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ABSTRACT

The growing x-ray detection burden for vehicles at Ports of Entry in the US requires the development of efficient and
reliable algorithms to assist human operator in detecting contraband. Developing algorithms for large-scale non-intrusive
inspection (NII) that both meet operational performance requirements and are extensible for use in an evolving
environment requires large volumes and varieties of training data, yet collecting and labeling data for these enivornments
is prohibitively costly and time consuming. Given these, generating synthetic data to augment algorithm training has been
a focus of recent research. Here we discuss the use of synthetic imagery in an object detection framework, and describe a
simulation based approach to determining domain-informed threat image projection (TIP) augmentation.
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1. INTRODUCTION

Roughly 5% of all vehicular traffic entering the United States through Ports of Entry is currently electronically scanned,
and Customs and Border Protection aims to move that fraction to 100%'2. The use of Non-Intrusive Inspection (NII) in
large-scale commodity applications, most commonly using x-ray imaging, requires a human operator to visually inspect
each scan for targets of interest. As the scan rate across ports of entry increases, so does the burden on both human
adjudicators and the existing infrastructure 343,

The deployment of machine learning algorithms to augment human operators in the adjudication of large-scale NII tasks
has been the focus of recent research, yet several challenges have so far precluded wide adoption®. Primarily, the issues
stem from the large data volume requirements to train contemporary models (e.g., convolutional neural nets, transformers),
contrasted with the apparent data scarcity in the large-scale commercial domain'-. Specifically, algorithms designed to
identify small metallic threats (SMTs) of interest require labeled examples of those targets in their common context, yet
in-situ examples of SMTs are incredibly rare’. The high-consequence, low-probability nature of this domain presents a
significant hurdle for algorithm development and training. Further, labeling data with sufficient variety and volume is
often prohibitively time consuming and costly. In the case of large-scale NII using x-ray imagery, the challenges associated
with collecting data become significantly more complex. Land ports of entry, for instance, are largely adopting drive-
through x-ray imaging systems, and collecting training data in these environments is complex and time consuming.

The prevailing solution to these challenges is the generation of synthetic observations through the Threat Image Projection
(TIP) approach, which has been used for this purpose in a variety of domains®%1%:111213 " including large-scale NII°.
Additionally, the TIP method generally involves data augmentation strategies designed to increase the diversity of the
TIPs within the context images, such as translations, rotations, and scale changes’. This represents an area of active
research, as some specific augmentation regimes (e.g., scale change) represent the physical relationship between the TIP
injection location and the specific sensor geometry being simulated. While several studies have described the potential for
object detection models trained solely on TIP data to perform well in stream of commerce (SOC) contexts'’, few studies
aim specifically to identify SMTs in large-scale NII, and to our knowledge, none have endeavored to characterize the
potential impact of TIP on SMTs in a field driven experimental setting. Further, we are unaware of any experimental
efforts aiming to constrain TIP augmentation as a function of TIP placement and sensor geometry.

Here we present a notional synthetic data generation workflow with two primary components: 1) threat injection, where
an isolated image is combined with a context image to produce a new training image; and 2) an image augmentation
approach informed by a 3D model digital twin of the x-ray instrument. Our geometric modeling approach describes a
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specific set of transformations to be applied to the injected image to reproduce the geometric distortions of the threat based
on its intended location inside the context image. While these are notional results, we believe that further research involving
the use of TIP with domain informed augmentation in NII systems will increase the impact of data collection efforts, by
increasing our ability to augment injected threats in a radiometrically and geometrically consistent manner.

2. DATA

We leveraged an empirical dataset collected during a multi-agency collaboration for this study. The complete dataset
contains manually labeled large-scale NII scans produced at a Multi-Energy Portal (MEP) and contains a combination
vehicle types, experimentally controlled to include a combination of commerce materials and SMTs. While the full dataset
is described elsewhere!*, we constrained our analysis to a subset of the data: tractor trailers. The subset used in this study
contains 387 tractor trailer images, as a combination of flat beds and containers. We also subset the SMT data to highlight
two distinct targets, a geometrically simple SMT (Target A) and geometrically complex target (Target B). We split the
dataset into a single train/test split (90/10) for our proof-of-concept analysis. We then built two experimental datasets for
our analysis: No-TIP and With-TIP. The No-Tip set contained non-synthetic scans of Target A (n =272) and Target B (n
= 145) distributed throughout the train and test imagery. The With-TIP set included images to double the training
observations of Target A (total n =490) and Target B (total n = 270). Development of the TIP images is described below.

