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Concerted Metal Cation Desorption and Proton Transfer on

toxic/radioactive ion trapping
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Motivations

* adsorption of metal cations on mineral
surfaces is a main stay of geochemistry
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Deprotonated Silica Surfaces

Kevin Leung,** Louise J. Criscenti,
and Jeffery A. Greathouse

Andrew W. Knight, Anastasia G. Ileen,” Tuan A. Ho,
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MD snapshot: Fe(ll) hydroxide
cluster on silica surface in water

Enlarged snapshot
of Fe(ll) hydroxide
cluster

Effects of nanoconfinement and surface charge on
iron adsorption on mesoporous silica¥

Jeffery A. Greathouse, (2*® Tyler J. Duncan,® Anastasia G. ligen, (&)®

Jacob A. Harvey,

2 Louise J. Criscenti® and Andrew W. Knight®
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What happens in between?
dimerization, polymerization ...

Much less studied



Metal cation dimers in water/on surface

Ab Initio Molecular Dynamics Reveal Spectroscopic Siblings and lon
Pairing as New Challenges for Elucidating Prenucleation Aluminum

Speciation J. Phys. Chem. B 2018, 122, 7394-7402
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Interfacial reactions of Cu(i) adsorption and
hydrolysis driven by nano-scale confinement+
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Experimental evidence of Nd(lll), other

REE dimerization in silica nanopores

dimerization tendency



Here, focus on Cu-dimerization via AIMD free energy

Compare dimer on dimer on dimer in
free energy of: silica silica water

These structures motivated by classical force field studies, bridged by two OH-



Computational Model and method: AIMD/PMF

reconstructed (001)

focus on silica, use model with single binding site as benchmark

* use our previous reconstructed [-cristobalite (001), pKa=7.0—-8.1
J. Am. Chem. Soc., 2009, 131, 18358

e Sulpizi and Gaigeot groups found lower pKa SiOH on amorphous
silica but multiple binding site complicates analysis

Bimodal Acidity at the Amorphous Silica/Water Interface

+ .. . t - P : . . . 1
Morgane Pfeiffer-Laplaud,” Dominique (,osta,[ Frederik Tielens,® Marie-Pierre (1'.1|gcot,”
. o #
and Marialore Sulpizi®’

e ~4 SiOH groups per nm?, higher than our experimental SiOH density
* DFT/PBE, 14x14x26 A3 simulation cell, I"-point sampling

(larger cell than our previous work)

* T=400 K, umbrella sampling
* One RE3*in each simulation cell, ~¥350 ps total each

* 3SiO group to keep charge neutrality

* Qualitatively compare with measurements



Potential of Mean Force is the way to calculate
barriers/exothermicity in liquids
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Na*: +0.13 +/- 0.03 eV (unbound)
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First try: Cu-Cu distance as reactive coordinate

[Cu(l)(OH), 1, in water
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Second try: 6-body reaction coordinate to break Cu-
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Why are our gaussian results inaccurate?

* No PCM: results reasonable,
Cu(ll) dimer unbound,
repulsion decreases with
distance/more H,0O
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/ A bound regardless of distance
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* Compared OH" (H,0), vs OH"
energetics in PCM ->
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Conclusions

AIMD potential-of-mean-force calculations show Cu(ll) dimerization more
favorable on silica surfaces than in water

Vertical dimers more favorable than horizontal ones
Energy landscape implies desorption takes ~ seconds, easily reaches equilibrium
Needs to devise new reaction coordinate, not perfect, future research needed

Gaussian (DFT cluster + implicit solvent) calculations inaccurate if implicit

solvation of OH" is not well treated.
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Supporting slides



pH- and pK, -dependence

Elucidating the Bimodal Acid—Base Behavior of the

Water—Silica Interface from First Principles What is pK,, of Ln(Ill)(H,0), complexes?
Kevin Leung,*T Ida M. B. Nielsen,* and Louise J. Criscenti’
J. AM. CHEM. SOC.  5())Q Theoretical Study of pK, Values for Trivalent Rare-Earth Metal
Cations in Aqueous Solution  J. Phys. Chem. A 2018, 122, 700-707
q
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* Yu et al suggests pK,; ~ 3-4

* thermodynamic data suggests Ln(lll) pK,, ~ 7-8 (courtesy of Louise Criscenti)

* both values consistent with proton exchange seen between SiOH and Ln(lll) in AIMD

* higher pH (>6) creates SiO-, favors Ln(lll) adsorption but also Ln hydroxide precipitation

* suggests local high pH may help Ln(lll) selectivity without precipitation



Our previous work on other cations on silica
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Much larger effects due to hydrolysis: Cu(ll) has it, Mg(ll) not



Cu(ll) in water is always an outlier

First Solvation Shell of the | /
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PMF statistics

]%_Ifll|||||||||||[||11|| |||||||[||1||||||||||[[||1|— _|||I|\\||||||||||||||h||II|I|I|||I|I|I|I|||II|I|I|||J|::llilllllllzllll_
- : VARY N 2 1
: i — 25\ ENE

) Sr 2 TE T3S 1

7 i E E \\:h-"""-. L E ]

] I N T S

] i N A =l

: -10 i SO Lo

_ B \ 0.8 1 1.2 14 16 1.8 4

— B 20 R(A) b

L A _

In[P(R)]

i 20|

= '\
ol ee b bt e b se g b b ben i b L

0 I 2 3 4 0 | 2 3 4
R (A) R (A)

[II|IIIIIIIII'IIII'III'II|IIIIIIIIII[IIIIIIIIIIIIII

0 —

-20

lIIlIIIlIIIJIlJIIIJII]I|IIIIIIIIIIlIIlIIIllIlIIIlI
0 1 2 3 4
R (A)




