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Bayesian optimization (animation)

Gaussian Process and Utility Function After 2 Steps

— Target
207 +  Observations
- Prediction
5% confidence interval
g
=
054
_10-
2 [ 2 ) & g R
x
5] — Utility Function
#  Next Best Guess
f
E,
El
=2
1
"2 i) 2 i 5 i)
x

Figure 1. Bayesian optimization - Iteration 1
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Gaussian Process and Utility Function After 3 Steps
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Figure 2: Bayesian optimization - Iteration 2




Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 4 Steps
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Figure 3: Bayesian optimization - lteration 3




Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 5 Steps
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Figure 4. Bayesian optimization - Iteration 4




Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 6 Steps
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Figure 5: Bayesian optimization - lteration 5
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Gaussian Process and Utility Function After 7 Steps
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Figure 6: Bayesian optimization - lteration 6




Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 8 Steps
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Figure 7: Bayesian optimization - Iteration 7




Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 9 Steps
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Figure 8: Bayesian optimization - lteration 8
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Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 10 Steps
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Figure 9: Bayesian optimization - lteration 9
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Bayesian optimization (animation)

Gaussian Process and Utility Function After 11 Steps

Figure 10: Bayesian optimization - lter
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Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 12 Steps
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Figure 11: Bayesian optimization - lteration 11
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Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 13 Steps
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Figure 12: Bayesian optimization - lteration 12
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Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 14 Steps
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Figure 13: Bayesian optimization - Iteration 13
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Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 15 Steps
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Figure 14: Bayesian optimization - lteration 14
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Bayesian optimization (animation) G}

Gaussian Process and Utility Function After 16 Steps
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Figure 15: Bayesian optimization - Iteration 15
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Advantages/Disadvantages [ .

Bayesian optimization in a nutshell

Bayesian optimization = Gaussian process + sampling strategy

Advantages:
m optimize with uncertainty consideration (e.g. noisy observations)
m active machine learning (balance exploration-exploitation)
m derivative free (avoid computing Jacobian)
]

global optimization (convergence in probability to global optimum)
1
m good convergence rate (provably asymptotic regret, O (nfﬁ))

Disadvantages:
m high-dimensionality
m scalability: computational bottleneck O(n3) when n > O(103)

18




Bayesian optimization features
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very versatile (open for methodological extensions)

acquisition functions: Pl, EI, UCB, Thompson sampling, entropy-based, KG, or combination among these
constrained on objectives (known -+ unknown constraints) v’
multi-objective(Pareto frontier/optimal, domination) v

multi-output v

multi-fidelity v*

batch parallelization v'— asynchronous parallel v

stochastic, heteroscedastic X

time-series (forecasting, e.g. causal kernel) X

mixed-integer (discrete/categorical + continuous) v

scalable v

latent variable model X

gradient-enhanced v/

high-dimensional (with low effective dimensionality) v*
physics-constrained: monotonic, discontinuous, symmetric, bounded X
outlier: student-t distribution X

non-stationary kernels X

19




Classical GP: Fundamentals

Let D, = {x;,yi}!_; denote the set of observations and x denote
an arbitrary test points

1in(%) = po(x) + k(x) " (K + 0°I) "' (y — m) (1)
72(x) = k(%) — k(x)T (K + 0°T) k(x) ©)

where k(x) is a vector of covariance terms between x and x..

20




Classical GP: Fundamentals @ .

Formulation:
m assuming stationary — only depends on r = ||x — x'||

m the covariance matrix: symmetric positive-semidefinite matrix made up of
pairwise inner products

Kjj = k(xi,xj) = k(xj,x;) = K;; (3)

m kernel choice: assuming unknown function is smooth to some degree
Implementation:

m maximum log (marginal) likelihood estimation (MLE) to estimate the
hyper-parameter § € R?

m MLE involves K= — O(n3)

m size of K € R"X" increases as the optimization process advances

Ingredients: some data, GP kernel, acquisition function

21




Classical GP: Fundamentals @ .

Matérn kernels:
1—v

K = k(xi, xj) = 63%(@0“/@(@0, (@)

K, is a modified Bessel fuction of the second kind and order v.
Common kernels:

B v =1/2: kyatem1 (X, X') = 03 exp (—r) (also known as exponential kernel),
m v =3/2: kpmatérn3 (X, x,) = 93 exp (—\/gr)(l + \/gr)
5/2 : kMaterns (X, xX7) = 0(2] exp (—V/5r) (1 +V5r + %r2),

" v

2
B v — 00 : ksgexp (X, x’) = 9% exp (7%) (also known as square exponential or automatic relevance
determination kernel)

Log-likelihood function:

n 1 0, 2 1 Tib o 21y —1
logp(ylxiin, 0) = —  “log(2m)  — —log|K" + 071 — —(y —mp) (K" + 077" (y —mo)
data likelihood | as nT “complexity” term “data-fit" term
smoother covariance matrix how well model fits data
©)

22




Classical GP: A Bayesian perspective )

Mostly follow Quifionero-Candela and Hansen 2004; Quifionero-Candela and
Rasmussen 2005.
Denote training f, testing f., the joint GP prior is

o=y (] [k x]) ©

By Bayes' rule

p(f«ly) S 1p(ﬂ f.|y)df

= iy S PGID p(E £ df

= Nm+K, ¢(Kge+ 0?17y —m),Ki » — K, ¢[Ke+ 0?17 K¢ ),
@)

Log of marginal likelihood function:

log [ p(y|f)p(f1X)df
= —Zlog(2m) — 3 log[Ker+ 0?1 — 5 (y —m) " (Kir + 021~ (y — m).
(8)

log p(yX)

23




Classical GP: A Bayesian perspective

A conditional of a Gaussian is also Gaussian.

X7
Tz

-1 0 1

Figure 16: Photo courtesy of from Lawrence 2016.

