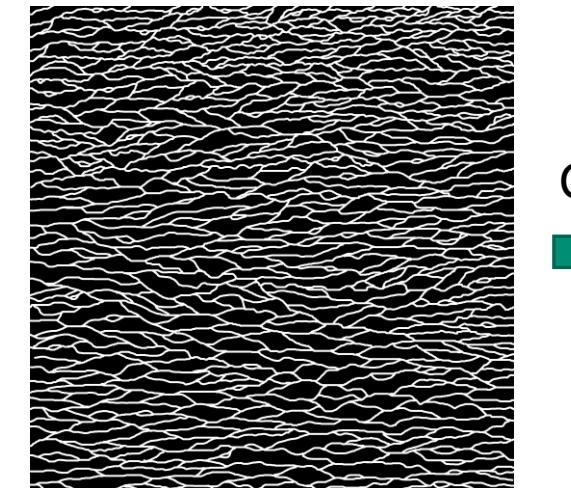


Velocity field: Pore-scale simulations with training image (TI) and realization

Wasserstein GANs (WGANs)

- As mentioned, “Better loss functions, more stable training”
- Here we use 1) Wasserstein-1 (so-called Earth-Mover) distance and 2) gradient penalty to ensure Lipschitz (i.e., continuous and differentiable loss function) conditions

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} E_{(x,y) \sim \gamma} [\|x - y\|] \quad L_D = \underbrace{E_{\mathbf{z} \sim P_z} [D(G(\mathbf{z}))] - E_{\mathbf{x} \sim P_r} [D(\mathbf{x})]}_{\text{original discriminator loss}} + \underbrace{\lambda E_{\hat{\mathbf{x}} \sim P_{\hat{\mathbf{x}}}} [(\|\nabla_{\hat{\mathbf{x}}} D(\hat{\mathbf{x}})\|_2 - 1)^2]}_{\text{gradient penalty}}$$



Reference training image

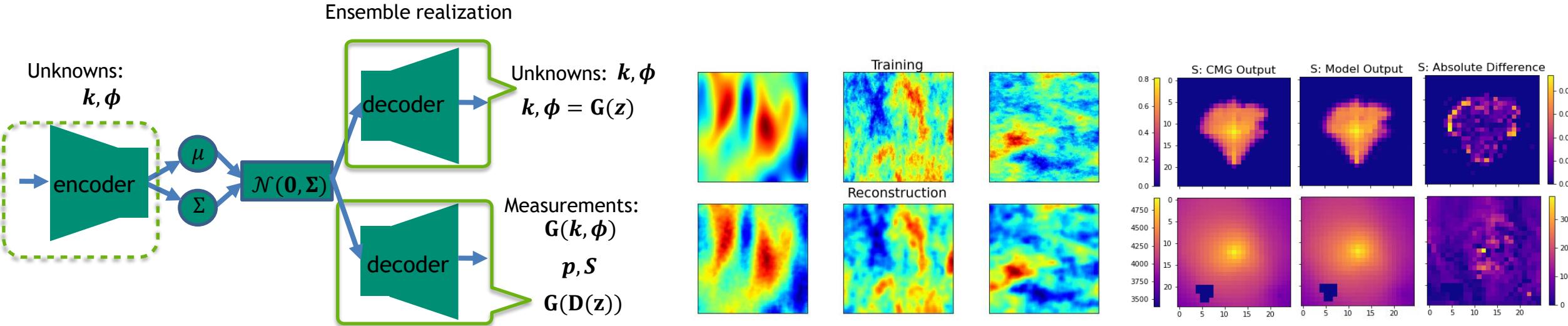
Variational AutoEncoders (VAEs)

- **Nonlinear dimension reduction model:**

- We have also used VAEs (naïve VAE, β -VAE, VQ-VAE and so on) for data generation.
- VAE can explicitly project data to a smaller space with a simpler (i.e., Gaussian) distribution
- “likelihood” model-based VAEs may be advantageous in some case: relatively easy to 1) train and 2) check the model quality

