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2 I Outline

Introduction on atomic-precision-advanced-manufactured (APAM) devices

Nitrogen-Vacancy (NV) centers in diamond.

Wide-tield magnetometry based on NV centers.

Experimental results:
- APAM devices magnetic field map and current reconstruction

- Working device vs broken device

Conclusions
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3 ‘ APAM device features

*  Atomic-precision-advanced-manufactured (APAM) Si:P D-doped
materials are a channel to new microelectronics technologies
Hydrogen H:51

based on quantum-confined 2D electron-transport in Si. e passvition
lithography

*  APAM devices are fabricated by selective doping on a
lithographically defined pattern in a silicon template.

* In this case, the APAM device is patterned into an electric device

. . . gas-phase
shaped like mm-sized ribbons . domak epitaxial Si
oping &
Si epitaxial S
capping
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e - APAM fabrication process. From Bussmann et al. WN:
APAM device, provided by S. Mistra et al. at SNL MRS Bulletin 46, 607 (2021) ‘
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Nitrogen Vacancy (NV) centers

Point defect in diamond consisting of a substitutional nitrogen and carbon vacancy.

The defect’s electronic spin population (S=1) can be manipulated by a microwave field and readout
optically, allowing for Optically Detected Magnetic Resonance(ODMR)

Spin sublevel degeneracy can be removed by external perturbations

(e.g. magnetic fields), allowing their measurement. A L
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, ‘ NV wide-field microscope

*  Wide-tfield NV magnetometry is non-invasive technique
that provides large field of views with high lateral
resolution.

Output-on measurement Output-on simulation B,
: 30T

Output on

NV magnetic imaging of a 555 IC.
From Kehayias et al. Phys. Rev. Appl. 17, 014021 (2022)



6 ‘ NV wide-field microscope

*  Wide-tfield NV magnetometry is non-invasive technique
that provides large field of views with high lateral

resolution.
dr i ; *  Currents flowing in atomic precision advanced
; Helmholtz coil Camera with ) 1cp . : .
/ tube lens manufactured (APAM) wires are imaged with NVs in bulk
/

diamond in a wide field microscope.
| Filter

Objective

Laser pump

V emitted
__ fluorescence

~—

Wide-field magnetic microscope ‘ S



7 ‘ NV wide-field microscope

*  Wide-tfield NV magnetometry is non-invasive technique
that provides large field of views with high lateral

resolution.
dr i ; *  Currents flowing in atomic precision advanced
; Helmholtz coil Camera with ) 1cp . : .
/ tube lens manufactured (APAM) wires are imaged with NVs in bulk
/

diamond in a wide field microscope.
| Filter
*  Diamond sensor (4um-thick NV layer) coated with

reflective coating (3nm Ti, 150nm Ag, 150nm Al,O5).
Objective

Laser pump

V emitted
-~ fluorescence

~—

IGIass coverslip
\

Diamond Coating

NV-layer

Wide-field magnetic microscope Diamond sensor-device integration



8 ‘ NV wide-field microscope

*  Wide-field ODMR allows to obtain local magnetic field
measurement from each camera pixel.

Magnetic field map
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Experimental result: Magnetic field maps

3
Current injected in the top wire: (a) optlcal
image, (b) magnetic field map N

*  Magnetic field B generated by current | flowing into the patterned
wires 1s mapped by the NV ensemble.
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0 | Experimental result: Magnetic field maps
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Magnetic tield B generated by current | flowing into the patterned
wires 1s mapped by the NV ensemble.

From the magnetic field map, the surface current density can be
reconstructed [1]:

Jr') x (r—r
Biot-Savart law: B(r) = £ [ &r EEE 3 )
4 Ir — r/|

Continuity equation: VYV - J = ()

By inverting Biot-Savart law with a Fourier analysis approach:

~

Jo = B
gley — €z %= - sz]
w
Ja; — ky ‘ 3 B”
_ glex — eyt +iez g Yy

[1] Chang et al. Nano Lett. 2017, 17, 4, 2367-2373

- g= %e_kz with z being the stand-off distance

- (e, €, €,) is the vector pointing along NV axis,

-k and k; are the the k-vectors for x and y, k = /k,zc + ka,

- w1s the Hanning filter function



11 | Experimental result: Current reconstruction

Magnetic field Current density |J|

10
*  Stand-off distance h is required
to reconstruct the current density:
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2 ‘ Experimental result: working device

Magnetic field map
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current I = 150pA
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13 ‘ Experimental result:

Magnetic field map

Current density J(x,y)

working device

* Uniformity of the current along the wire is studied for an
injected current of I = 150 pA
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14 | Experimental result: broken device

* From the surface current density {Jx, Jy} the current flowing direction is also obtained.

* Sections of the wire where current 1s impeded can be observed.
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Experimental result: device features

* Comparison between optical pictures and current maps allows to conclude that choke points
p _ p p p p

result from material defects _ ,
Optical picture and
Profilometry
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Scale bar is the same for all the pictures.



‘ Experimental result: leakage path

Magnetic field map

Current density J(x,y)
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* NV magnetometry used to measure current leaks between the

twoO wires

* Direct observation of the leak path is not obtained.
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17 I Conclusions

* Diamond NV-center wide field imaging is a promising magnetic field
diagnostic tool, allowing millimeter-scale field of view and micron-scale
spatial resolution at ambient condition.

* From the APAM B-field map we reconstructed the | density vector field,
which allowed us to detect device failures.

*  Our results bode well for leveraging extreme lithographic precision of
APAM devices in technologies at T=300K.
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