(2] & 9)

P(xly) = N(ux + CB™(y — py), A= CB~'CT) (10)

then

(cf. App. A, Quifionero-Candela and Rasmussen 2005).
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Acquisition function: How to pick the next point(s) ULR

m dictates how to pick the next point: exploitation (focus on the
promising region) or exploration (focus on the
uncertain/unknown region)

m different flavors:

1. probability of improvement (PI) Mockus 1982

api(x; {x7, yi}io1,0) = @(v(x)), (11)

where N
,y(x) — IU/(Xa {Xfa_.yi}i:17 Z - (Xbest>7 (12)
U(Xa {Xh)/i}i:he)
2. expected improvement (EI) scheme Mockus 1975; Huang et al.
2006

aei (% {xi, yi}iz1, 0) = o(x; {xi, yi}ity, 0)- (v (%) 2 (7(x))+ 0 (7(x))
(13)

25




Acquisition function: How to pick next point(s) ) .

m dictates how to pick the next point: exploitation (focus on the
promising region) or exploration (focus on the
uncertain/unknown region)

m different flavors:

3. upper confidence bound (UCB) schemeSrinivas et al. 2009;
Srinivas et al. 2012

aucs (x5 {xi, yitiz1,0) = p(x; {xi, yitio, 0)+ro (x5 {xi, yi}i1, 0),
(14)
where k is a hyper-parameter describing the
exploitation-exploration balance.
4. pure exploration™:
m maximal MSE ¢°(x) < maximal entropy 1 log [2o” (x)] +
m maximal IMSE [, o®(x)

=

26




QRAK taxonomy for constrained optimization problem® ==

simulation-based optimization

"classical” optimization
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Figure 17: Photo courtesy of Digabel and Wild 2015. Tree-based view of the QRAK
taxonomy of constraints. Constraints that are either not known beforehand or have to

assessed through simulations are called unknown.
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Constrained problems: known constraints

Problem statement
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optimize f(x) subject to A(x) < ¢, A(-) computationally cheap

known constraints:

known before evaluation
typically physics-based
formulated as inequality constraints A(x) < ¢, A is computationally cheap

directly penalize the acquisition function a = 0 when constraints are violated,

ie. A(x) Lec

aggﬁﬁlined (x) = a(x) lknown (x) (15)
where lnown (X) is the indicator function
1, AMx)<c
I = - 16
known (X) {07 )\(X) z c ( )

can be conveniently ignored to become unknown constraints if the model is
aware of the constraints violation, i.e. returns error 28




Constrained problems: unknown constraints

Problem statement
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optimize f(x) where f(x) may or may not exist

unknown constraints:

can convert known — unknown but not vice versa

form a probabilistic binary classifier to predict the probability mass function of
passing unknown constraint at x, i.e. kNN, AdaBoost, RandomForest, GP, etc.
penalize the acquisition function based on the predicted feasibility from GP
classifier

unknown a(x), with PI‘(le(X) = 1)

2eonstrained (X) = {0, with Pr(clf(x) = 0)

(17)

our approach:

m use another GP to learn when f(x) does not exist
m optimize the conditioned acquisition function
E[alnrained (X)] = a(x)Prunknown (clf(x) = 1)
29




Batch parallel on HPC

Arguments:

m focus on multi-core HPC
architecture and expensive,
high-fidelity simulations

m Amdahl’s law: diminishing returns,
i.e. rewards for parallelizing solvers
diminish as # of processors increase

m motivation: can we search for the
optimal point in faster wall-clock
time, assuming HPC power is
sufficient and/or abundant?

m obviously beneficial when computing

resource is sufficient
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Figure 18: Amdahl’s law for parallelization.
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Batch parallel on HPC

Might as well be beneficial when
computing resource is
insufficient; examples:

P = 0.95 — SpeedUp = 20 times

CFD simulation takes 3 hours to
finish with 256 procs — 20 cases/60
hours

or 60 hours (2.5 days) with 1 proc
for 1 case — 256 cases/60 hours

fixed computational budget: 256
x60 CPU hours

question: in the period of 2.5 days,
are we better off with 20 sequential
runs, or with 256 batch-parallel runs?
what about 5 days (40 vs. 512)? 10
days (80 vs. 1024)? asymptotically?

Sandia
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Figure 19: Amdahl’s law for parallelization.
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Batch parallel on HPC @&z

Strategies to design batches:
m hallucination (GP-BUCB Desautels, Krause, and Burdick 2014): cast

Hpredicted = Hactuals Opredicted = 0 during one iteration
B 1 batches: all acquisition, zero exploration, UCB acquisition function

m pure exploration (GP-UCB-PE Contal et al. 2013)

B 2 batches: 1 acquisition, the rest exploration, UCB acquisition function

m couple with unknown constraints: pBO-2GP-3B: 2 GPs, 3 batches:
hallucination, exploration for GP1 (main), exploration for GP2 (classifier)

m 3 batches: some acquisition, some exploration (GP1), and some more
exploration (GP2);

| all types of acquisition functions, dynamic batch settings are easily
extended

B order to construct the batch matters

m others: GP-KG Scott, Frazier, and Powell 2011; Wu and Frazier 2016, GP-SM
Azimi, Fern, and Fern 2010, GP-DPP Kathuria, Deshpande, and Kohli 2016,
GP-PPES Shah and Ghahramani 2015, GP-LP Gonzélez et al. 2016, g-El
Marmin, Chevalier, and Ginsbourger 2016 Chevalier and Ginsbourger 2013,

GP-Hedge Hoffman, Brochu, and Freitas 2011
32




Asynchronous parallel

A cartoonist’s perspective
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Figure 20: Synchronous (left) vs. asynchronous (right). Batch size = 3.
Photo courtesy of Kandasamy et al Kandasamy et al. 2017.
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Asynchronous parallel

and a computer scientist’'s perspective

Dashboard: worker schedule
- busy - idle

o
2
2

10000 15000 20000 25000 30000 35000
Time (seconds)

Figure 21: Batch-sequential parallel
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Dashboard: worker schedule
= busy - dle

-

«

0 2500 5000 7500 10000 12500 15000 17500
Time (seconds)

Figure 22: Asynchronous parallel
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Multi-fidelity D
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Figure 23: 1D approximation function from Forrester et al. Forrester,
Sébester, and Keane 2007, Han et al Solnik et al. 2017.