- **Connection to DA**

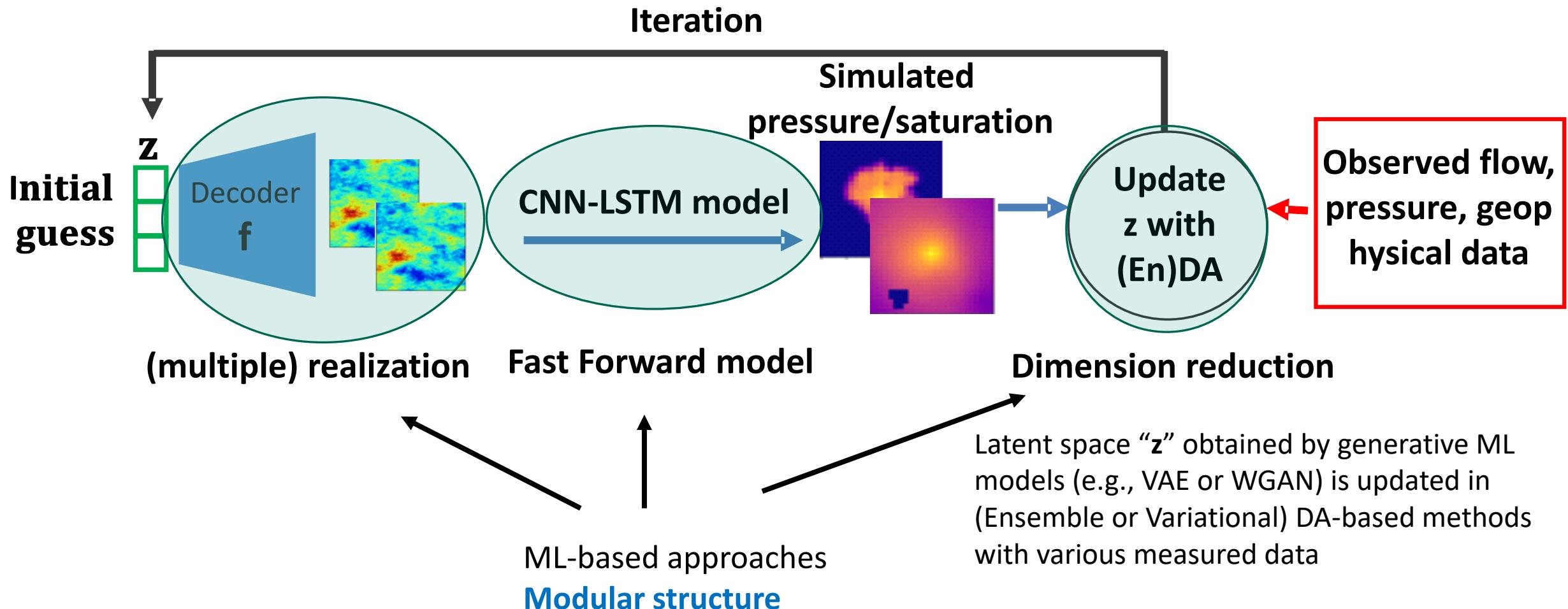
- Data assimilation in **small nonlinear latent space of unknown parameters with $\text{dim}(z)$**
- Only require “ **$\text{dim}(z)$** ” forward model executions at each iterations instead of $\text{dim}(m)$ or $\text{dim}(\text{obs})$



- ML-based Forward Model
- ML-based Data Generation
- **Data Assimilation**
- **Summary**

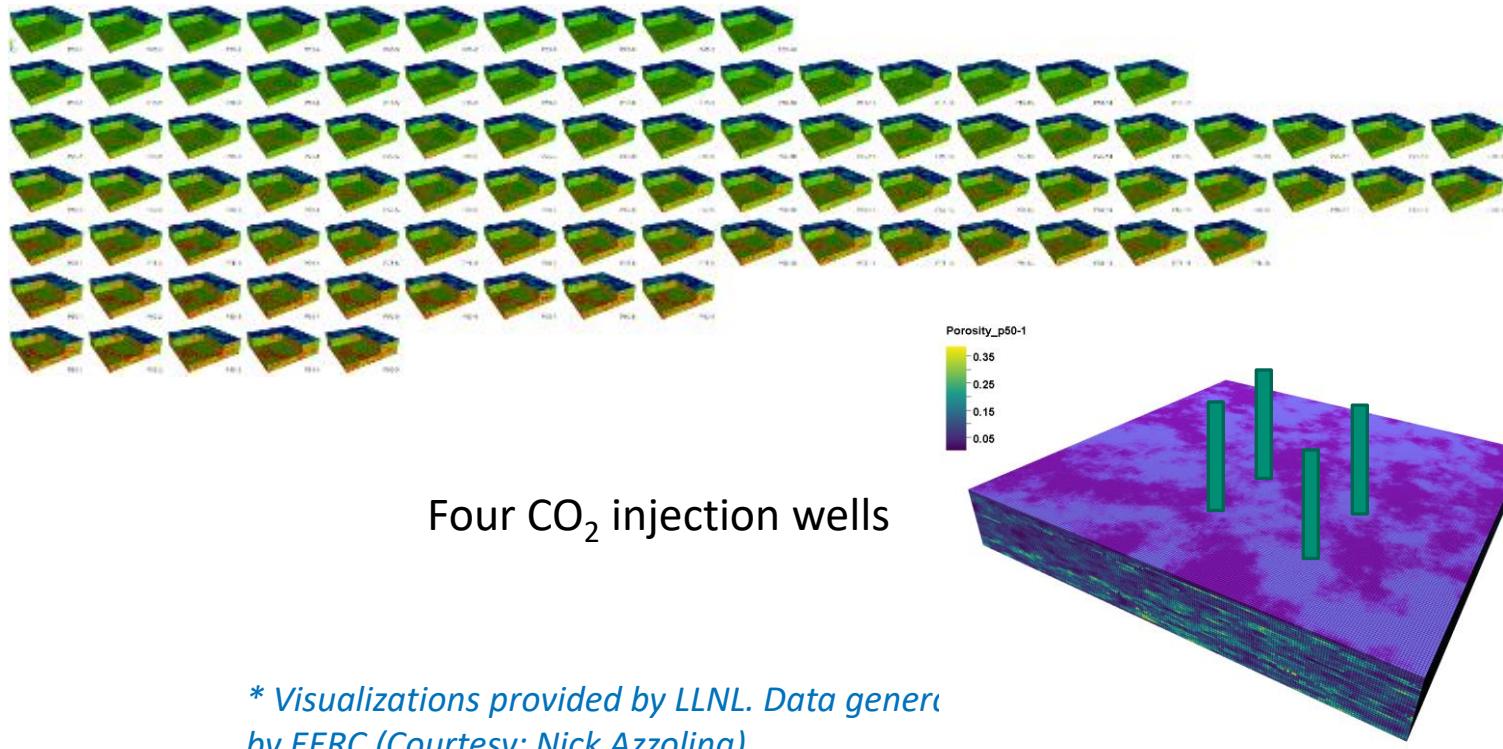
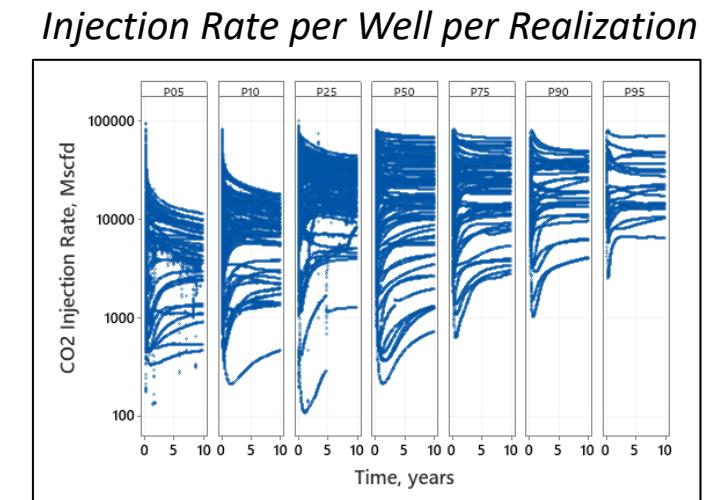
ML-based Data Assimilation Framework

