

Reverse engineering material processing conditions through inverse prediction using particle shape analysis

J. Derek Tucker

SIAM IS 22 - Virtual

Coauthors: Madeline Ausdemore (LANL), David Meier (PNL), Daniel Ries (SNL), Kurtis Shuler (SNL), Adah Zhang (SNL)

Outline

Motivation

Elastic Shape Analysis

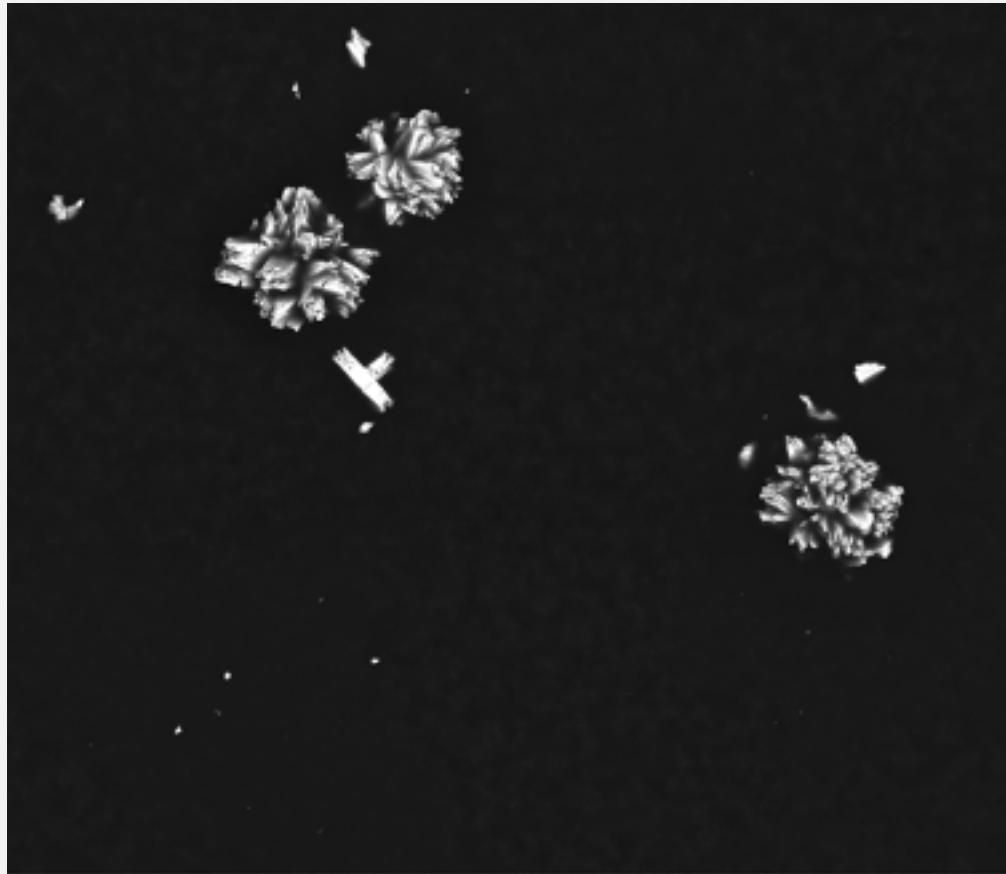
Inverse Prediction Model

Results

Conclusion

Motivation

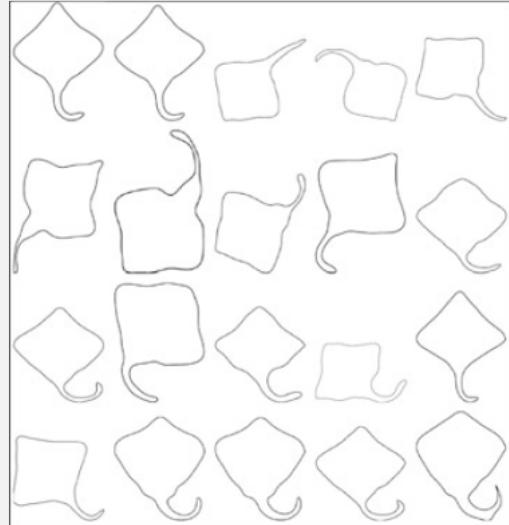
Can we represent crystalline structure via shape information to help us infer processing conditions?