35




Multi-fidelity D

Kennedy and O'Hagan Kennedy and O'Hagan 2000:
auto-regressive model based on a first-order auto-regressive
relation between model output of different levels of fidelity.

m s-levels of variable-fidelity model y;(x)3_;
m yi(x): cheapest, ys(x): most expensive
m auto-regressive model:

ye(X) = pr-1yr-1(x) + 6:(x) (18)
m Markov property: assuming that given y;_1(x), we can learn

nothing about y;(x) from any other model output y;_;(x’),
for x # x’

Covlye(x), ye—1(X)|ye-1(x)] = 0, Vx #x' (19)
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Multi-fidelity (]="

m model the lowest fidelity y; as a classical GP
m model the discrepancies d;'s as GPs
m for two levels of fidelity: M. = cheap, B, = expensive
m covariance vector and covariance matrix
k(x) = (po2ke(x)  po?ke(x, X)), (20)
K = O'EKC pU?Kc(X67Xe) (21)
PUgKC(Xm Xc) PQUEKC(Xea Xe) + UgKE(Xe» Xe)

m low-fidelity MLE for 6.; high-fidelity MLE for 6. and p

n 1 1
10g p(ye[%nc, 0c) = =7 log (2m)— log K% + Ufllfg(yfmeC)T(Kc9“+U2I)’1(yfmec)
(22)
n 1 1
10g p(e[Xn,, 0e) = — 7 log (2m)— log K% + Ufllfg(yfmee)T(Kee%UQI)’l(yfmoe)
(23)
37




Multi-fidelity ()

ys(x) = 351 peye(x) +0(%) & 0(%) = ye(%) = 351 peye(®)
Covariance matrix for s levels of fidelity Xiao et al. 2018

02K, 0 p102K1 (X1, Xe)
0 o3Ko e p205K2 (X2, Xe)
K= ) . )
p103K1(Xe,X1)  p203Ka(Xe, X2) i1 707K (Xe, Xe) + 03Ke(Xe, Xe)

(24)
MLE hyper-parameters optimization of p; happens at the highest
level of fidelity s, after all lower-fidelity hyper-parameters {6, i;%
have been estimated.
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Multi-fidelity ®

Variations in formulation:

m auto-regressive (Kennedy and O'Hagan Kennedy and
O’Hagan 2000) vs. recursive with nested structure (Le Gratiet
& Garnier Le Gratiet and Garnier 2014, Peridakis &
Karniadakis Perdikaris et al. 2015; Perdikaris and Karniadakis
2016): O (3 ne)?) vs. > O ((ne)?) by decomposing the
covariance matrix

m nested (Le Gratiet & Garnier Le Gratiet and Garnier 2014,
Peridakis & Karniadakis Perdikaris et al. 2015; Perdikaris and
Karniadakis 2016) vs. non-nested (Couckuyt et al. Couckuyt
et al. 2012; Couckuyt, Dhaene, and Demeester 2013;
Couckuyt, Dhaene, and Demeester 2014, Xiao et al. Xiao
et al. 2018)
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Selection of level of fidelity .

Question: Fix a sampling location x*, what level of fidelity should
be selected to query?
Compare computational cost vs. benefit:

m 1 <t<s: level of fidelity

m if x* is queried, how much uncertainty is reduced?
m at what cost?
[

balance computational cost vs. gain (reduction of uncertainty)

t* = argmin (Ct /X 02(x)dx) , (25)

t

promote high-fidelity if the cost is similar: If
Ce-| D) > C,|D)| then choose s.

40




Multi-objective

Let:
mx={x}9, € X CRI be input in d-dimensional space,
m y = {yj};_; as s outputs.
argmax(fi(x), -, fs(x)) (26)
xeX
subjected to ¢(x) < 0.

2




Multi-objective [ i

Pareto definition:

m X is said to dominate x5, denoted as x; =< Xo, if and only if
V1 < j <'s, such that y;j(x1) < yj(x2), and 31 < j < s, such that
yj(x1) < yj(x2).

B X is said to strictly dominate x5, denoted as x; < X, if and only if
V1 < j <s, such that y;(x1) < yj(x2).

Scalarization: multi-objective — single-objective

1. weighted Tchebycheff y = max;<j<s w;i(yi(x) — z/),

2. weighted sum y = >°7_ | wiyi(x),

3. augmented Tchebycheff
y = maxi<i<s Wi(yi(x) — z7) + p 2272, wiyi(x),

where z7 denotes the ideal value for the i-th objective, the weights

0<w <1, Y7 w=1, pis a positive constant (p = 0.05).
4




Multi-objective

Acquisition function:

a(x) =  aobj(X) -  aPareto(x) - Pr(x[c(x)=1) - Z(x)
— N—_—— N——— —~—
objective GP  uncertain Pareto  unknown constraints  known constraints
(27)

B aopj(x): objective GP fitted through augmented Tchebycheff
with random weights

B apareto(X): Pareto GP classifier (Pareto/non-Pareto)
m Pr(x|c(x) = 1): constrained classifier (feasible/infeasible)
m Z(x): indicator function if ¢(x) < 0

43




Multi-objective
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Hypervolume approach:

hypervolume indicator, aka S-metric

strictly monotonic

complexity O(nlog n + n9/?1og n)

d = 3: lower and upper bounds O(nlog n) Beume et al. 2009
and any other sorts of approximation ...

arguably more sample-efficient compared to Tchebycheff
decomposition

44




Sparse GP
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Low-rank approximationtfor K¢

Low-rank approximation K ~ K= K"XmK;}(mexn (cf. Section 8.1 Rasmussen

2006) and scales as O(nm? + m?) instead of O(n?).
For n>> m, this method scales as O(nm?).