20



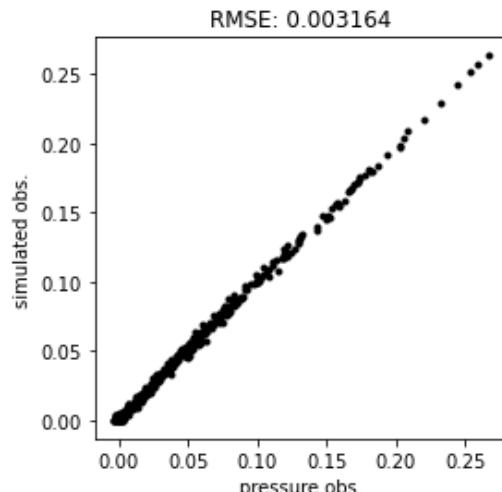
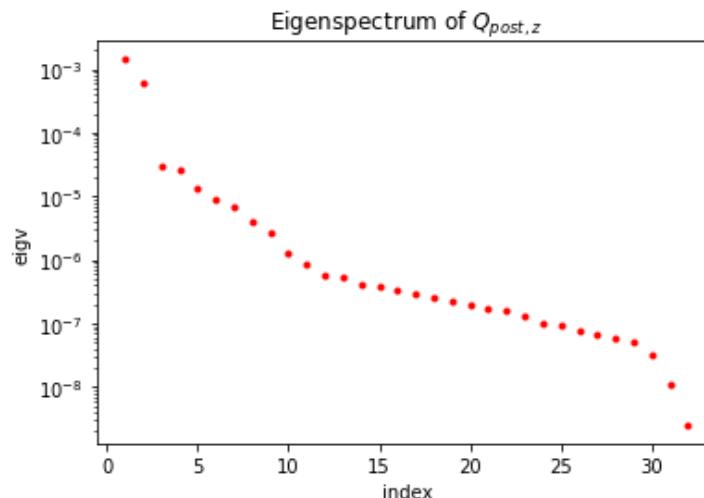
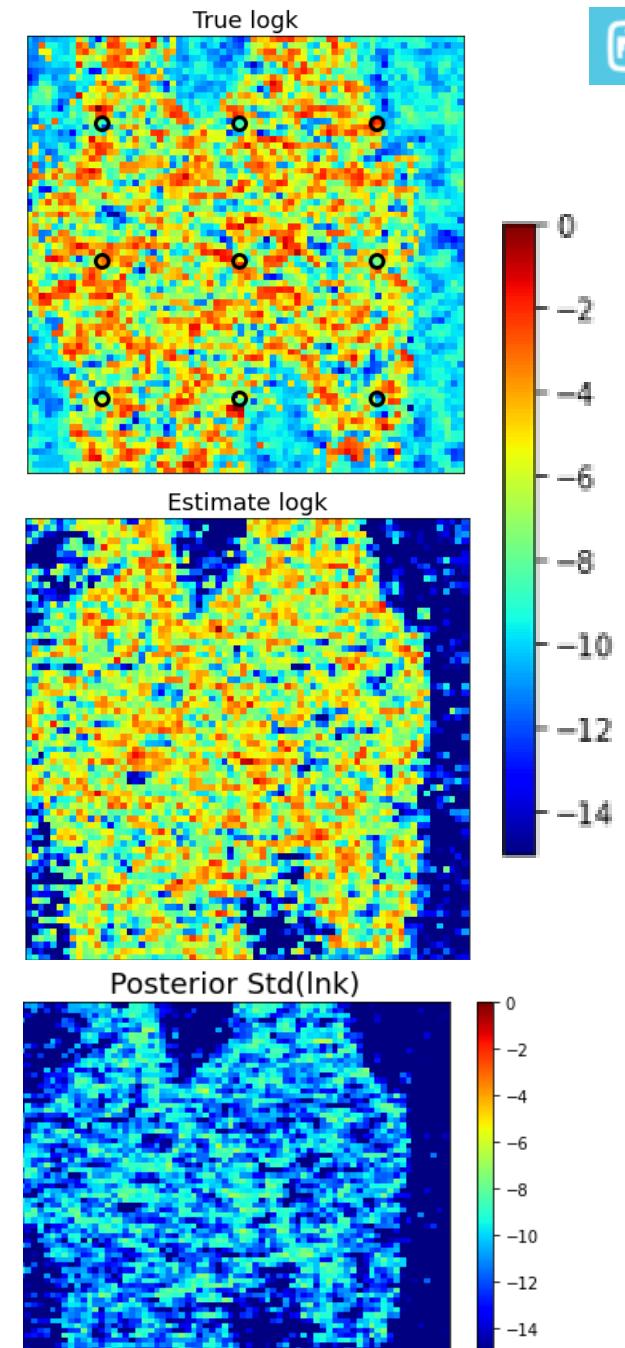
Description of the data used

