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Motivation for Deep Learning Based Approach
2

Two major challenges for high-dimensional forward and inverse problems for real-

time forecasting

1. Computational burdens with matrix calculations (e.g., Jacobian)

=> Effective dimension reduction

2. # of forward model simulations for inverse modeling

=> ML-driven fast, reduced order predictive modeling

Specific Goals: Machine learning-driven CO2 modeling by combining fast ML-

based forward modeling with (ensemble-based) data assimilation

(EnDA), resulting in real-time history matching of CO2 operations and 

forecasting CO2 and pressure plume development



Parameter estimation and uncertainty quantification

History matching

(CO2 Injection at Cranfield, MS)

Synthetic Truth
Calibration-

constrained NSMC

Ensemble-based 

filtering method

With incorrect 

prior data

Tavakoli et al. (WRR2013) 

Yoon et al. (WRR2013)
Yoon et al. (2007), Yoon & McKenna (2013)

Lee and Yoon et al. (WRR2016)

▪ With limited observation data, solutions with 
incorrect prior data can match the observed data 
well ➔more spatially representative data (e.g., 
geophysical sensing data, tracer test)

▪ Another possible solution => more robust ensemble 
member generation using machine learning



ML-based Data Assimilation Framework
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Latent space “z” obtained by generative ML 
models (e.g., VAE or WGAN) is updated in 
(Ensemble or Variational) DA-based methods 
with various measured dataML-based approaches

Modular structure

Dimension reduction

Kang et al. (in review for WRR), Bao et 

al. (in prep), Yoon et al. (in prep)

• Data assimilation in small nonlinear latent space of unknown parameters with dim(z)

• Forward model executions can be significantly reduced
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▪ ML-based Forward Model

▪ ML-based Data Generation

▪ Data Assimilation

▪ Summary 



ML for Forward Reduced Order Models
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CNN-LSTM-DNN

Models for pressure, CO2 saturation, and water production rate

• CNN: Convolutional Neural Network

• LSTM: Long Short Term Memory 

• DNN: Dense neural network 

• AE: Autoencoder

CNN

LSTMs

CNN, DNN: TimeDistributed

ML architecture

- Permeability and porosity (x,y,z)

- Cumulative injection over time

- Injection rates/time

- Activity binary zone

Input Output

P & Sco2 (x,y,z,t)

Qprod(t) 

Dimension reduction & 

interpolation

DNN



Physics-Based Loss Functions
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𝜕 ∅𝜌𝑛𝑤𝑆𝑛𝑤

𝜕𝑡
= ∇ 𝜌𝑛𝑤

𝑘𝑟𝑛𝑤𝒌

𝜇𝑛𝑤
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Governing equations for two phase flow Loss= 𝑀𝑆𝐸 ෠𝑃, 𝑃 + 𝑀𝑆𝐸 መ𝑆𝑛𝑤 , 𝑆𝑛𝑤 +𝑀𝑆𝐸 ො𝑞𝑝𝑟 , 𝑞𝑝𝑟

+ 𝑓𝑙𝑢𝑥 ∗ 𝑀𝑆𝐸 ෣𝐹𝑙𝑢𝑥, 𝐹𝑙𝑢𝑥

+𝑚𝑎𝑠𝑠 ∗ 𝑀𝑆𝐸
෣𝜕 𝑀𝑛𝑤

𝜕𝑡
,
𝜕 𝑀𝑛𝑤

𝜕𝑡

+𝑏𝑖𝑛𝑎𝑟𝑦 ∗ Binary Crossentropy ( መ𝑆𝑛𝑤 , 𝑆𝑛𝑤)

+𝑏ℎ𝑝 ∗ 𝑀𝑆𝐸 ෠𝑃𝑏ℎ𝑝, 𝑃𝑏ℎ𝑝 + 𝑝𝑟 ∗ 𝑀𝑆𝐸 ෠𝑃𝑏ℎ𝑝, 𝑃𝑏ℎ𝑝

• Loss functions can be constructed through 

governing equations & physical constraints

• We incorporated different terms from governing equations into 

the loss functions

• Flux, mass conservation, known quantities are used

MSE: Mean Square Error



Results – Pressure, CO2 Saturation & Production Rate
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• Trained models has high 

prediction accuracy for all 
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ML approaches for coupled poro-elasticity processes
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• Continuous conditional generative adversarial 
networks (CcGAN) for time-dependent PDEs

DisplacementCO2 SaturationPermeability Pressure

Pressure

Pressure
Displacement

• CNN-LSTM-DNN reduced order modeling 
for coupled processes

Pressure

Kadeethum et al. (AWR, 2022; Sci. Rep. 2022) Yoon et al. (in prep for GRL)



Ongoing Progress
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Self supervised ML (Barlow Twins)

Kadeethum et al. (Sci. Rep., Accepted)

DC-AutoEncoder BT-AE



Physics-Informed Neural Networks (PINNs) for PDEs
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▪A form of neural networks known as Physics-Informed neural networks (PINN) to 
solve partial differential equations (PDEs) involved in fluid flow and reactive 
transport.

