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Motivation
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Can we represent crystalline structure via shape information to help us infer processing conditions?




• Knowledge about processing conditions helpful in determining 
material ordination


• This can be considered an Inverse Problem


• Our approach is to utilize the shape of a particle as a predictor in 
processing conditions


• Previous work has focused on “features” of shape, but not a 
mathematical representation of shape itself


• Utilize Elastic Shape Analysis framework

Introduction
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Shape Analysis
• Shape analysis of curves is important in various 

areas such as computer vision, medical 
diagnostics, and bioinformatics


• Basic idea is to obtain a boundary curve of 
an object in a 2D image and analyze those 
curves to characterize the original object


• Due to functional nature, they live on a non-
linear infinite-dimensional space known as a 
manifold


• We can endow this space with a metric that 
allows us to measure distances between curves


• Riemannian framework


• Use metric that is invariant to rotation, scale, 
and parameterization of the shape
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Samples from a population of 
stingrays from the Surrey fish 
database on the left and a 
representative shape for this sample 
on the right (Srivastava & Klassen 
2016)



Shape Metric and Geodesic

Represent each contour, , using the square-root velocity function 


 


Define the pre-shape space of all unit length contours





Where we define an orbit == a shape


 

β(t)

q(t) =
·β(t)

| ·β(t) |
= r(t)Θ(t)

𝒞c = {q ∈ 𝕃2([0,1], ℝn) |∫
1

0
| |q(t) | |2 dt = 1,∫

1

0
q(t) | |q(t) | | dt = 0}

[q] = {O(q ∘ γ) ·γ |O ∈ SO(n), γ ∈ Γ}
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Karcher Mean

From this we can compute a distance between 
shapes:





Can compute an average curve by computing the 
Karcher Mean, 


 


This mean represents the average shape of all the 
curves in the data set

ds([q1], [q2]) = min
O∈SO(n), γ∈Γ

dc(q1, O(q2 ∘ γ) ·γ)

μ

μ = arg min
[q]∈Sc

n

∑
i=1

ds([q], [qi])2
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Designed Experiment

I-optimality: minimized average prediction uncertainty.

Sample sizes were chosen to make prediction performance balanced across 
design space.

Well-designed experiments help to:


• Characterize the input/output relationship

• Increase precision of inverse predictions


 Inputs

 In solution (52 runs)

• Parameter 1: 10/30/50

• Parameter 2: 1/2/3

• Parameter 3: direct/reverse

• Parameter 4: 0/20/40

• Parameter 5: 40/20/0

• Parameter 6: 30/50
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In solid feed (24 runs)

• Parameter 1: 10/30/50

• Parameter 2: 1/2/3

• Parameter 3 30/50


All particles observed within a run were produced from 
the same set of processing conditions.




Karcher Means
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Colored by relative variability

• The number of PCs to represent 

95% of the variation.

• Relative to Run 29 which 

required the most and Run 8 
which required the least 




Prediction Results

• Using observed values with missing values imputed from plan and standardized inputs


• Removed condition 5 due to high correlation to condition 6


• Left duplicated runs out, fit model on rest of the runs and predicted the left out run and 
computed the prediction error


• Performed LOOCV on a Random Forest Regression and below is the average standardized 
RMSE
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Solution

Solid

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
RMSE 0.089 0.097 1.018 0.024 0.099

Condition 1 Condition 2 Condition 3
RMSE 0.057 0.188 0.617



Conclusions and Future Work

• Utilized entire curve extracted from SEM imagery in prediction of 
processing parameters using elastic framework


• Data was extracted using an I-optimal design of experiments


• Results show promise in prediction of parameters using Random 
Forest Regression model


• Can be combined with other measures for increased performance
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