3. METHODOLOGY
3.1 Threat image projection (TIP)

We used hand-cropped and pseudo-isolated scans of each target (targets imaged with minimal structural support and
against an open-air background) to serve as the source TIP. We then followed Rogers et al., 20167 to combine the target
with a context image from the training fold described above. Because the context images were constrained to tractor
trailers, we regionalized the location of the TIP to ensure a feasible placement in the context image (e.g., no floating in the
air, or outside of the container).

3.2 Object detection

We leveraged a collection of existing deep learning object detection models using the Detectron2 API and Model Zoo'>.
We selected candidate architectures from the Model Zoo, 3 Faster RCNN and 3 Retinanet model architectures,
listed in Table 1. Our dataset is very small for object detection purposes, and we did not fine tune the training
regime or hyperparameters of the models, as optimizing performance is not a goal of this work. We trained
each model to 3,500 epochs, with a learning rate of 1.2e*. Both the No-TIP and With-TIP trained models were
tested on the same non-synthetic test set using the COCO ground truth API (COCO citation)'®.

Table 1. Selected candidate architectures from Model Zoo used for object detection

Model Name Model Family | Model Outputs
R50-FPN-1x Faster RCNN Class, Score, Box
R50-FPN-3x Faster RCNN Class, Score, Box
R101-FPN-3x Faster RCNN Class, Score, Box
RN-R50-1x RetinaNet Class, Score, Box
RN-R50-3x RetinaNet Class, Score, Box

R 101 C4 3x Mask RCNN Class, Score, Box, Mask
R 101 DC5 3x | Mask RCNN Class, Score, Box, Mask
R 101 _FPN 3x | Mask RCNN Class, Score, Box, Mask




3.3 MEP digital twin

We used open-source descriptions of the geometry of a MEP to create a to-scale model of the system in the Unity game
engine. For visualization purposes, we created an x-ray gantry using the Blender open-source modeling tool kit (Figure 1).
The Unity simulation consists of a configurable fan beam emitter and an L-shaped detector, the geometry of which can be
tuned to the specific system being simulated. We modeled the x-ray fan-beam source as a collection of raycasts originating
from a range of heights and at a range of angles dictated by the system being simulated. Each ray is attenuated proportional
to the path length of objects it intersects over its lifetime from emission to detection. The final attenuation of each ray is
then converted to pixel values and written to a raster. In this way, first order approximations of object projection distortion
can be explored by advancing a commodity or conveyance through the simulated gantry and analyzing the resulting
synthetic x-ray image. We used notional angles, distances, and specific geometries in this example, to demonstrate the
capability rather than make the results applicable to a specific platform.

Figure 1. MEP x-ray gantry created in the Unity game engine. The x-axis (red) defined the direction of vehicular travel, the
y-axis (green) dictates the height of objects as they pass through the detector, and the z-axis (blue) governs the distance from
the xray source.

We used the digital twin to simulate scanning commodities at a variety of locations along the y-axis (green arrow in Figure
1) which represents the commodity height, the z-axis (blue arrow in Figure 1) which represents distance from the x-ray
source, and rotation around the x-axis (red arrow in Figure 1). We ran two experiments, the rotation experiment which
held z-axis displacement constant but progressively rotated objects around the x-axis, and the depth experiment which
held rotation constant but varied the location of objects in the z-axis. In both experiments, we arrayed the target object
along the y-axis to determine the interactions between target height on both x-axis rotation and z-axis displacement.