Introduction

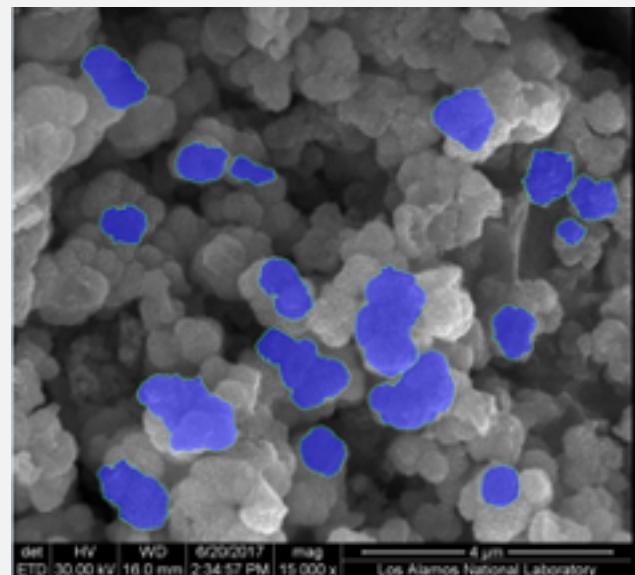
- Knowledge about processing conditions helpful in determining material ordination
- This can be considered an **Inverse Problem**
- Our approach is to utilize the ***shape*** of a particle as a predictor in processing conditions
 - Previous work has focused on “features” of shape, but not a mathematical representation of shape itself
 - Utilize Elastic Shape Analysis framework

Shape Analysis



Samples from a population of stingrays from the Surrey fish database on the left and a representative shape for this sample on the right (Srivastava & Klassen 2016)

Representative Shape
⇒



- Shape analysis of curves is important in various areas such as computer vision, medical diagnostics, and bioinformatics
 - Basic idea is to obtain a boundary curve of an object in a 2D image and analyze those curves to characterize the original object
- Due to functional nature, they live on a non-linear infinite-dimensional space known as a manifold
- We can endow this space with a metric that allows us to measure distances between curves
 - Riemannian framework
- Use metric that is **invariant to rotation, scale, and parameterization of the shape**

Shape Metric and Geodesic

Represent each contour, $\beta(t)$, using the square-root velocity function

$$q(t) = \frac{\dot{\beta}(t)}{\sqrt{|\dot{\beta}(t)|}} = \sqrt{r(t)}\Theta(t)$$

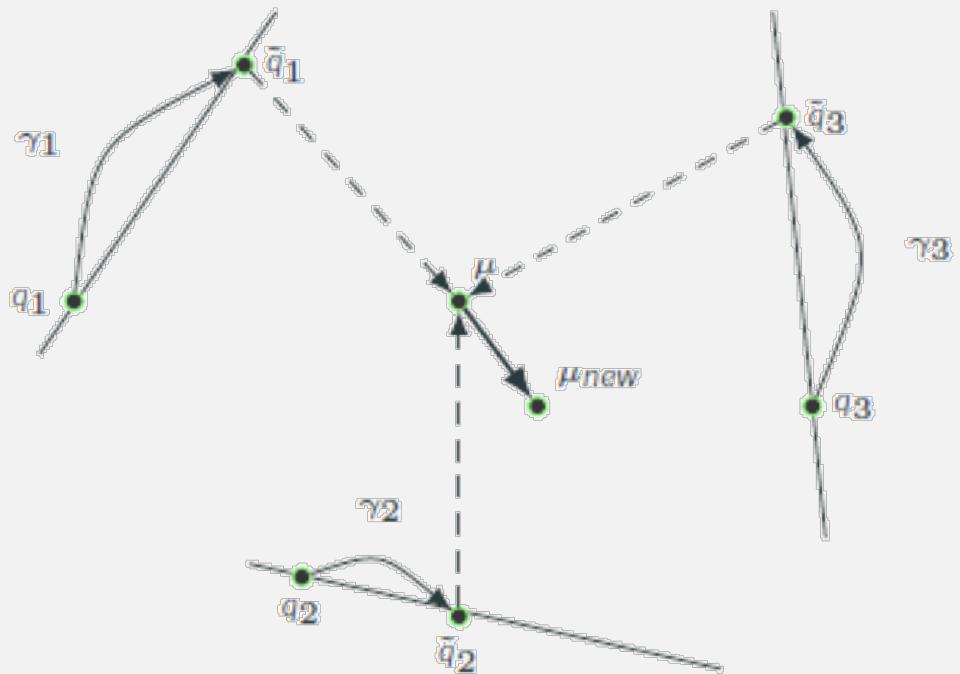
Define the pre-shape space of all unit length contours

