

NICKEL-63 SEPARATION AND ANALYSIS IN STAINLESS STEEL

Nicole Zayas¹, Joseph Zigmond¹, Nicole Larson¹, Robert Reese¹, Karen Schoendaller¹, Mark Allen¹

¹Sandia National Laboratories, Albuquerque, NM

OBJECTIVES

- Quantification of ^{63}Ni activity required for waste characterization of a highly activated stainless steel component
- Modeled ^{63}Ni activity was suspected to be overestimated
- Interference from ^{60}Co necessitated separation of ^{63}Ni from matrix

Stainless steel shavings

METHOD DEVELOPMENT

- Nickel chemically separated from ^{60}Co utilizing Eichrom TRU and Ni resins
- ^{63}Ni quantified in purified sample by Liquid Scintillation Counting
- ICP-OES used for measurement of Fe, Ni and Co concentrations
- Mirion/Canberra ISOCS calibration model developed to quantify ^{60}Co activity on HPGe gamma detector

Validated Method

Geometry Composer Report
CANBERRA NIS

Date: Tuesday, September 21, 2021 - 16:41:36
Procedure: CENTRIFUGE TUBE HALF-FULL
Comment: C:\GENIE2\loc\data\GEOMETRY14.LAB_HALFPIPE.geo
Software: LabSOCS
Template: GENERAL_PURPOSE_BEAKER, Version: Custom Beaker (FUGETUBE.BKR)
Detector: LAB14
Environment: Temperature = 22 °C, Pressure = 760 mm Hg, Relative Humidity = 30%
Convergence = 1.00%, MDRH = 2° (16), CDRH = 2° (16)
Integration:

Dimensions (mm)

No.	Description	4.1	4.2	4.3	4.4	4.5	4.6	Material	Density (Rel. Conc.)
1	Beaker	46.5	59.5	88.0	122.1	165.9	279.2	391.7	661.7
2	Top Layer	498.0	517.2	532.5	536.0				
3	Bottom Layer								
4	Absorber1								
5	Absorber2								
6	Source/Detector								

List of energies for efficiency curve generation

Count Efficiency (%)

80
70
60
50
40
30
20
10
0

0 100 200 300 400

tSIE/AEC

63Ni Quench Curve for LSC

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7

498.0 517.2 532.5 536.0

46.5 59.5 88.0 122.1 165.9 279.2 391.7 661.7