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Motivation for Deep Learning Based Approach
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Two major challenges for high-dimensional forward and inverse problems for real-

time forecasting

1. Computational burdens with matrix calculations (e.g., Jacobian)
=> Effective dimension reduction

2. # of forward model simulations for inverse modeling

=> ML-driven fast, reduced order predictive modeling

Specific Goals: Machine learning-driven CO, modeling by combining fast ML-
based forward modeling with (ensemble-based) data assimilation
(EnDA), resulting in real-time history matching of CO, operations and
forecasting CO, and pressure plume development



‘ Parameter estimation and uncertainty quantification

History matching
(CO, Injection at Cranfield, MS)
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Algorithm 2 82
Ensemble Kalman filter =  With limited observation data, solutions with
Ensemble smoother incorrect prior data can match the observed data o
Ensemble smoother with . . oo
multiple data assimilation well = more spatially representative data (e.g.,
Ensemble Kalman filter : :
with pilot point geophysical sensing data, tracer test)
ES4 with pilot point = Another possible solution => more robust ensemble
Null-space Monte Carlo . . . .
Multiple calibration-constrained member generation using machine learning
NSMC
Tavakoli et al. (WRR2013) Yoon et al. (2007), Yoon & McKenna (2013)

Yoon et al. (WRR2013) Lee and Yoon et al. (WRR2016)



ML-based Data Assimilation Framework

» Data assimilation in small nonlinear latent space of unknown parameters with dim(z)
» Forward model executions can be significantly reduced

Iteration

Simulated

pressure/saturation
itial Observed flow,
nitia pressure, geop
guess hysical data
(multiple) realization Fast Forward model Dimension reduction

/;nt space “z” obtained by generative ML
models (e.g., VAE or WGAN) is updated in
(Ensemble or Variational) DA-based methods

ML-based approaches with various measured data
Modular structure

Kang et al. (in review for WRR), Bao et
al. (in prep), Yoon et al. (in prep)
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ML for Forward Reduced Order Models

Models for pressure, CO, saturation, and water production rate
CNN-LSTM-DNN

ML architecture

LSTMs

- Permeability and porosity (x,y,z) III- P& Sco; (X,Y,2,1)
- Cumulative injection over time Qproa(t)
- Injection rates/time CNN, DNN: TimeDistributed e eEn FeehE e 6

- Activity binary zone interpolation

e CNN: Convolutional Neural Network
e LSTM: Long Short Term Memory

e DNN: Dense neural network

e AE: Autoencoder
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Physics-Based Loss Functions

* Loss functions can be constructed through

governing equations & physical constraints

 We incorporated different terms from governing equations into
the loss functions

* Flux, mass conservation, known quantities are used

Governing equations for two phase flow
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‘ Results — Pressure, CO, Saturation & Production Rate
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‘ ML approaches for coupled poro-elasticity processes

« Continuous conditional generative adversarial
networks (CcGAN) for time-dependent PDEs
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with NLI heteragencous field o
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e CNN-LSTM-DNN reduced order modeling
for coupled processes
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‘ Ongoing Progress
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I Self supervised ML (Barlow Twins) |
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Physics-Informed Neural Networks (PINNs) for PDEs
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= A form of neural networks known as Physics-Informed neural networks (PINN) to
solve partial differential equations (PDEs) involved in fluid flow and reactive

transport.

= A main idea of PINNs is to incorporate governing equations of physics in the form of
partial differential equations (PDEs) into the loss via automatic differentiation (AD)

Input: Concentration data + head loss and conductivity +

Advection-Diffusion-Reaction equation + Darcy Equation

Prediction: Permeability field is estimated inversely
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ML-based Forward Model
ML-based Data Generation
Data Assimilation

Summary




‘ Connectivity-Informed Drainage Network Generation
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DNN
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Fake Data
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- Labeling

Backpropagation

= Generator (G): try to fool the discriminator by generating real-
looking images from a noise sample

= Discriminator (D): try to distinguish between real and fake

images

" Training GANs: two player’s game (Goodfellow et al., NIPS, 2014)
= Standard GAN is prone to mode collapse & unstable training

= Very active research topics

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, DCGAN, etc)

Kim et al., Sci. Rep., 2021



‘ Connectivity-Informed Drainage Networks
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TR — P R - = Three cases as training images
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Step 2: Convert the D matrix with three directions
into the binary D matrix

First digit

Binary D matrix 1: 01
for three directions

i | R "

TEETRETRETRET Separale
1 the digit of
binary codes Layer-2

Case 3 —Three layers of binary D matrix
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- transform the physical information of the images
(i.e., high-frequency features & connectivity
between the neighboring nodes) into the efficient
binary matrix layers

L]} 1]} 11 11 11

Second digit
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Step 3: Decompose the binary D matrix with

three directions into two binary matrices

Laver-3

Kim et al., Sci. Rep., 2021 -
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15

i
=ER!

