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> 'Background & Motivation m

Behavior of metals under HED ML
conditions is difficult to predict \4 _
= Geophysics, fusion energy science, Molecular-Spin Dynamics
etc.

= Accounting for magnetic degrees of Polycrystal

freedom is important

Ab-initio resolution of magnetic

DOF is ideal ]
= Spatial and temporal restrictions I
Molecular-Spin Dynamics models ¥ Spin orientation (y)
can be trained on DFT data -1 N 1
" Applied to study emergent material femtoseconds angstroms  nano-pseconds nm-ums I
behavior



Molecular-Spin Dynamics

* Molecular Dynamics
- Atoms interact via nonmagnetic interatomic potential, U(R)

- HMD—ZI "‘U(R)

* Spin Dynamics

- Atoms interact via exchange function which conserves total
angular momentum

- Hy=-3N R[5 -5 - 1] - X KR [(si-5)" - 1]

- Additional physics can be easily incorporated

Magnetocrystalline anisotropies, external magnetic fields, longitudinal
fluctutations, etc.

* Molecular-Spin Dynamics

- Hysp = Hi+Hs = Zl +U(R) VR[5 5 - 1] -
bj Kij (R) [(ff 5)" - 1] (Implemented in LAMMPS)



“* "ML Framework for a-Fe

First-Principles Training Set

1) Generate ab-initio dataset for Fe (VASP) oFT Coiations o Spiras
=  Fedata generated for 0 - 1200K and 0 - 13 Gpa 7 8 ‘
. Spin spiral data generated for different degrees of compression
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2) Use genetic algorithm (GA) to parameterize spin Hamiltonian
using spin spiral data

. . & & Spin Hamiltonian
3) Subtract magnetic energies/forces/stress from DFT Fe data and @?:Z-J‘c’ o o Frone
train interatomic potential, U(R), using GA . ]
. U(R) built using spectral neighbor analysis potential (SNAP) » S‘AKOTA
- - 9B;
" Esyap= Po+B - B and PV =g - 2?:1;1 o
% %
. . . . A
4) Evaluate candidate on predetermined set of objective o
functions (OFs) o — _
) ) ) ) ) ) ) Ps éf Spin Lattice Dynamics
- Using candidate SNAP potential and parameterized spin Hamiltonian D% £ fettonan
oy e I
8 ?=}_:I?({m,'-']-)

5) Continue GA until desired OFs accuracy is reached 8



Shock Response of MSD Model

* Trained SNAP-Spin model on high pressure / . 250
L ramp g
temperature data o, 200 .
| | = 150 | compression
* Includes bcc / fcc / hep collinear spin DFT (VASP) data > 00
— Up to 400 GPa and 6500K &
0
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Shock Response of MSD Model @!
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* Longitudinal changes in magnetic vector ¥ ]SSBT o el S o N\ foc
@ 5 —bcc
- Hiandau = Ei(‘qsiz + BS&'4 + Csiﬁ) % N é 15 F —hep
o 24
~ . ® 0
- 8§ — spin vector of atom E | o Aoy A O TR O B4
7 & 2 g
Y P -~
S T Syl +5,]+5; N =
: g 0 - - - -
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- S = = 2 2 .
Sl - ”S” - J(Sx) + (SJ’) + (Sz) Z-position Local pressure, p
. . ‘ . — M,,=3.0
- A(p),B(p), and C(p) are fitted to noncollinear spin data for iron* " “‘_2 5 0.7 7
longitudinal direction e 0.5 '
P — M,=19
- c
S \ M.,=16 o 0.3
~
transverse direction — M, =022 > 0-1
== Mg=30(t) = g4 I
atom - Meg=26(0 LTCj -0.3
== M., =19 (fit) I
e Magnetic moment adjusted on the fly M., =156 (i) 05
—— M= 0.7 : : - -
— Based on local pressure & phase Meq = 0.2 0

1 2 3 4
. . o . . . N . Magnetic moment, M
fGambino, Davide, et al. "Longitudinal spin fluctuations in bcc and liquid Fe at high 9 I

temperature and pressure calculated with a supercell approach." Physical Review B 102.1
(2020): 014402.



Shock Response of MSD Model

* Tested both two methods to generate shocks
— Momentum-mirror

— Uniaxial shrinking of periodic domain

* Response for shocks < 1 kmps
— Below 0.6 kmps no phase transformations detected

— Dual-wave profile observed for shocks above 0.6 kmps
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Shock Response of MSD Model

blue - bcc atoms
red - hcp atoms
green - fcc atoms
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* Hugoniot curves for single crystal in good agreement with € 12 |
previous computational results and experiments § g |
o .
« Temperature / pressures in good agreement with 2 T - ow iR
. s 6 Germann [1 1 1]
experlments 5 5 ~ —Germann [0 1 1]
X X exp.
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Conclusion

lllustrated framework for building a-Fe molecular-spin
dynamics model from ab-initio data

Showed impact of different equilibration methods on
mechanical response of a-Fe

Analyzed phonon/magnon spectra and thermal
conductivity at corresponding temperatures
— Good agreement with experiments

— Able to reproduce acoustic peak shift up to ~700K

Retrained potential for high temperature / pressure data

— Good agreement for elastic properties / transition pressures / ramp I
curve

— Dual-wave profile observed once bcc begins transforming into hcp I
phase