4. RESULTS

4.1 Synthetic data impact on model performance

Model results for the unmodified and synthetic datasets for each target type are shown in Table 2. When compared across
models, there was no statistical difference between the unmodified and synthetic data (alpha = 0.05, target A p = 0.17,
target B p = 0.09). Impact on target type was asymmetric, with the symmetric metallic target (Target A) seeing a small
decrease in detection performance across the board, 0.03 on average, while also increasing model standard deviation from



0.03 without TIP to 0.04. The combination organic metallic target (Target B) saw one model slightly improve with the
others slightly degrading. The difference for Target B was 0.07 on average, with the standard deviation increasing from
0.04 to 0.08. Given the paucity of data we didn’t hold out a non-synthetic threat that greatly differed from its compatriots
to see if the synthetic augmentation improves “surprise” location detections. We expect the slight decrease is due to
improved generalization and leave testing this to future work.

Table 2. mAP comparison of a two-target detection experiment, trained with all in-situ observations (No Synthetic) and then
augmented with an additional 100% synthetic TIP observations per target (Synthetic).

No-TIP With-TIP
Model Target A Target B Target A Target B
R50-FPN-1x 0.77 0.87 0.74 0.68
R50-FPN-3x 0.75 0.90 0.71 0.87
R101-FPN-3x 0.79 0.94 0.77 0.87
RN-R50-1x 0.72 0.90 0.67 0.79
RN-R50-3x 0.76 0.84 0.74 0.86
X101-FPN-3x 0.80 0.95 0.78 0.90

4.2 Domain informed augmentation

Our digital twin simulation experiment produced an array of shadow projections that correspond to differences in TIP
dimensions informed by intended injection location. Figure 2 shows the results of the x-axis rotation experiment, where
the repeated columns vary by rotation in the axis orthogonal to the page. Figure 3 shows the results of the z-axis (blue
arrow in figure 1) location experiment, where each column is arranged a set distance from the detection source.

Rotation Angle (rotating out of the page)
0 15 30 45 60 75

Height in Container

Figure 2. Shadow projections of objects with increasing rotation along the x-axis. All objects are identical, and each row
distributed at equal heights in the synthetic container.



Z-Depth (Distance into the page (units))
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Figure 3. Shadow projections of objects with increasing distance from the detection source along the z-axis. All objects are
identical, and each row distributed at equal heights in the synthetic container.

Using the results from our rotation (Figure 2) and depth (Figure 3) experiments, we described the projected area of the
target objects as a function of distance from the x-ray source, and rotation in the x-axis (Figure 4).
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Figure 4. Projected area of the target objects as a function of rotation in the x-axis (left) and distance from the x-ray source
(right).

The relative change in projected area due to rotation does have an interaction with placement height: as an object rotates
toward the x-ray source, the angle that maximizes the surface area exposed to the beam will vary as a function of height.
This effect is mild however compared to the magnification of the projected area due to depth relative to the x-ray source.

5. CONCLUSION

The growing need for effective synthetic data or TIP solutions is especially salient in high-consequence, low-probability
domains such as large-scale NII. Given the logistical and security challenges associated with data collection and labeling,
the community has been seeking to develop robust capabilities to help bridge the gap. However, while the TIP process is
fairly well understood at this point, generating datasets for large-scale NII is still a complex task, in large part due to the
requirement for isolated scans of targets of interest. In our stream of commerce experimentation, the inclusion of TIP data
was largely non-effective, if not slightly detrimental to object detection performance. However, by exposing the training
process to a larger corpus of target locations and contexts, we believe the detection capability would begin to generalize



more robustly, as seen in previous TIP and SMT studies. Notably, these previous works have access to datasets 2-3 orders
of magnitude larger than our own.

Increasing observations using TIP alone, however, does not ensure that models are being trained on targets in such a way
that the relationship between target geometry and context placement are constrained by the physics of the system of
interest. Our work suggests this relationship can be exploited to learn a function that takes as input a TIP bounding box,
height, and depth, and returns an augmentation can be prescribed prior to target injection. Subsequent TIP images would
better adhere to the physical constraints imposed by the geometry of the system they are designed to mimic.
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