Simple network

Case 2-1

|
23
K 4 r —
EhE QiR AL Jé =N
= Connectivity-informed binary layers (case 3-1&3-2) outperform other El L —lj = Wy IH_C_—_EJ_

cases :
Case 3-1 — \

[Eor )
Tl B

- Better generation accuracy & computational cost

- Complex network case demonstrates this more dramatically

- a type of physics-informed prior knowledge for ML
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. Spatially Assembled GANs (SAGAN:s)
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17 I Wasserstein GANs (WGANs)

= As mentioned, “Better loss functions, more stable training”

- Here we use 1) Wasserstein-1 (so-called Earth-Mover) distance and 2) gradient penalty to
ensure Lipschitz (i.e., continuous and differentiable loss function) conditions
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Variational AutoEncoders (VAEs)
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 Nonlinear dimension reduction model:

« We have also used VAEs (naive VAE, B-VAE, VQ-VAE and so on) for data generation.

e VAE can explicitly project data to a smaller space with a simpler (i.e., Gaussian) distribution

 “likelihood” model-based VAEs may be advantageous in some case: relatively easy to 1) train
and 2) check the model quality

« Connection to DA

 Data assimilation in small nonlinear latent space of unknown parameters with dim(z)
e Only require “dim(z)” forward model executions at each iterations instead of dim(m) or
dim(obs) |

Ensemble realization

Unknowns: Unknowns: k, ¢ s S: CMG Output S: Model Output  S: Absolute Difference
. ) P - . o

>k,¢ =G(2)

-----------

Measurements:

G(k, @)

...........
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ML-based Forward Model
ML-based Data Generation
Data Assimilation

Summary




ML-based Data Assimilation Framework
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Iteration
Simulated
pressure/saturation
Initial Observed flow,
nitia pressure, geop
guess hysical data

(multiple) realization Fast Forward model Dimension reduction

/;nt space “z” obtained by generative ML
models (e.g., VAE or WGAN) is updated in
(Ensemble or Variational) DA-based methods

ML-based approaches with various measured data
Modular structure

Kang et al. (in review for WRR), Bao et
al. (in prep), Yoon et al. (in prep)



Description of the data used

* High fidelity numerical simulator (CMG) to generate multiphase CO, flow in 3D
heterogeneous field (DOE SMART-CS project)
* Field scale-based permeability & porosity distribution

* Injection & extraction well operations
« CO, saturation, pressure, and production

v aaveeses njection Rate per Well per Realization
" ‘ ' ' io;t:y:_pﬁo-w . pos P10 [ [__pza B7% pas

Four CO, injection wells

CO2 Injection Rate, Mscfd

[—p=0
| s
5 100 5 100 5 10

* Visualizations provided by LLNL. Data gener:
by EERC (Courtesy: Nick Azzolina)




VAE-Inversion Tue loge
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e Use a 2D problem to demonstrate VAE-based inversion

 the latent space is constructed based on k and Pressure
 the cost of the trained reduced order model (CNN-LSTM-DNN) ~O(1 sec)
* Inversion example :
« 2D 71x71 unknown k => z with 32 latent dimension
9 observation wells for time series pressure & permeability (hard data)
Latent space was constructed from training data
Initial guess: Zero mean & STD

Only ~5 min inversion time on a single core laptop
Inversion in the latent space identifies the k structures welll

RMSE: 0.003164 Eigenspectrum of Qpaer -
- "
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‘ Well locations & pressure profile over time for DA
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‘ VAE-Inversion
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‘ WGAN-based Data Assimilation (ES-MDA)
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Bao et al., in prep
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Summary

« Data assimilation in the latent space with deep learning methods (VAE,
WGAN) and fast deep learning-based forward modeling can achieve real-time
history matching of CO, operations and forecasting pressure plume
development.

« Latent space optimization including optimal choice of the nonlinear
dimension reduction requires further study with more realistic and various
types of observed data.

 ML/DL with domain knowledge can lead to dramatic improvement in spatio-
temporal data analytics and decision making for optimal monitoring system
development.



Thank you!

Any questions?

Hongkyu Yoon
hyoon(@sandia.gov



‘ Preliminary Result: Optimal Monitoring Well Placement

Posterior Std(logk)
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By computing posterior covariance and maximize the information gain (e.g, D optimality) in the small latent

space, our data assimilation method can accelerate Optimal Experiment Design (OED) problems and identify
next “best” well locations