Following Quifionero-Candela and Rasmussen 2005; Quifionero-Candela, Rasmussen,
and Williams 2007, Chalupka, Williams, and Murray 2013, Vanhatalo et al. 2012;
Vanhatalo et al. 2013.

Cost complexity:

m local GP: O(m?)

m sparse GP: O(nm?)

m classical GP (Cholesky decomposition): O (%n?’)
m classical GP (LU decomposition): O (%nd)

(
m classical GP (QR decomposition): O (%n?’)

45
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Sparse GP ) .

m p(-): true pdf
m q(-): approximate pdf
Assume the fully independent training conditional (FITC) Quifionero-Candela and

Rasmussen 2005; Quifionero-Candela, Rasmussen, and Williams 2007, augment the
joint model p(fs,f) as

p(e..0) = [ bt fwdu= [ p(t.,fu)p()du (28)
w: inducing variables at m locations Xy. The training and testing conditionals are
p(flu) = N(m + K¢ Ky ) (u—m), Kep— Qgy), (29)
and
p(E.w) = N (m + Ko uKyh (u = m), Koo — Qu), (30)
where
Qa,b = Ka,uK;&Ku,lr (31)

The likelihood and inducing priors remain the same, i.e. p(y|f) = N(f, 21), and

P(U) ZN(% u). 46
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Sparse GP e
FITC training prior based on the inducing priors is modified as
n
q(flu) = [ [ p(filu) = N'(m + K¢ oK, 5 (1 — m), Diag[Kgs — Qg) (32)
i=1
and keeping the testing prior the same
q(felu) = p(fiju) = N(m + Ko uKy g (0 — m), K = Qu), (33)

the effective prior under the FITC assumption is

_ m| [Qge— Diag[Qee — Keg] Q.
)=~ ([ [BO0ER S ) e

which implies the testing distribution as

q(fcly) = Nm+Q.¢(Qee+A) 1y —m),Kix —Qu¢(Qer+A)"1Qg.)
= N@m+KuIKy A7 (y —m), K x — Qun + K uZKu +) ’
(35)

where ¥ = [Ky,u + Ku7fA_1Kf,u]_1 and A = Diag[Kgs — Qg + a?1]. 47




Sparse GP )

The marginal likelihood conditioned on the inducing inputs is therefore
at1%) = [ [ pvinawp(uiXadudt = [ priDatxadt  (30)
which implies the log marginal likelihood as
n 1 1 T 1
log (y[Xu) = — 7 log(2m) — S log |Qre + Al = S (y —m) ' [Qee + A]7 (v —m), (37)

where A = Diag[Kgs — Qg + o1
Cost complexity: O(nm?) Williams and Seeger 2001; Li, Kwok, and Lii 2010. (Note:
do not multiply matrices directly — cf. Section 14.3 Martinsson and Tropp 2020).
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Variational inference: a hand-waving argument .

Follows Frigola, Chen, and Rasmussen 2014 and Rasmussen’s corresponding slides. By

Bayes’ rule,
p(ylf)p(£16) P(yIf)p(fl0)

p(fly,0) = ————= < p(y|0) = 38
e =) )
The idea: approximate the (computationally intractable) p(fly, ) by a
(computationally tractable) parameterized variational q(f). For any q(f),
p(¥If)p(f10) a(f) p(¥IH)p(f10) q(f)
p(y10) = ——— = —2= < log p(y|0) = log + log - (39)
p(fly, 0) a() q(f) p(fly, 0)

Apply [ q(f)df to both sides

log p(yl0) = / q(f) log %du / q(f) log ﬂ(f)e)df (40)

Evidence Lower BOund KL(q(f)|Ip(fly,0))

marginal likelihood

Turn our attention to maximizing the variational ELBO (or equivalently minimizing

the KL divergence) instead of maximizing the log marginal likelihood.
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High-dimensional: Gaussian random projection
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Mostly follow Wang et al. 2013; Wang et al. 2016. Main idea:

m choose (wisely) and optimize over Z C R

m embed and project onto high-dimensional space as x < py(Az)

m A € RPX9: tall-and-skinny random matrix with standard normal element

X
N
g <
Unimportant ~ X.

Figure 24: Photo courtesy of Wang et
al Wang et al. 2016. Optimizing a 2d
function (with 1d active subspace) via

random embedding.

REMBO algorithm Wang et al. 2016 with
deviation from BO highlighted.

1: generate a random matrix
A e RPXd ;2 ~ N(0,1)

2: choose the bounded region set Z C R
3: Dy +— @
4: fori=1,2,--- do
5: locate next sampling point
2i41 < argmax,. z a(z) € RY
6: query
Dit1 + DiU{zit1, f(px(Azit1))}
7: update GP
8: end for
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High-dimensional: Gaussian random projection?

1 d cols 1

1
z € R?
—

x e RP
Il
D rows

Figure 25: A random embedding or a
random projection x = Az is built as a
corollary from the Johnson-Lindenstrauss
lemma, where A is a random normal

matrix.
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Theorem (Johnson-Lindenstrauss

lemma (cf. Lemma 15 Mahoney 2016))
Given n points {x;}7_,, each of which is in
RP, A ~ MNpyq(0,1,1), and let z € R?
defined asz = AT x. Then, ifd > loetn

A8

for some e € (0, %), then with probability
at least %, all pairwise distances are
preserved, i.e. for all i,j, we have

2 2 2
I=e)llxi—x; I3 < [lz —zll5 < (1+E)“xi_xj( ”2)
41

Compared to active subspace method: also
linear and does not require gradient and
the rotation matrix W .

