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Motivations

= Fundamental understanding of pore scale reactive transport has been significantly
improved over the past ~15+ years

= Various studies on hydrodynamics, reactive transport, and coupled processes (e.g.,
chemo-mechanical coupling) are motivated with many subsurface applications
(geologic carbon storage, unconventional resources recovery, nuclear waste
repository, geothermal energy, etc) and multiphysics in porous media (contaminant
transport, fuel cells, flow& transport in varying saturated media, membrane filter
systems, etc.)

= Both experimental and numerical capabilities have been improved with sensing and
experimental apparatus and computational hardware & algorithms

= A few new emerging techniques can be utilized to improve these continuing efforts

= One overarching question is what fundamental knowledge needs to be improved and
how micro- and macro-processes are meaningfully integrated depending on our
scientific and practical interests
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Optical & Laser Scanning Confocal Microscopy

Syringe pump

Inverted optical & confocal
microscope with epifluorescence,
transmitted, and reflected differential
interference contrast (DIC)
microscopy

ZEISS Airyscan 2 detector

Super resolution and fast scanning
time with better SNR

Multiscale resolutions (5x — 50x)
from ~2.5um to 0.1 um resolution
horizontally and up to 0.35 um
resolution over depth

Zeiss LSM900 Microfluidic device

Zhang et al. (EST, 2010), Yoon et al. (WRR, 2012), Fanizza et al. (WRR, 2013), Boyd
et al. (GCA, 2014), Singh et al. (EST, 2015), Yoon et al. (RiIMG, 2016, EST 2019)



Experimental setup

* Pore scale experiments of (transversely mixing induced) reactive
transport and precipitation & dissolution in a microfluidic pore-network |
Experimental setup :
Na,CO;,
pH=11
CaCl,,
pH=6

Syringe pump/
ISCO pump

Microscopic image of
calcium carbonate
(CaCO,) precipitates

250 microns ]

= Microscopic images are taken over time
Zhang et al. (ES&T, 2010)

i

I

= Two solutions are mixing along the centerline and CaCO, precipitates ‘
Yoon et al. (ES&T 2019) I



‘ Pore scale modeling with precipitation and dissolution
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horizontal velocity (cm/min)

- Navier-Stokes equation => Stokes equation with

: . : . constant viscosity (independent of the species
Step 1: Velocity field () at pore scale N "~ conc.) and at low Reynolds Re= plul/ / p«1
Lattice Boltzmann Method - :
( ) - - Vp=uwW'u+F
Step 2: Reactive transport at pore scale S N
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Neg hemical libri - bulk fluid . ) Yoon et al. (RIMG,
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T Extended Debye-Hiickel Equation for activity coefficients

Y, I Charge balance equation is not considered.
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‘ Reaction over time in a Microfluidic porous medium
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Experimental Results

COy*(pH=~11) [Ca2*];=[CO,>] +=25 mM at ~2 hrs

Precipitation ~ along the centerline within 1-2 pore spaces in the transverse direction

Width of the precipitate line ~ increase with distance from the inlet
Rate of precipitation is concentration and species dependent

Zhang et al., ES&T (2010)



Transversely mixing induced reaction in a microfluidic
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" How is the reactive transport different from a batch system?
= Experimental observations:
v' CaCO, reaction products were only observed at a minimum concentration of
~6.5mM (a total concentration of Ca?* and CO,%)

v Nanoparticles were optically observed, indicating amorphous calcium carbonate

(ACC) formation
v Maintaining central precipitation lines was very difficult
= Simple calculation for saturation ratio (SR): [Ca?];,,=[CO;% )1y =6.5 mM

Saturation Ratio
Reaction gradient IAP (ion activity product) K, (Calcite) K (ACC)

_ (’AP _1> mixing effect  activity  3.31E-09  5.58E-07

Ksp
SR = IAP/ K|,
IAP i Ucazl H'EUI | 3.83E-07 --

dco, at pH of inlet
solution (pH=11)

4co; at the mixing
line (pH=9)



‘ Transversely mixing induced reaction in a microfluidic
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ACC: Homogeneous Crystals: Heterogeneous
Ca?* reaction product reaction product No ACC

30 min 75 min

CaCO; crystals

= Experimental observations:

v Nanoparticles were optically observed, indicating amorphous calcium carbonate
(ACC) formation. =¥ Initial ACC created CaCO, particles on microfluidic surfaces,
creating favorable heterogeneous surface for CaCO, precipitation. Less structured
particles become stable by transforming into more stable polymorphs



Simulated pH Distribution

Time = 42 min
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CO,% 1 !
(pH=~11) N3/
—-
Ca2* /f" NN
(PH= ,