- **High fidelity numerical simulator (CMG) to generate multiphase CO₂ flow in 3D heterogeneous field (DOE SMART-CS project)**
 - Field scale-based permeability & porosity distribution
 - Injection & extraction well operations
 - CO₂ saturation, pressure, and production

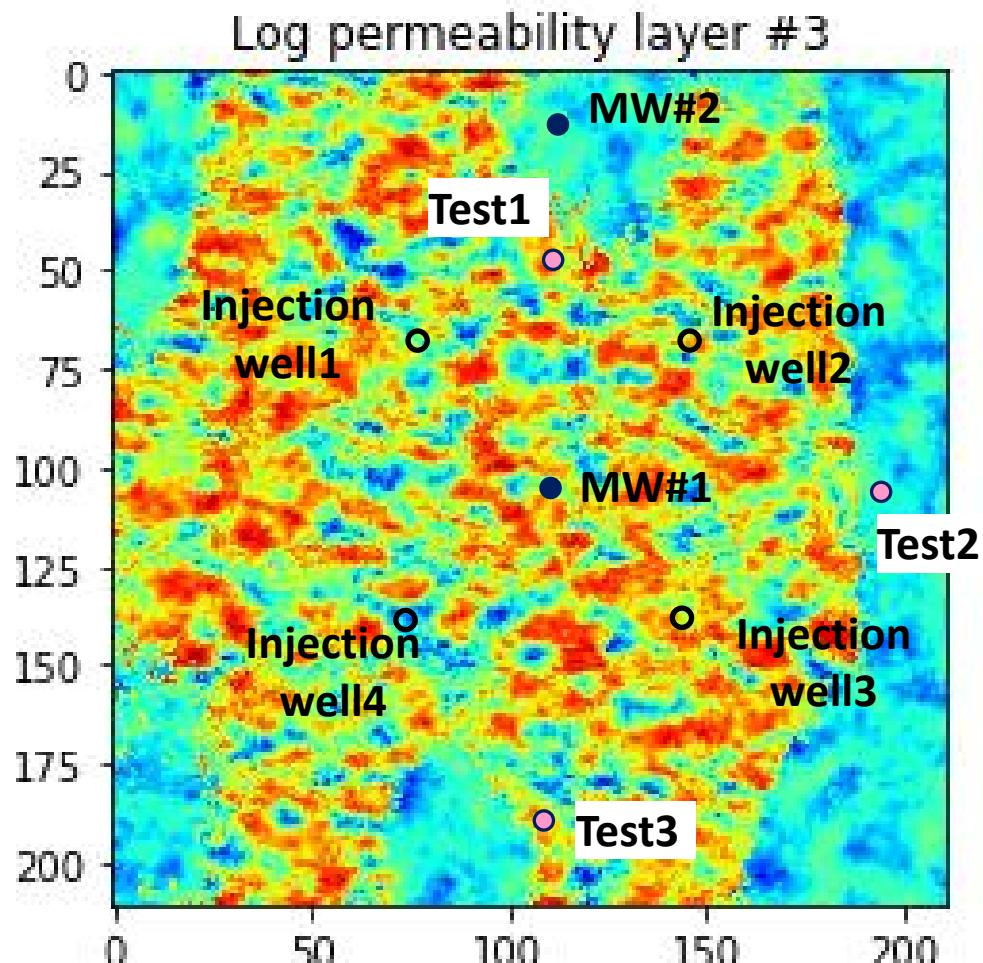
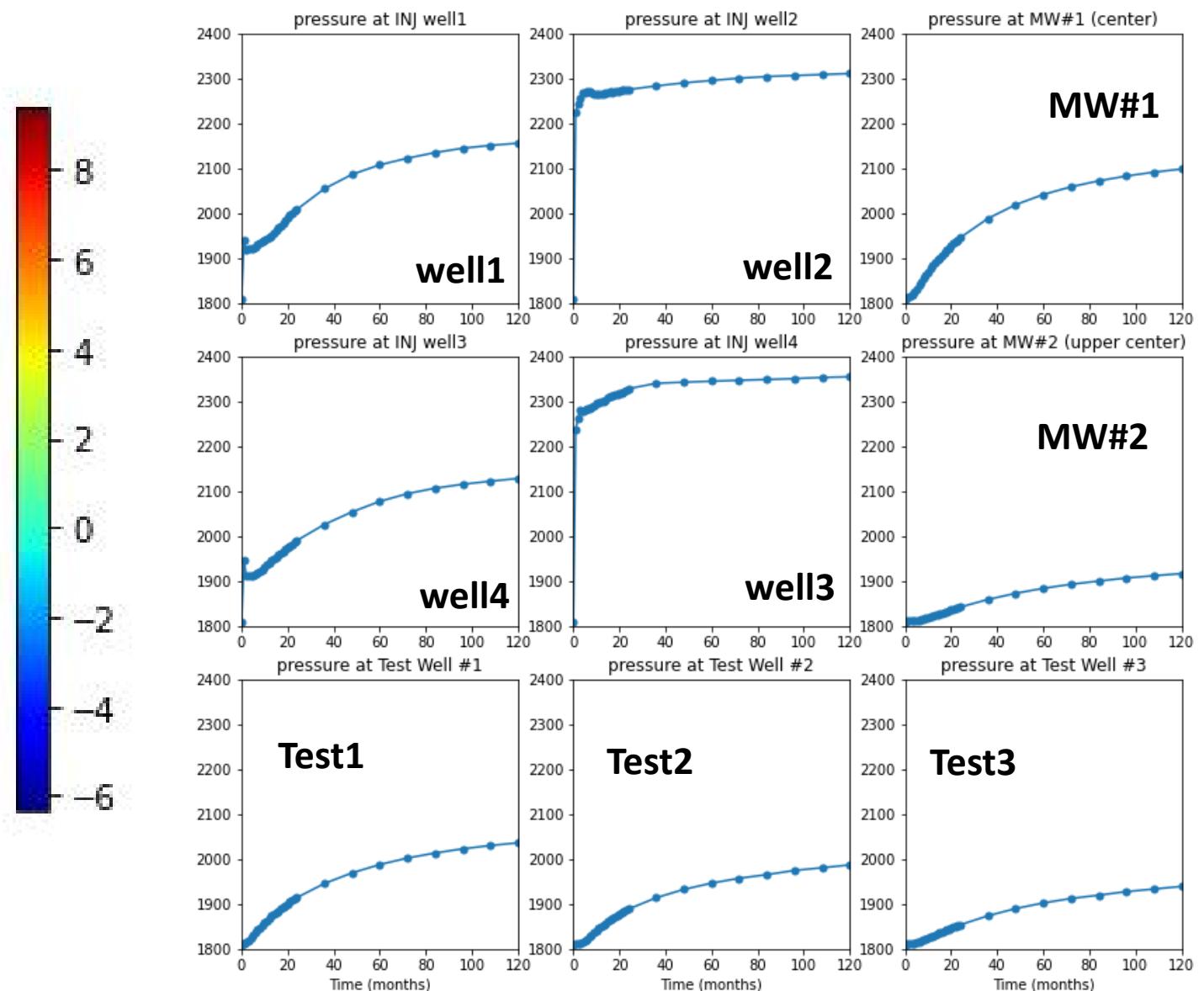