There are alternative approaches, e.g.
additive GP.

51
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Mixed-integer

Main idea: (1) decompose to a set of
continuous and discrete variables

x = (X4,Xc), (2) enumerate clusters, then
(3) combine using linear weighted average

decompose a large dataset into
smaller clusters

build a GP for each cluster

each cluster corresponds to a unique
tuple of discrete variables

formulate a Gaussian mixture
prediction: weighted average (weight
tuned adaptively by statistical
metrics, e.g. Wasserstein distance,
Manhattan distance)

applicable when |xc| > |x4/, i.e. not
combinatorial optimization problems

Sandia
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! 2
|(1,1)‘ !|(1,2)
. distance = 1
—_—— J neighborhood
: 4 5| -
e 23) || Manhatian distance = 0
. ..--»  neighborhood
|: o o = e | (self-only neighborhood)
anl ey i
e At : . distance =2
| m m =11 — ¥ neighborhood
i | 1) 42) 43)

Figure 26: Neighborhood B(£) of a
local GP £ with x4 = (3, 2).
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Mixed-integer (=W

Gaussian mixture model predictions for posterior mean and

variance:
= Wg*(g@*) + a® ) ) (42)
. v
*€B(L) bias correction term
E[g]=p)
- 3 i (43)

m B(¢) is the neighborhood, defined by thresholding a similarity measure of
discrete tuples

m weighted average estimation, weights depends on (1) cluster distances, (2)
original cluster predictions

m theoretical bounds for weighted average prediction

m asymptotic behavior when n — oo
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Mixed-integer (=W

A special case: Wasserstein distance (Earth mover's distance). Assume the query
point x = (X4, Xc), where x4 corresponds to ¢-th cluster.

. —1
Wps X [0,2 + Wo (N(y(e ),U?Z*)),N(y(e),oa)))] . (44)

Wy (N5, 02 N 19,07 = [0y oy~ Jos [ )

Weighted prediction

The largest weight is associated with the ¢-th cluster.

Asymptotic analysis n — oo

limp—y 0o Wy — 00, as o7 — 0 and WQ('/7 '/) =0.

Interpretation: If data is abundant, then the proposed approach converge
asymptotically to a single local GP prediction.
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Mixed-integer ) .

Simple bounds
The predicted mean fi = 3 u ¢ 3(¢) We- ([ﬂ*) + a0 — n“*)) is bounded by

min (20 + 5® - g“7) < < max () + 5@ — 7)) (46)

The predicted variance 62 = El*eB(z) Wez* 0(22*) is bounded by

2
<Z W[2* U(@*)> <2< nﬁ,x 0(24*) (47)
o
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Gaussian process / Bayesian optimization

Multi-scale engineering applications
Numerical functions (analytical)
Flip-chip BGA package design (FEM)
Heart valve optimization (FEM)
Metamaterials (FEM)
Pump design optimization (CFD)
AM process-structure modeling (kinetic Monte Carlo)
Random ternary alloy composition design (DFT +
MD/ML-IAP)
Infer microstructure distribution (CPFEM)

Conclusion

References
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2d three-hump camel

(parallel blind constraints)

(joint work w/ Yan Wang)

h

Y ic functi ible thre

p camel function

Figure 27: 2d three-hump camel.

@
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2

PBO- ZGPiB (4,4,4): Acquisition function: Iter 5

= sampling points|
% B
+B

B

acquisition

explore

exploreClassif

Figure 28: Batch sampling location at

iteration 5.
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2d three-hump camel @

(parallel blind constraints)

(joint work w/ Yan Wang)

Comparison of different BO algorithms: Three-hump camel

Syntl;ctic function: Infeasible three-hump camel function g H —— EI-LSSVM
1s|[1L] —— EI-SVM
9 H —— El-AdaBoost
. o 1solll] —~— El-RandomForest
3 il —— EIKNN
S Cias -+= UCB-LSSVM
c ~+- UCB-SVM
. 2100 UCB-AdaBoost
- 2 J UCB-RandomForest
El s 2075 I UCB-KNN
o < } RandomSampling
4 o5 -4 - pBO-2GP-3B
HipT: {
3 0.25 FH-{ -t
2 2N ' )
0.00 10 20 30 40
1 Iterations
o N . - B
05 005 ; Figure 30: Convergence comparison with different

X, axis

classifiers.
Figure 29: 2d three-hump camel.
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2d Rastrigin @ .

(parallel blind constraints)

(joint work w/ Yan Wang)

Comparison of different BO algorithms: 2D Rastrigin
—— ELSSVM

—— EI-SVM

—— El-AdaBoost

~+— EI-RandomForest

—— ERKNN

=-=<- UCB-LSSVM

-+~ UCB-SVM

~-=<- UCB-AdaBoost

<~ UCB-RandomForest

-+= UCB-KNN
| ~<~ RandomSampling
|

Synthetic function: Unknown constrained 2D Rastrigin function

X, axis

Min function value

===_pBO-2GP-3B

0 80 100 120 140
Iterations

0 = Figure 32: Convergence comparison with different

classifiers.
Figure 31: 2d three-hump camel.
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6d Rastrigin

(parallel blind constraints)

(joint work w/ Yan Wang)

gi(x) = [x—2.56v,]2 > 5,
fori=1,---,6,v; =
[-1,---,1---,—-1]isa
vector where i-index
element is 1, and other
elements are —1.
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Comparison of different BO algorithms: 6D Rastrigin

160 =

140 .

