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Motivation

Can we represent crystalline structure via shape information to help us infer processing conditions?
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Introduction

+ Knowledge about processing conditions helpful in determining
material ordination

- This can be considered an Inverse Problem

+ Our approach is to utilize the shape of a particle as a predictor in
processing conditions

+ Previous work has focused on “features” of shape, but not a
mathematical representation of shape itself

+ Utilize Elastic Shape Analysis framework




Shape Analysis

Samples from a population of
stingrays from the Surrey fish
database on the left and a
representative shape for this sample
on the right (Srivastava & Klassen
2016)

Representative Shape \
P ) pe

» Shape analysis of curves is important in various
areas such as computer vision, medical
diagnostics, and bioinformatics

+ Basic idea is to obtain a boundary curve of
an object in a 2D image and analyze those
curves to characterize the original object

» Due to functional nature, they live on a non-
linear infinite-dimensional space known as a
manifold

+ We can endow this space with a metric that
allows us to measure distances between curves

- Riemannian framework

- Use metric that is invariant to rotation, scale,
and parameterization of the shape

M) | s




Shape Metric and Geodesic

Represent each contour, f(f), using the square-root velocity function

a0 =—22— = /i
v 140)]

Define the pre-shape space of all unit length contours
1

1
€° = {q € L*([0,1], R") |J
0 0

Where we define an orbit == a shape

[q] = {O(g > 7)\/710 € SO(n),y € T'}
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Karcher Mean
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From this we can compute a distance between
shapes:

ddlq,l, [g.]) =

min
0eS0(n), yell

d.(q,, O(qy > YW/7)

Can compute an average curve by computing the
Karcher Mean, u

u = arg min Y d([q].[g])’
[g]€S* i1

This mean represents the average shape of all the
curves in the data set




Designed Experiment

l-optimality: minimized average prediction uncertainty.

Sample sizes were chosen to make prediction performance balanced across o —
design space. 21 .
Well-designed experiments help to: R L LS
 Characterize the input/output relationship 3 o —
* Increase precision of inverse predictions
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Inputs ’r
In solution (52 runs) In solid feed (24 runs) i ——a ¥
« Parameter 1: 10/30/50 « Parameter 1: 10/30/50 M M 3Mm
« Parameter 2: 1/2/3
Parameter 2: 1/2/3 . Parameter 3 30/50
« Parameter 3: direct/reverse
* Parameter 4: 0/20/40 All particles observed within a run were produced from

« Parameter 5: 40/20/0 the same set of processing conditions.

* Parameter 6; 30/50




Karcher Means
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* The number of PCs to represent
95% of the variation.

* Relative to Run 29 which
required the most and Run 8
which required the least
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Prediction Results

+ Using observed values with missing values imputed from plan and standardized inputs
+ Removed condition 5 due to high correlation to condition 6

+ Left duplicated runs out, fit model on rest of the runs and predicted the left out run and
computed the prediction error

+ Performed LOOCV on a Random Forest Regression and below is the average standardized
RMSE

Solution - o o ”r o
. ____________|condition 1 |Condition 2 |Condition 3 |Condition 4 |Condition 5 |
_ 0.089 0.097 1.018 0.024 0.099

__ [condition 1 |Condition 2_|Condition 3
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Conclusions and Future Work

+ Utilized entire curve extracted from SEM imagery in prediction of
Drocessing parameters using elastic framework

- Data was extracted using an I-optimal design of experiments

+ Results show promise in prediction of parameters using Random
-orest Regression model

+ Can be combined with other measures for increased performance
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