VAE-Inversion

- Use a 2D problem to demonstrate VAE-based inversion
 - the latent space is constructed based on k and Pressure
 - the cost of the trained reduced order model (CNN-LSTM-DNN) $\sim 0(1 \text{ sec})$
- Inversion example :
 - 2D 71x71 unknown $k \Rightarrow \mathbf{z}$ with 32 latent dimension
 - 9 observation wells for time series pressure & permeability (hard data)
 - Latent space was constructed from training data
 - **Initial guess: Zero mean & STD**
 - Only **~5 min inversion time** on a single core laptop
 - Inversion in the latent space identifies the k structures well!



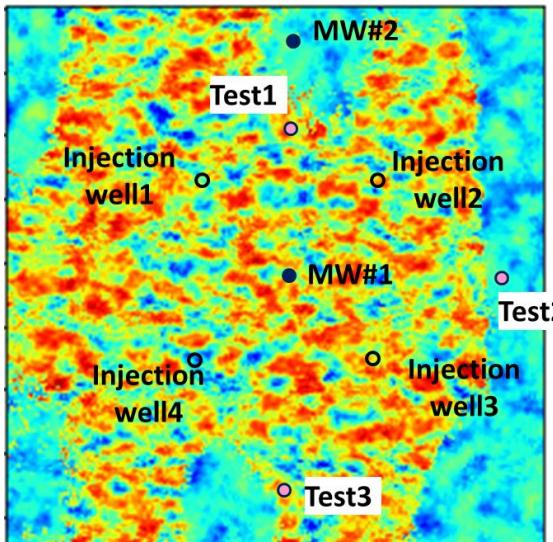
Well locations & pressure profile over time for DA