$$\mathcal{C}^c = \{q \in \mathbb{L}^2([0,1], \mathbb{R}^n) \mid \int_0^1 ||q(t)||^2 dt = 1, \int_0^1 q(t) ||q(t)|| dt = 0\}$$

Where we define an orbit == a **shape**

$$[q] = \{O(q \circ \gamma)\sqrt{\dot{\gamma}} \mid O \in SO(n), \gamma \in \Gamma\}$$

Karcher Mean



From this we can compute a distance between shapes:

$$d_s([q_1], [q_2]) = \min_{O \in SO(n), \gamma \in \Gamma} d_c(q_1, O(q_2 \circ \gamma) \sqrt{\dot{\gamma}})$$

Can compute an average curve by computing the

Karcher Mean, μ

$$\mu = \arg \min_{[q] \in S^c} \sum_{i=1}^n d_s([q], [q_i])^2$$

This mean represents the average **shape** of all the curves in the data set

Designed Experiment

I-optimality: minimized average prediction uncertainty.

Sample sizes were chosen to make prediction performance balanced across design space.

Well-designed experiments help to:

- Characterize the input/output relationship
- Increase precision of inverse predictions

Inputs

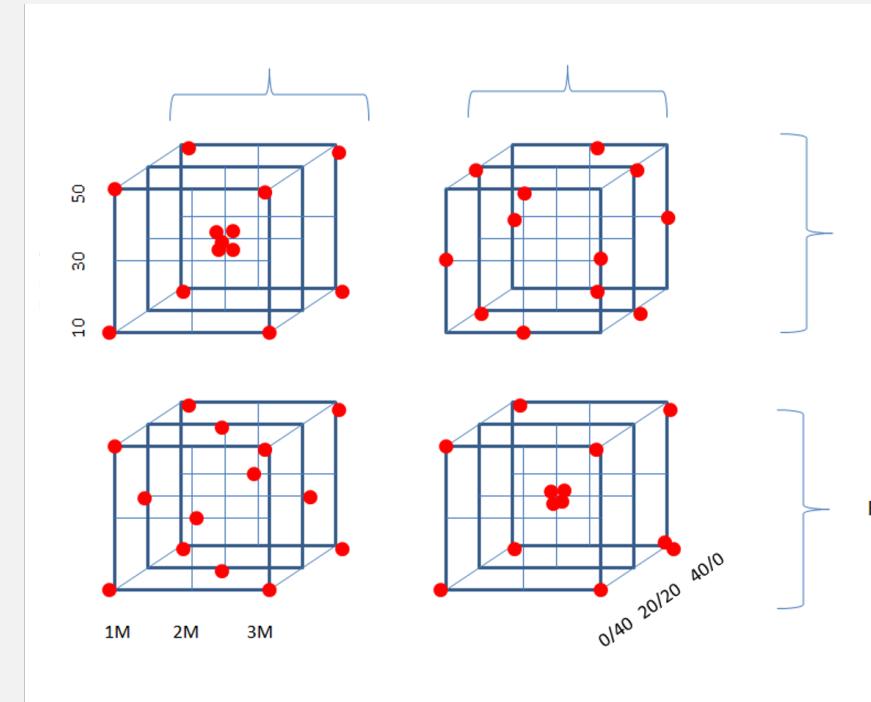
In solution (52 runs)

- Parameter 1: 10/30/50
- Parameter 2: 1/2/3
- Parameter 3: direct/reverse
- Parameter 4: 0/20/40
- Parameter 5: 40/20/0
- Parameter 6: 30/50