Min function value

20 40 60

80 100
Iterations

El-LSSVM

EI-SVM
El-AdaBoost
El-RandomForest
EI-kNN
UCB-LSSVM

- UCB-SVM

UCB-AdaBoost
UCB-RandomForest
UCB-kNN

<~ RandomSampling

pBO-2GP-3B

|

120 140

Figure 33: Convergence comparison with different

classifiers.

59




Welded-beam design optimization @

(2d+4d) (mixed-integer)

(joint work w/ Yan Wang)

Welded beam design problem

& M o steel
=150 x castiron
l L S A aluminum
A +F g . - LA
- Swo| oL N
: g L .
: t o
1 2
2
g
3
g
o
Figure 34: Welded-beam 0 20 4 60 8 100 120 140
Number of functional evaluations
design

Figure 35: Convergence plot of welded
beam design.
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Speed reducer design optimization .

(1d+6d) (mixed-integer)

(joint work w/ Yan Wang)

!

Speed reducer design problem

--- mixed-integer BO (2 init samp)
93500 --=- mixed-integer BO (5 init samp)
5 --+- mixed-integer BO (10 init samp)
g 3600 mixed-integer BO (20 init samp)
é 13 —— genetic algorithm: (50,3)
5 I —— genetic algorithm: (150,10)
G340l genetic algorithm: (1500,10)
E i
Ezzoo by
5 -
°© 3000 { \—

)\iﬁ\f/ 1000

0 400 600 800
Number of functional evaluations

Figure 36: Speed reducer Figure 37: Comparison against GA.
design

61




High-dimensional discrete sphere function .

(5d+50d) (mixed-integer)

(joint work w/ Yan Wang)

f(x(@) x()) =

f(X1,  Xn, Xnt1, -y Xm) =
Ty bl (S %7) where
1<x,<2(1<i<n)aren
integer variables and

—5.12 < x; < 5.12(n4+1<j < m)
are m — n continuous variables.

Objective function

(50+5)D discrete spherical problem

e~ mixed-integer BO (2 init samp)

10 -~ mixed-integer BO (5 init samp)
4 -+~ mixed-integer BO (10 init samp)

. mixed-integer BO (20 init samp)

| genetic algorithm: (10,1)

— genetic algorithm: (50,3)

—:- genetic algorithm: (150,10)
genetic algorithm: (1500,10)

200 1000

400 . 600 . 800
Number of functional evaluations

Figure 38: Comparison against GA.
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High-dimensional discrete sphere function .

(5d+100d) (mixed-integer)

(joint work w/ Yan Wang)

F(x(@) x()) =

(100+5)D discrete spherical problem

(X, s Xny Xng 1,00 s Xm) = et ]

H[:’ |X.’ ZI-‘"’ X'2 - ,'7 mixed-integer “m\:\){samp
=117 j=n+1"j i

where 7Y

1<x<2(1<i<n)are
n integer variables and
=512 < x <
512(n+1<j < m) are
m — n continuous
variables.

Objective function

400 600 800 1000
Number of functional evaluations

Figure 39: Comparison against GA.
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Multi-objective: 2 objectives

(joint work w/ Mike Eldred)

Benchmark function: ZOT1 . Benchmark function: Z0T3
+ e poreto L
+ pareto ‘\
| by
k
. v
g g i
8 8 s 1
i
% 104

Objective 1

Objective 1
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true Pareto

. Pareto

Figure 40: zDT1. Figure 41: zDT3.

64




Multi-objective: 3 objectives

(joint work w/ Mike Eldred)

- true Pareto
« Pareto

Benchmark function: DTLZ2

20

Objective 3 =

Lo

Phecrgy

Figure 42: DTLZ2.
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true Pareto

Benchmark function: DTLZS | poroyo

Objective 3

— P
Oafetz,vgé S

08

Figure 43: DTLZS.
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Multi-fidelity: borehole8d (W=

Laboratories

(joint work w/ Scott McCann, Tim Wildey)

() = 27x3 (x4 — X6) (48)
2x7X3 X3
log(xa/x1) (1 + Togta/m )P ><5)
i) = Pl =) (49)
2x7X: X:
log(x2/x1) (1.5 + m + i)
borehole8d
—e— El
100 - UCB
~= Pl
80
o "
E sok
° 40 "—:. .
-H‘.‘q
20
50 100 150 200 250 300
iteration

Figure 44: Borehole function (8d) - 2 levels of fidelity. 66
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Asynchronous parallel @&z

(joint work w/ Mike Eldred)
Hart4 function, t ~ U[30,900]s

4 3
1 2
f(x) = —— 1.172a;exp 72A;j(Xj*P,’j) R (50)
0.839 p p
i=1 j=4
benchmark function = hart4
“ —@— batch_size =1
1 \ A~ batch_size = 10
-¥- batch_size = 20
0
4
=
©
KTl
o)
o
=2
-3
102 103 104 67

time (seconds)



Sparse GP for Big Data (=W
(joint work w/ Bart G van Bloemen Waanders)

Benchmark FIC sparse GP: Training time

—e— n=10"
m Intel Xeon Platinum 8160 CPU @ & n=10?
2.10GHz STl
1034 =< n=10
m 24 cores, 48 threads = "figz
m RHEL 7.1 (Maipo)
m 180 GB of memory éloz
2 =
m sphere function y = (Z?:l X,') , H
X =[-1,13 E 10!
® training data points:
ne€{10',10%,...,106}
= number of inducing points: -
m € {10, 50, 100, ..., 300}
m GPstuff with SuitSparse toolbox on
0 50 100 150 200 250 300
MATLAB Number of inducing points
_ — 106 ~ . o
m m =300, n =10 takes ~48 Figure 45: Benchmark of training
minutes

time. 68




Sparse GP for Big Data (=W
(joint work w/ Bart G van Bloemen Waanders)