▪ A main idea of PINNs is to incorporate governing equations of physics in the form of 
partial differential equations (PDEs) into the loss via automatic differentiation (AD)

Input: Concentration data + head loss and conductivity + 

Advection-Diffusion-Reaction equation + Darcy Equation

Prediction: Permeability field is estimated inversely
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▪ ML-based Forward Model

▪ ML-based Data Generation

▪ Data Assimilation

▪ Summary 



Connectivity-Informed Drainage Network Generation
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Kim et al., Sci. Rep., 2021

▪Training GANs:  two player’s game (Goodfellow et al., NIPS, 2014)
▪Standard GAN is prone to mode collapse & unstable training
▪Very active research topics

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, DCGAN, etc)

Discriminator

DNN

Generator

DNN

Labeling

Real or Fake
dTraining Data

(Real data)

Noise vector
dFake Data

(Real data)

Backpropagation

Backpropagation

Generative Adversarial Networks (GANs)

▪ Generator (G): try to fool the discriminator by generating real-
looking images from a noise sample

▪ Discriminator (D): try to distinguish between real and fake 
images



Connectivity-Informed Drainage Networks
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▪ Three cases as training images

Case 1 – drainage network image

Case 2 – Directional drainage 
network index image

Case 3 – Three layers of binary D matrix

Kim et al., Sci. Rep., 2021

- transform the physical information of the images 

(i.e., high-frequency features & connectivity 

between the neighboring nodes) into the efficient 

binary matrix layers



Generated Drainage Networks
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Kim et al., Sci. Rep., 2021

▪ Connectivity-informed binary layers (case 3-1&3-2) outperform other 
cases

- Better generation accuracy & computational cost

- Complex network case demonstrates this more dramatically

- a type of physics-informed prior knowledge for ML

Simple network

Complex network



Spatially Assembled GANs (SAGANs)
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Velocity field: Pore-scale simulations 

with training image (TI) and realization

Training/Generation

Kim et. al., J. of 
Contam. Hydro. 2021

Training image Generated image



Wasserstein GANs (WGANs)17

▪ As mentioned, “Better loss functions, more stable training” 

- Here we use 1) Wasserstein-1 (so-called Earth-Mover) distance and 2) gradient penalty to 
ensure Lipschitz (i.e., continuous and differentiable loss function) conditions

Bao et al., in prep

Reference training image

Generation



Variational AutoEncoders (VAEs)
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•Nonlinear dimension reduction model:

• We have also used VAEs (naïve VAE, β-VAE, VQ-VAE and so on) for data generation. 

• VAE can explicitly project data to a smaller space with a simpler (i.e., Gaussian) distribution

• “likelihood” model-based VAEs may be advantageous in some case: relatively easy to 1) train 

and 2) check the model quality

• Connection to DA 

• Data assimilation in small nonlinear latent space of unknown parameters with dim(z)

• Only require “dim(z)” forward model executions at each iterations instead of dim(m) or 

dim(obs)
Ensemble realization

Unknowns:

decoder

𝜇

𝒩(𝟎, 𝚺)

𝒌,𝝓

Measurements:

𝐆(𝒌,𝝓)

decoder

Unknowns:

Σ

𝒌,𝝓 = 𝐆(𝒛)

𝐆(𝐃(𝐳))

𝒑, 𝑺

𝒌,𝝓

encoder
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▪ ML-based Forward Model

▪ ML-based Data Generation

▪ Data Assimilation

▪ Summary 



ML-based Data Assimilation Framework
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Latent space “z” obtained by generative ML 
models (e.g., VAE or WGAN) is updated in 
(Ensemble or Variational) DA-based methods 
with various measured dataML-based approaches

Modular structure

Dimension reduction

Kang et al. (in review for WRR), Bao et 

al. (in prep), Yoon et al. (in prep)
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Description of the data used

* Visualizations provided by LLNL. Data generated 
by EERC (Courtesy: Nick Azzolina)

Four CO2 injection wells

• High fidelity numerical simulator (CMG) to generate multiphase CO2 flow in 3D 

heterogeneous field (DOE SMART-CS project)
• Field scale-based permeability & porosity distribution
• Injection & extraction well operations

• CO2 saturation, pressure, and production

Injection Rate per Well per Realization



VAE-Inversion
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22

• the latent space is constructed based on k and Pressure

• the cost of the trained reduced order model (CNN-LSTM-DNN) ~O(1 sec)

• Use a 2D problem to demonstrate VAE-based inversion

• Inversion example :

• 2D 71x71 unknown k => z with 32 latent dimension

• 9 observation wells for time series pressure & permeability (hard data)

• Latent space was constructed from training data

• Initial guess: Zero mean & STD

• Only ~5 min inversion time on a single core laptop

• Inversion in the latent space identifies the k structures well!



Well locations & pressure profile over time for DA
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well4

Injection
well2

Injection
well3

Injection
well1
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VAE-Inversion
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Truth Estimated
Posterior Analysis (normalized)

Mean of 1,000 realizations Standard deviation

Test #1 Test #2 Test #3
Truth Estimated
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Training Images for 1) Gaussian and 2) channelized aquifer 

Bao et al., in prep

WGAN-based Data Assimilation (ES-MDA)



Summary

• Data assimilation in the latent space with deep learning methods (VAE, 
WGAN) and fast deep learning-based forward modeling can achieve real-time 
history matching of CO2 operations and forecasting pressure plume 
development.

• Latent space optimization including optimal choice of the nonlinear 
dimension reduction requires further study with more realistic and various 
types of observed data.

• ML/DL with domain knowledge can lead to dramatic improvement in spatio-
temporal data analytics and decision making for optimal monitoring system 
development. 



Thank you!

Any questions? 

Hongkyu Yoon 

hyoon@sandia.gov



Preliminary Result: Optimal Monitoring Well Placement

2 existing wells 3 

wells

4 

wells
……

● By computing posterior covariance and maximize the information gain (e.g, D optimality) in the small latent 

space, our data assimilation method can accelerate Optimal Experiment Design (OED) problems and identify 

next “best” well locations

Uncertainty 

Analysis

high

low

new well