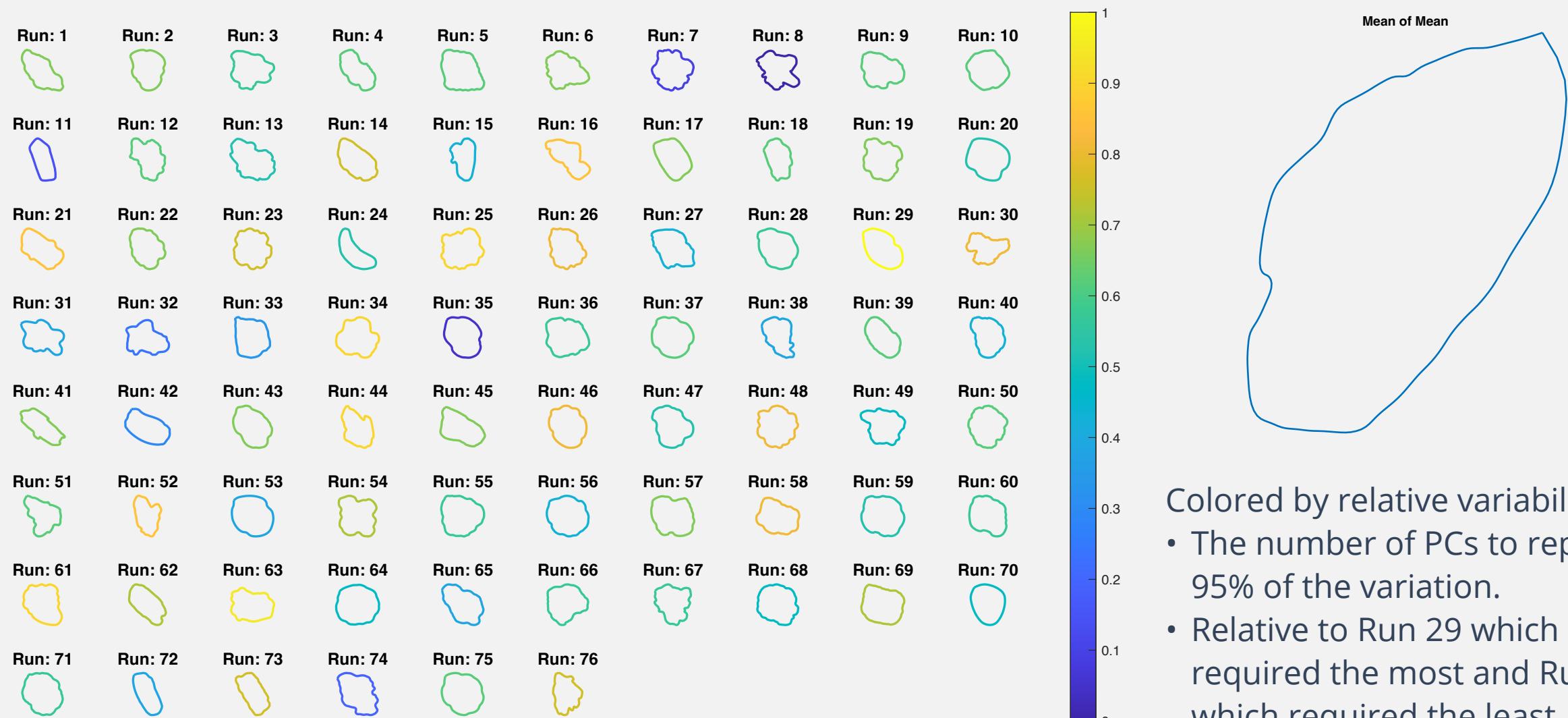
In solid feed (24 runs)

- Parameter 1: 10/30/50
- Parameter 2: 1/2/3
- Parameter 3: 30/50

All particles observed within a run were produced from the same set of processing conditions.