Benchmark FIC sparse GP: Testing time

Benchmark FIC sparse GP: Accuracy

—e— n=10"
- n=10%
-1
101{ - n=10° 10
—< n=10*
—¥ n=10°
=10°
! 10-2
C) Y
o 10° —e— n=10"
.g 10-3 - n=10?
o i —— n=10°
_% E —— n=10*
o —¥- n=10°
= n=10°
10~ N
107t
1072 \
10-2 \gﬂ
0 50 100 150 200 250 300

Number of inducing points 0 50 100 150 200 250 300
Number of inducing points

Figure 46: Benchmark of testing

time. Figure 47: Benchmark of accuracy.
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High-dimensional (with low effective dimensionality):

Gaussian random projection

(joint work w/ Bart G van Bloemen Waanders)

The modified ZDT1 function, which is
defined on [—1,1]P, is

f2(x) =g (1 - \/g> s (51)
g

D X; 2
where g = 1+9< iZo D—/1) .

m (non-unique) global minimizer
x* = [1,0,...,0]

m fH(x*)=0
s D=10%
m d=10
mde=2

Sandia
National
Laboratories

Scalable®-BO: D = 10*,d = 10: Cnvg plot of Zdt1

Objective
5

0 100 150 200 250
Number of functional evaluations

Figure 48: Convergence plot with
D = 10,000, d = 10.
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High-dimensional (with low effective dimensionality):

Gaussian random projection

(joint work w/ Bart G van Bloemen Waanders)

The modified ZDT2 function, which is
defined on [—1,1]P, is

) =g [1 - (;)Q] . 2)

b 2
where g =1+ (9 >ito X,‘) .

m (non-unique) global minimizer
x* = [1,0,...,0]

m fH(x*)=0
s D=10%
md=3
mde =2

Sandia
National
Laborator

Scalable®-BO: D =10%,d = 3: Cnvg plot of Zdt2

10°

3

Objective

2

0 5 10 15 20
Number of functional evaluations

Figure 49: Convergence plot with
D = 10,000, d = 3.

ries.
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Flip-chip BGA package design (multi-fidelity BO + F@ﬁ"“ﬂ

(joint work w/ Scott McCann (Xilinx))

Figure 50: FE model geometry

Solder Joints

O 0 000000 0000 0080 0 &

m 2.5D FE on (ANSYS) APDL: half symmetry to reduce comp. time

m evaluate component warpage at 20°C and 200°C, and the strain energy density
to predict the fatigue life of the solder joints during thermal cycling

m two levels of fidelity: varies mesh density parameter
m average comp. time: 0.4 CPU hr for low-fidelity, ~ 1 CPU hr for high-fidelity 72
- -




Flip-chip BGA package design (multi-fidelity BO + FERf-

(joint work w/ Scott McCann (Xilinx))

Table 1: Design variables for the FCBGA design optimization.

Variable | Design part Lower bound | Upper bound | Optimal value
X1 die 20000 30000 20702

X3 die 300 750 320

X3 substrate 30000 40000 35539

X4 substrate 100 1800 1614

X5 substrate 10-10—6 17-10—9 17-10-9
X6 stiffener ring | 2000 6000 4126

X7 stiffener ring | 100 2500 1646

X8 stiffener ring | 8-10~6 251076 8.94-10-6
X9 underfill 1.0 3.0 1.52

X10 underfill 0.5 1.0 0.804

X11 PCB board 12.0- 1076 16.7-1076 16.7-1076
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Flip-chip BGA package design (multi-fidelity BO + FE@F%

(joint work w/ Scott McCann (Xilinx))

Figure 51: Warpage Figure 52: Warpage Figure 53: Warpage
at -40°C at 20°C at 200°C
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Flip-chip BGA package design (multi-fidelity BO + F@T”"’

(joint work w/ Scott McCann (Xilinx))

Figure 55: Conv. plot at high-fidelity

Flgu re 54 FE model s sBF-BO-2CoGP: Convergence plot by iteration

INd
kS

N
N

=
™

Objective function value
~
o

Iy
o

[ 10 20 30 40 50
Iteration
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Heart valve optimization (FEM)

(joint work w/ Yan Wang, Wei Sun)

Figure 56: (A) Parameterization of 2D
leaflet geometry; (B) 3D attachment edge
shape; (C) Template leaflet mesh and

nodes transformation.
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A B
P
iy
D)

C) ‘
Figure 57: (A) 3D suturing line; (B) 2D
attachment edge; (C) 2D-to-3D

transformation; (D) Node and element

mid-leaflet sets.
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Mechanical metamaterials/AM @i

(joint work w/ Yan Wang)

Figure 58: Hierarchical multiscale Figure 59: Design optimization of fractal
structure of octahedral (second-order). cube. Printed in Georgia Tech Invention
Printed in Georgia Tech Invention Studio. Studio.
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Mechanical metamaterials/AM

(joint work w/ Yan Wang)

Figure 60: Parametric design.
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+3.431e-10

Y Uniaxial compression on 1x1x1 fractal cellRVE
QDEB: cellRVE, ixixi straini odb  Abaqus/Standard SDEXPERIENCE R2017x
L _ Step: cellload, Load RVE Txixt fractal cell
z X Increment & St Time =

Figure 61: ABAQUS FEM.
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(Fractal) auxetic metamaterials

(joint work w/ Yan Wang)

Figure 62: Stretchable electrode.

Photo courtesy of Cho et al Cho
et al. 2014.
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S, Mises

(Avg: 75%)
+3.900e+04
+3.578e+04
+3.255e+04
+2.932e+04
+2.610e+04
+2.287e+04

+2.928e+02

7 Uniaxial tension of fractal au
ODB: uniaxialTension.odb
%tep: auxeSte)
Increment

xeRVE
Abaqus/Standard 3DEXPERIENCE R2017x
7: Step Time = 1.000

Figure 63: Application on auxetic (negative

Poisson ratio) metamaterials.
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Impeller design optimization using CFD

(joint work w/ GIW Industries)

2.00;
L]

1750 o

150 o

125 =,
. l‘
* by .