K, (Calcite) K (ACC)
3.31E-09 5.58E-07

aco; at pH of inlet
solution (pH=11)

Pore .sznmanauaumang1
Space Volumetric CaCO; content

dco; at the mixing
line (pH=9)

= Experimental observations:
v' CaCO, reaction products were only observed at a minimum concentration of
~6.5mM: IAP of Ca** and CO;* needs to exceed K, of calcium carbonate (ACC) on

non-favorable reaction surface (SiO,) of the microfluidics
Yoon et al. (WRR, 2012)



Simulation results — Increasing reaction rate during

dissolution by 300 (Case 5)
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) Instability of CaCO; precipitates

Amorphous Calcium Carbonate

& Vaterite Predominantly Vaterite

* The less stable precipitates became detached/dissolved, requiring high dissolution
rate during dissolution phase (i.e., pore blocking phase)

= Experimental observations:
v'"Maintaining central precipitation lines was very difficult = sometimes
precipitates in one pore body lost the integrity of precipitates’ block, resulting in
rapid dissolution and diverting flow and transport pathways (wider precipitation)



. ‘ Impact of solution chemistry (Ca only vs. Ca+Mg)
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" Image segmentation for identifying
pixels of precipitates, reactive surface

Image process for quantitative analysis

area, and reaction rates

Precipitation

Dissolution

2D image
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Yoon et al. (ES&T, 2019)



Impact of precipitation on flow patterns and reaction kinetics
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‘ Validation of pore scale
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transport experiments in microfluidics

modeling with tracer experiments
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and numerical simulations
Oostrom et al. (Comput Geosci, 2016)
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| ‘ Impact of reaction kinetics (Uranyl phosphate ppt)

(a) UP (b) UCaP (c) UPS

Uranyl Hydrogen Phosphate Uranyl Hydrogen Phosphate Uranyl Hydrogen Phosphate

xn Saturation
= = i“” Ratio
Jr— J — iy

Chernikovite Chernikovite Chernikovite
1 .
__ Saturation
- . Ratio
Uranyl Orthophosphate Uranyl Orthophosphate Uranyl Orthophosphate K

Saturation
Ratio

= Experimentally Chernikovite was observed first aIthough other solid phases have
much higher saturation ratio values
= Due to reaction kinetic effect, Uranyl hydrogen phosphate (i.e., chernikovite) is

preC|p|tated first Fanizza, Yoon et al. (WRR, 2012)




Adaptation of Delftia acidovorans for
degradation of 2,4-dichlorophenoxy-
acetate

Bacteria adaptation experiments in
flowing conditions (~ 1 year period)

Yoon et al. (Biodeg., 2014)

‘ Reactive Transport: Biochemical reactions
22

CaCO3 biomineralization with
denitrification (Pseudomonas stutzeri)
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Singh, Yoon et al. (ES&T, 2015)




Pore-scale modeling for engineered systems
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» Mixing-induced chemical reactions can alter fluid properties (e.g., viscosity and
density), altering mixing efficiency and/or shear rate for engineered solutions

1 Product conc. Viscosity
=1 BB =
B e R T e s
‘J.-
Reaclantd.l
BatCS:‘)_J

0 0.5 1.0 1.5 0

| (Davison, Yoon & Martinez, 2012) &

ARIA (Sandia CFD code) simulates the reactive Navier-Stokes equations,
leading to estimates of mesoscale reaction-dependent dispersion coefficients

« Computationally powerful pore-scale model coupled with experimental results
improves design and optimal delivery of engineered solutions (e.g., emulsion-
stabilizing nanoparticles) under a variety of pore-geometry conditions

Davison et al. (AWR, 2012)



‘ Microfluidic fabrication and Multiphase flow experiments
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Park et al. (E&F, 2021)



2 ‘ 3D printing-aided fluidic device

3D printed fluidic unit with real minerals Calcite chip (clean vs. rough surfaces) surface roughness

Testing bed of precipitation/dissolution of calcium carbonate in real-rock mock-up
= Real-time imaging of change of CaCO; morphology with precipitation/dissolution
= Measurement of effluent concentrations with known surface geometry and
media structure



Summary

Microfluidic study enabled us to improve fundamental understanding of physico-chemical
processes of CaCO; precipitation and dissolution

Detailed investigation of reaction processes can be utilized to derive quantitative results
of reactive transport processes

Integration of experimental, numerical, and detailed data analysis will lead us to apply the
reactive transport in microfluidic for many other problems

An adaptive strategy to couple pore- and continuum scale using machine/deep learning
methods will be tested against cement precipitation patterns