Karcher Means



Colored by relative variability

- The number of PCs to represent 95% of the variation.
- Relative to Run 29 which required the most and Run 8 which required the least

Prediction Results

- Using observed values with missing values imputed from plan and standardized inputs
- Removed condition 5 due to high correlation to condition 6
- Left duplicated runs out, fit model on rest of the runs and predicted the left out run and computed the prediction error
- Performed LOOCV on a **Random Forest Regression** and below is the average standardized RMSE

Solution

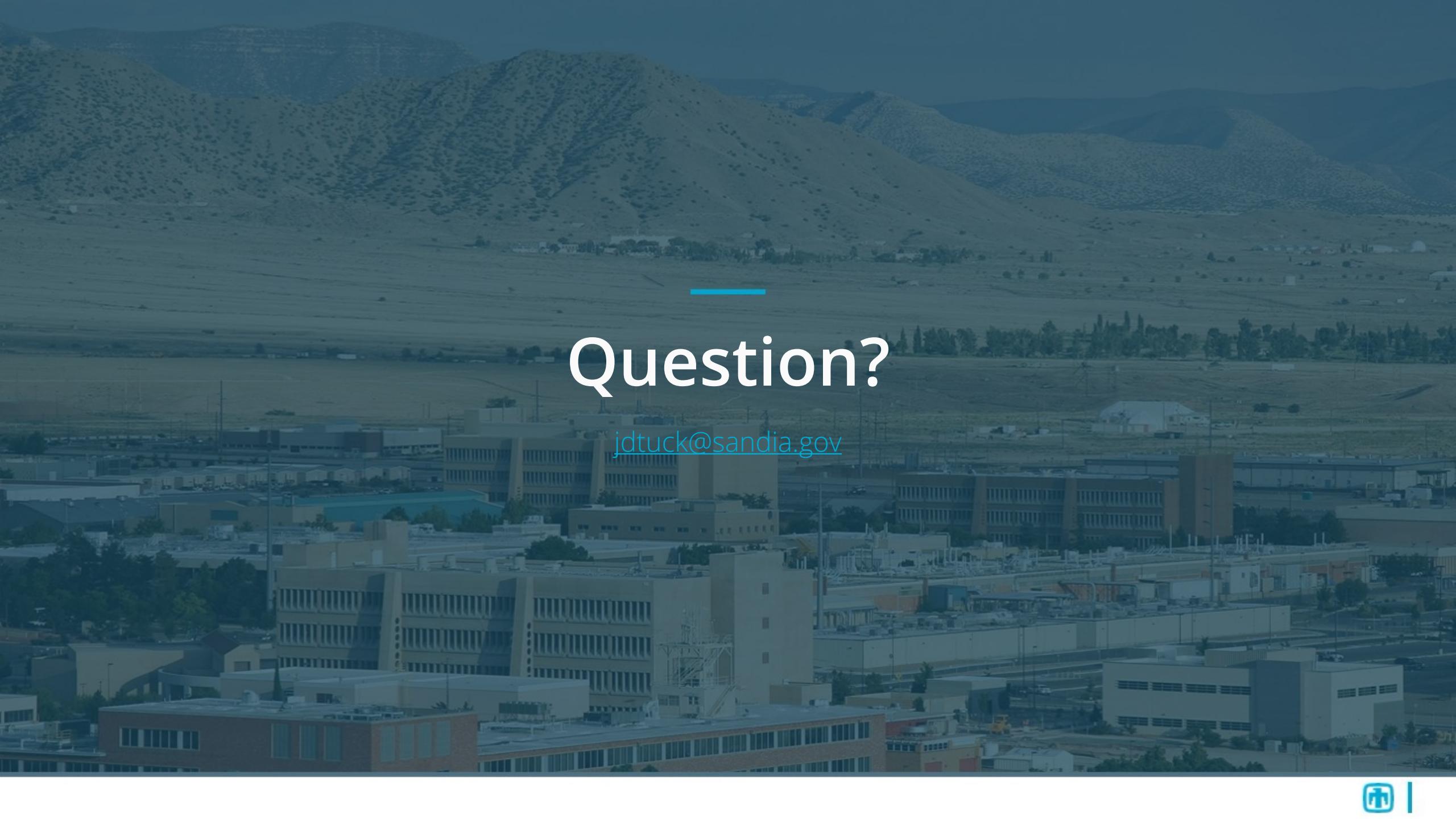
	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5
RMSE	0.089	0.097	1.018	0.024	0.099

Solid

	Condition 1	Condition 2	Condition 3
RMSE	0.057	0.188	0.617

Conclusions and Future Work

- Utilized entire curve extracted from SEM imagery in prediction of processing parameters using elastic framework
- Data was extracted using an I-optimal design of experiments
- Results show promise in prediction of parameters using Random Forest Regression model
- Can be combined with other measures for increased performance



—

Question?

jdtuck@sandia.gov