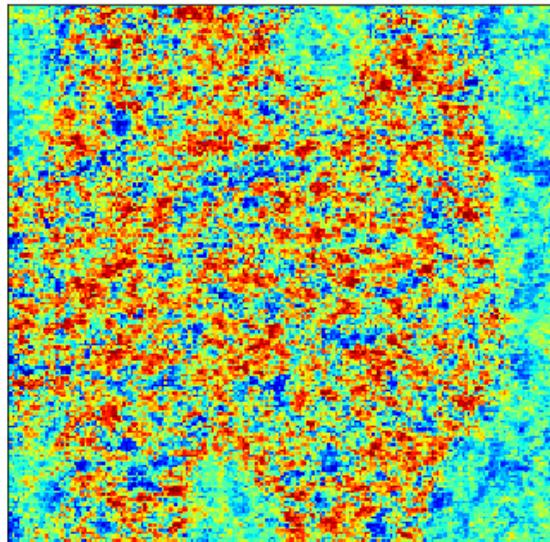
VAE-Inversion

24

Truth

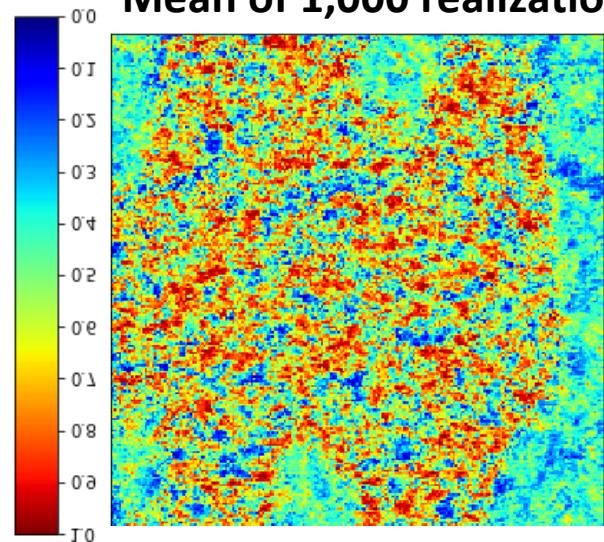


Estimated

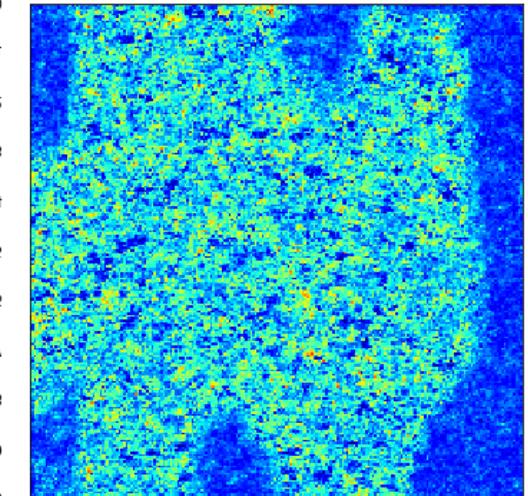


Posterior Analysis (normalized)

Mean of 1,000 realizations

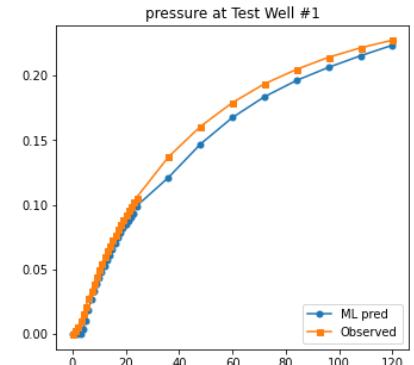


Standard deviation

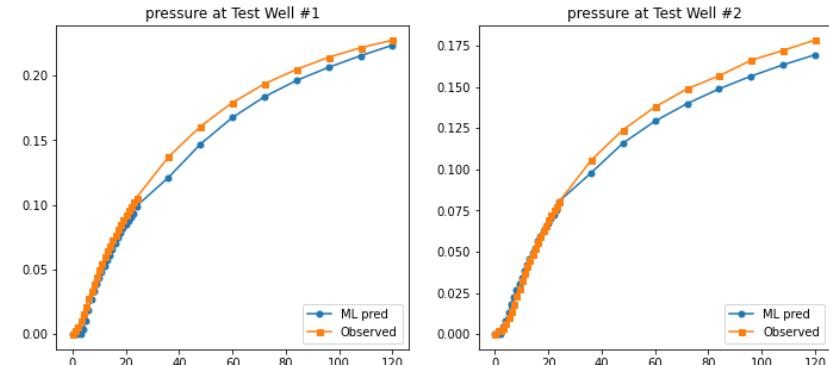


Truth

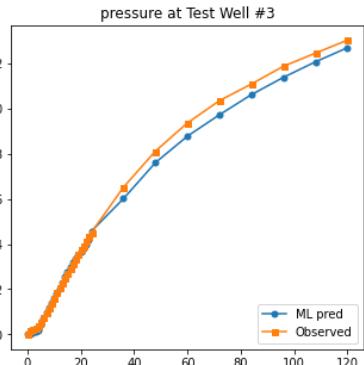
Test #1



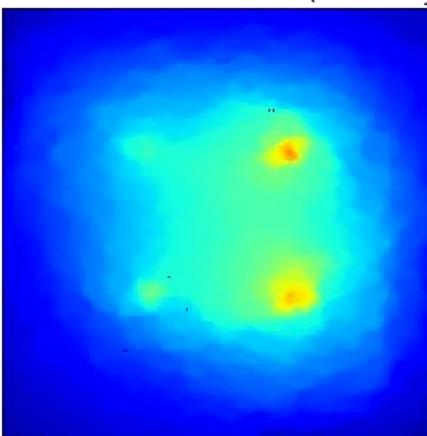
Test #2



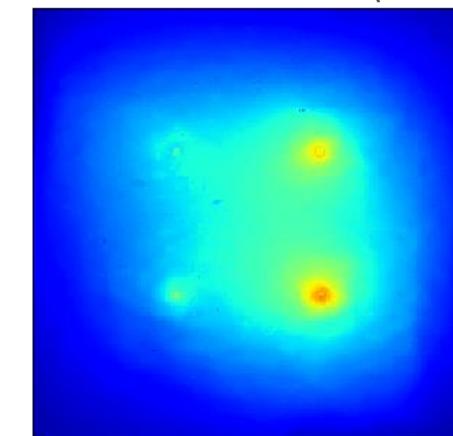
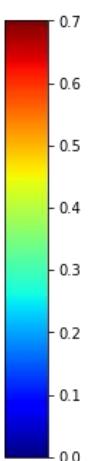
Test #3