Average wear rate (um/hr)
o =
N o
w o
»

BO-2GP-3B: Convergence

lot of 33d impeller CFD simulation

B Bexplore
@ Bexpioreciassif
X infeasible

= initial sampling
»

0.50 Aa

s 00® © 9ge ©® ©©

0.00 XO0CMIE XK X XOXCXOR0000C XK XX XX om X OO XX
0 250 500 750 1000 1250 1500 1750

Figure 64: Multiphase CFD simulation for design optimization of 33d slurry pump

impeller: Convergence plot.

Number of functional evaluations

@i
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Materials Design (D=

* Turning/milling
* Casting

* Drawing/Rolling
Inverse problems:

process_ * Heat treatment
. ro: nm
structure- ddltlve tatistically equivale } find some

. RVE processes such
property lin kage STRUCTURE « Orientation distribution g that one or
. . * Grain size
in materials + Chord-ength
® 2-point statistics

@ multiple properties
are optimized

Yield strenm

* Wear resistance
* Transport coefficients

Figure 65: Process-Structure-Property linkage.
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AM with kinetic Monte Carlo (AM/kMC) mk.

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

microstructure calibration: convergence plot

0.40

0.35

0.30

i

I
N
%

o
R
%

target

single-objective y = Z Yi
o =}
= N
o o

optimal

o
=)
G

0.00 0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

Figure 66: Reverse engineering an AM specimen through kinetic Monte
Carlo (Sandia/SPPARKS). Tran et al. 2020a.




DFT 4+ ML-IAP MD: multi-fidelity

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)
Tran et al. 2020c: coupling DFT and MD. Multi-fidelity for
multi-scale ICME.
Figure 67: iteration 4: 2 LF 4 2 HF Figure 68: iteration 24: 21 LF + 3 HF

180

Al atoms ’ Al atoms

Sandia
National
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DFT + ML-IAP MD: multi-fidelity .

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Tran et al. 2020c: coupling DFT and MD. Multi-fidelity for
multi-scale ICME.

Figure 69: teration 35: 31 LF + 4 HF Figure 70: iteration 130: 116 LF + 14 HF

Nb
0 5.

Al atoms 40 Al atoms 40
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Data-consistent for structure-property ot work w/ im wiiey)

microstructure -..... machine learning _.» properties
................................... m
AeRF T Q(\) €R
microstructure |generation spatially|average

DAMASK MTEX
DREAM.3D ParaView

crystal plasticity
finite element model
> B ————
DAMASK
PETSc

FIgU re 71: Microstructure-homogenized materials properties map over an ensemble of microstructures with a

heteroscedastic GP.
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Data-consistent for structure-property ot work w/ im wiiey)

. .. unknown
) ~Stochastic forward*.,
microstructure -

Ay L0 (Q0V)

Figure 72: Stochastic forward vs. stochastic inverse problems in
structure-property context.
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Data-consistent for structure-property ot work w/ im wiiey)

Figure 73: Ensemble average yield
stress via Monte Carlo with
different grain sizes

Ensemble average yield strength oy (MPa)

560

540

520

Effect of grain size on ensemble average oy

Figure 74: Comparison: GPR (ML)
with uncertainty and the Hall-Petch
(ordinary least square)

Nsve
¢ Oy= Ns_vlf_zla(y')
i=
—— Predicted mean
95% Confidence Interval

Ensemble average yield strength oy (MPa)

<50 Effect of grain size on ensemble average oy

570

560"

550

540

530

Nsve

~NZL S g0
. z7y~N5VE’:zlz7y

== Predicted mean
- OLS: Uy=482.14+%

95% Confidence Interval
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Data-consistent for structure-property ot work w/ im wiiey)

Figure 75: Initial density and
updated density: normal case

density

Inverse density of up s.t. oy ~ A(540.00,10.00)

16

14

1.2

0.6

0.4 ===

0.2

—— updated: my"(A)

— .- init: mt())

0.0

0.5

15 2.0 255
DREAM.3D: up
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Figure 76: Comparison:
Distributions of materials properties

0\I&;’ification between target and push-forward posterior

——- target: ngs
0.05] — Push-forward updated: n3“P(Q(A))
—-- push-forward init: n3/(Q(A))
0.04
Z
2003
()
©
0.02
0.01
0.00
450 475 600 625
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Conclusion () B,

This talk: two parts
m theoretical / computation aspects of GP/BO
m how to modify GP to suit the problem needs
m how to improve BO in HPC, constrained,
multi-{objective,fidelity }
m numerical toy functions demonstration
m plenty of open problems in Big Data, high-dimensional
problems
m state-space models
m Multi-scale engineering applications
m density functional theory
m molecular dynamics
m kinetic Monte Carlo
m computational fluid dynamics
. !
|

phase-field

crystal plasticity finite element 5




Thank you for listening.
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Methodology:
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Anh Tran (Aug. 2021). “Scalable®-BO: Big Data meets HPC - A scalable asynchronous parallel
high-dimensional Bayesian optimization framework on supercomputers”. In:

Proceedings of the ASME 2021 IDETC/CIE. vol. Volume 1: 41th Computers and Information in
Engineering Conference. International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. American Society of Mechanical Engineers

Anh Tran et al. (Aug. 2020d). “srMO-BO-3GP: A sequential regularized multi-objective constrained
Bayesian optimization for design applications”. In: Proceedings of the ASME 2020 IDETC/CIE

vol. Volume 1: 40th Computers and Information in Engineering Conference. International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference. American
Society of Mechanical Engineers
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