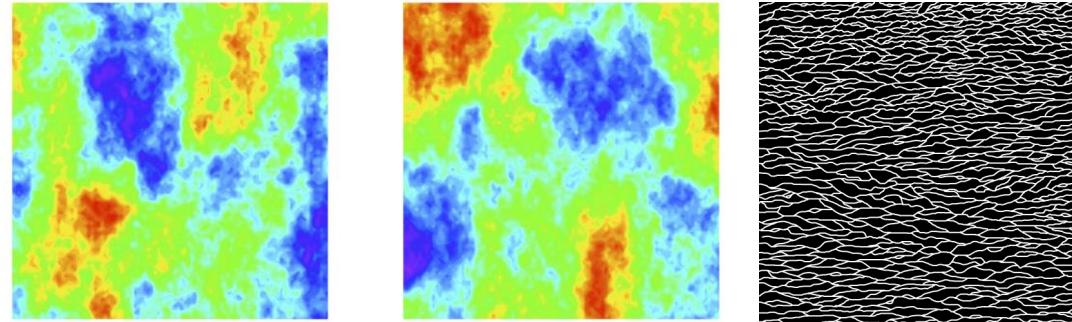
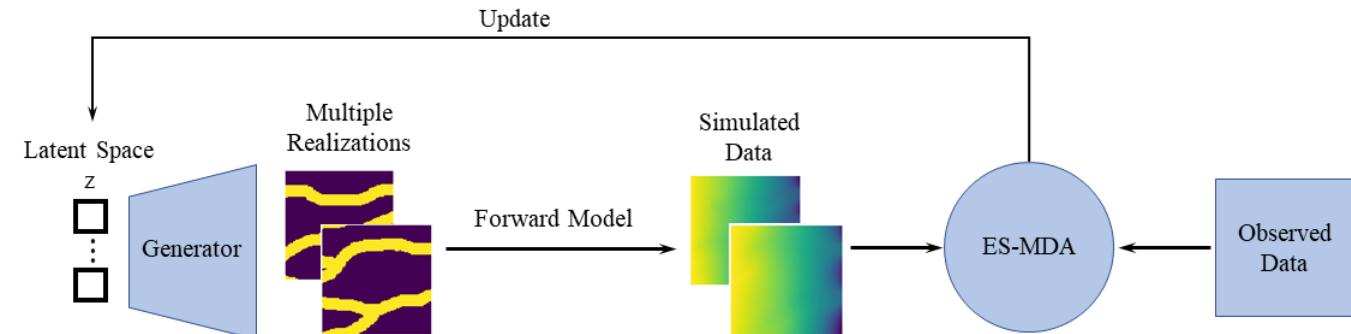
Normalized CMG Pressure (t= 10.0 yrs)



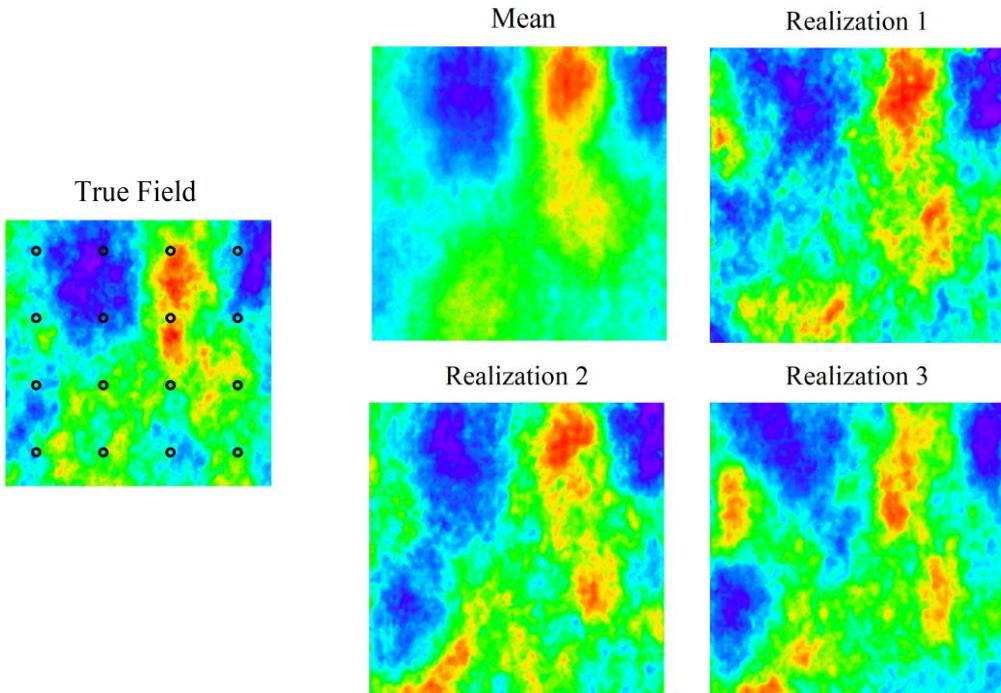
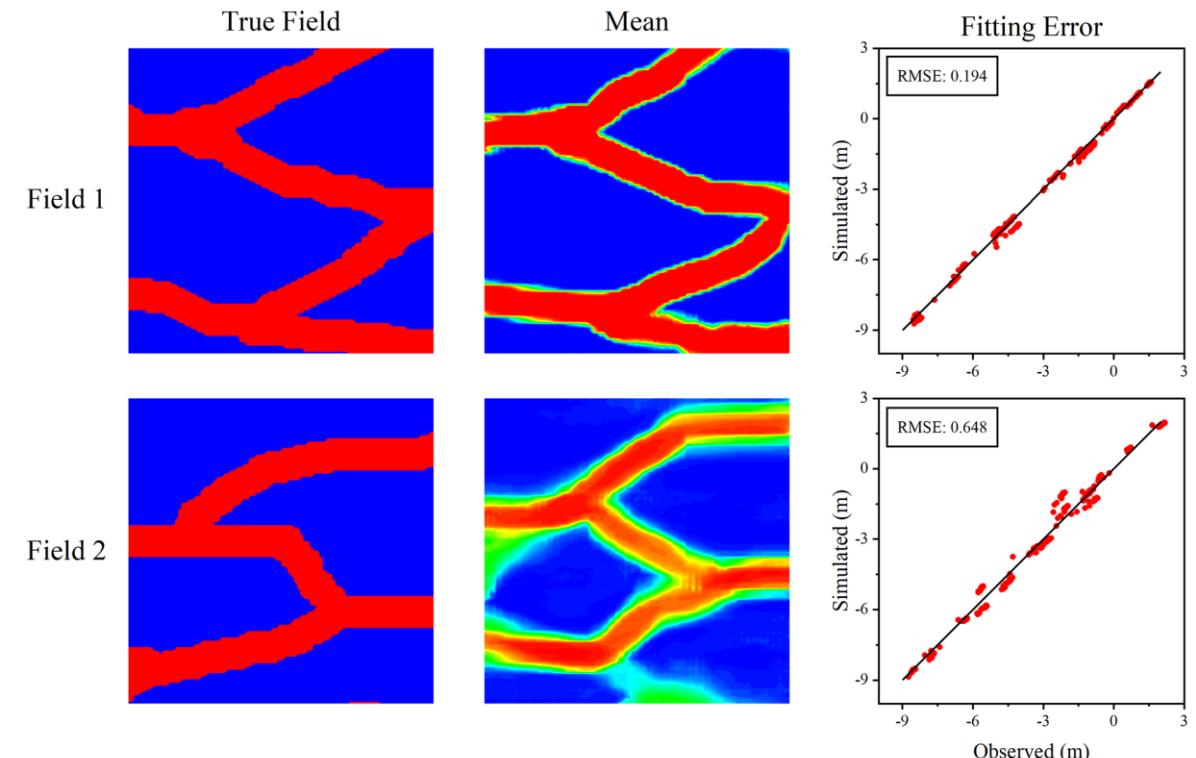
Estimated



WGAN-based Data Assimilation (ES-MDA)



Training Images for 1) Gaussian and 2) channelized aquifer



Summary

- Data assimilation in the latent space with deep learning methods (VAE, WGAN) and fast deep learning-based forward modeling can achieve real-time history matching of CO₂ operations and forecasting pressure plume development.
- Latent space optimization including optimal choice of the nonlinear dimension reduction requires further study with more realistic and various types of observed data.
- ML/DL with domain knowledge can lead to dramatic improvement in spatio-temporal data analytics and decision making for optimal monitoring system development.

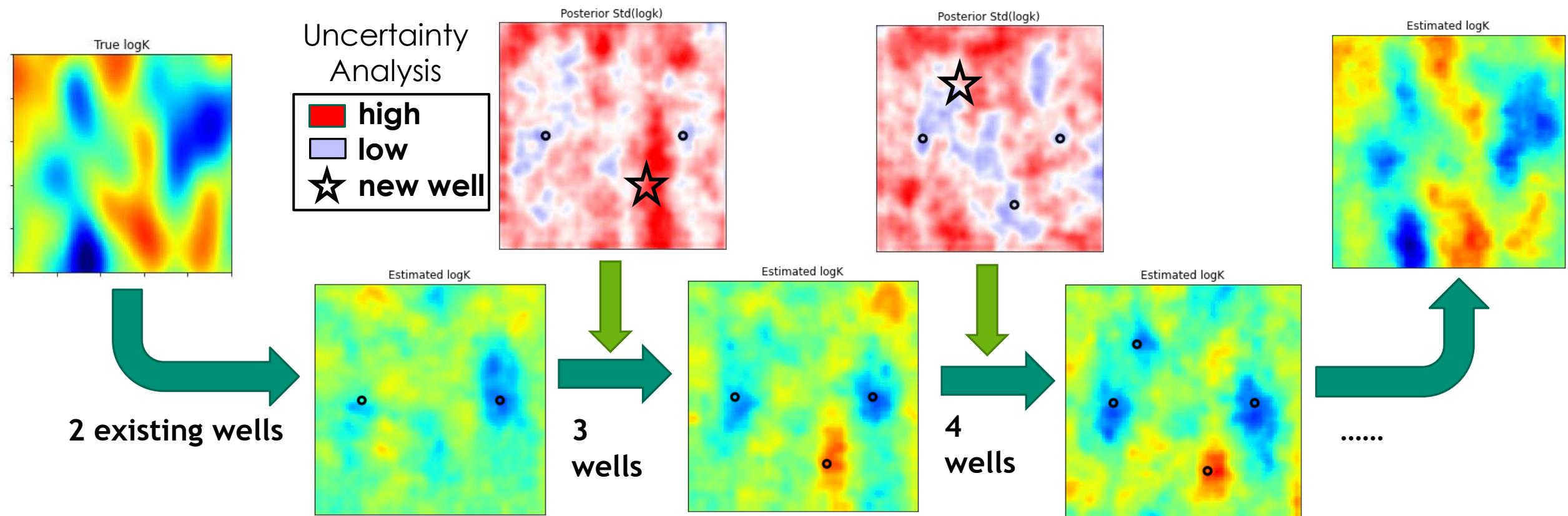
Thank you!

Any questions?

Hongkyu Yoon

hyoon@sandia.gov

Preliminary Result: Optimal Monitoring Well Placement



- By computing posterior covariance and maximize the information gain (e.g, D optimality) in the small latent space, our data assimilation method can accelerate Optimal Experiment Design (OED) problems and identify next “best” well locations