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Bayesian optimization (animation)

Figure 1: Bayesian optimization - Iteration 1
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Bayesian optimization (animation)

Figure 2: Bayesian optimization - Iteration 2
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Bayesian optimization (animation)

Figure 3: Bayesian optimization - Iteration 3

5



Bayesian optimization (animation)

Figure 4: Bayesian optimization - Iteration 4
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Bayesian optimization (animation)

Figure 5: Bayesian optimization - Iteration 5
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Bayesian optimization (animation)

Figure 6: Bayesian optimization - Iteration 6
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Bayesian optimization (animation)

Figure 7: Bayesian optimization - Iteration 7
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Bayesian optimization (animation)

Figure 8: Bayesian optimization - Iteration 8
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Bayesian optimization (animation)

Figure 9: Bayesian optimization - Iteration 9
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Bayesian optimization (animation)

Figure 10: Bayesian optimization - Iteration 11
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Bayesian optimization (animation)

Figure 11: Bayesian optimization - Iteration 11
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Bayesian optimization (animation)

Figure 12: Bayesian optimization - Iteration 12
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Bayesian optimization (animation)

Figure 13: Bayesian optimization - Iteration 13
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Bayesian optimization (animation)

Figure 14: Bayesian optimization - Iteration 14
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Bayesian optimization (animation)

Figure 15: Bayesian optimization - Iteration 15
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Advantages/Disadvantages

Bayesian optimization in a nutshell
Bayesian optimization = Gaussian process + sampling strategy

Advantages:
optimize with uncertainty consideration (e.g. noisy observations)
active machine learning (balance exploration-exploitation)
derivative free (avoid computing Jacobian)
global optimization (convergence in probability to global optimum)

good convergence rate (provably asymptotic regret, O
(

n− 1
d
)

)

Disadvantages:
high-dimensionality
scalability: computational bottleneck O(n3) when n ≥ O(103)

18



Bayesian optimization features

very versatile (open for methodological extensions)
acquisition functions: PI, EI, UCB, Thompson sampling, entropy-based, KG, or combination among these
constrained on objectives (known + unknown constraints) X

multi-objective(Pareto frontier/optimal, domination) X

multi-output X

multi-fidelity X

batch parallelization X→ asynchronous parallel X
stochastic, heteroscedastic 7

time-series (forecasting, e.g. causal kernel) 7

mixed-integer (discrete/categorical + continuous) X

scalable X

latent variable model 7

gradient-enhanced X

high-dimensional (with low effective dimensionality) X

physics-constrained: monotonic, discontinuous, symmetric, bounded 7

outlier: student-t distribution 7

non-stationary kernels 7
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Classical GP: Fundamentals

Let Dn = {xi , yi}n
i=1 denote the set of observations and x denote

an arbitrary test points

µn(x) = µ0(x) + k(x)T (K + σ2I)−1(y − m) (1)

σ2
n(x) = k(x, x)− k(x)T (K + σ2I)−1k(x) (2)

where k(x) is a vector of covariance terms between x and x1:n.
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Classical GP: Fundamentals

Formulation:
assuming stationary → only depends on r = ||x− x′||
the covariance matrix: symmetric positive-semidefinite matrix made up of
pairwise inner products

Kij = k(xi , xj) = k(xj , xi ) = Kji (3)

kernel choice: assuming unknown function is smooth to some degree
Implementation:

maximum log (marginal) likelihood estimation (MLE) to estimate the
hyper-parameter θ ∈ Rd

MLE involves K−1 → O(n3)

size of K ∈ Rn×n increases as the optimization process advances

Ingredients: some data, GP kernel, acquisition function
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Classical GP: Fundamentals

Matérn kernels:

Ki,j = k(xi , xj ) = θ
2
0

21−ν

Γ(ν)
(
√
2νr)νKν(

√
2νr), (4)

Kν is a modified Bessel fuction of the second kind and order ν.
Common kernels:

ν = 1/2 : kMatérn1(x, x′) = θ20 exp (−r) (also known as exponential kernel),

ν = 3/2 : kMatérn3(x, x′) = θ20 exp (−
√
3r)(1 +

√
3r),

ν = 5/2 : kMatérn5(x, x′) = θ20 exp (−
√
5r)

(
1 +

√
5r + 5

3
r2

)
,

ν → ∞ : ksq-exp(x, x′) = θ20 exp
(
− r2

2

)
(also known as square exponential or automatic relevance

determination kernel)
Log-likelihood function:

log p(y|x1:n, θ) = −
n
2

log (2π)︸ ︷︷ ︸
data likelihood ↓ as n↑

−
1

2
log |Kθ

+ σ
2I|︸ ︷︷ ︸

“complexity” term
smoother covariance matrix

−
1

2
(y − mθ)

T
(Kθ

+ σ
2I)−1

(y − mθ)︸ ︷︷ ︸
“data-fit” term

how well model fits data
(5)

22



Classical GP: A Bayesian perspective

Mostly follow Quiñonero-Candela and Hansen 2004; Quiñonero-Candela and
Rasmussen 2005.
Denote training f, testing f∗, the joint GP prior is

p(f, f∗) = N
([

m
m

]
,

[
Kf,f K∗,f
Kf,∗ K∗,∗

])
. (6)

By Bayes’ rule

p(f∗|y) =
∫

p(f, f∗|y)df
= 1

p(y)
∫

p(y|f) p(f, f∗)df
= N (m + K∗,f[Kf,f + σ2I]−1(y−m),K∗,∗ − K∗,f[Kf,f + σ2I]−1Kf,∗),

(7)
Log of marginal likelihood function:

log p(y|X) = log
∫

p(y|f)p(f|X)df
= − n

2
log (2π)− 1

2
log |Kf,f + σ2I| − 1

2
(y−m)>(Kf,f + σ2I)−1(y−m).

(8)
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Classical GP: A Bayesian perspective
A conditional of a Gaussian is also Gaussian.

Figure 16: Photo courtesy of from Lawrence 2016.

If
P(x, y) = N

([
µx
µy

]
,

[
A C

C> B

])
(9)

then
P(x|y) = N (µx + CB−1(y − µy),A− CB−1C>) (10)

(cf. App. A, Quiñonero-Candela and Rasmussen 2005). 24



Acquisition function: How to pick the next point(s)

dictates how to pick the next point: exploitation (focus on the
promising region) or exploration (focus on the
uncertain/unknown region)
different flavors:

1. probability of improvement (PI) Mockus 1982

aPI(x; {xi , yi}n
i=1, θ) = Φ(γ(x)), (11)

where
γ(x) = µ(x; {xi , yi}n

i=1, θ)− f (xbest)

σ(x; {xi , yi}n
i=1, θ)

, (12)

2. expected improvement (EI) scheme Mockus 1975; Huang et al.
2006

aEI(x; {xi , yi}n
i=1, θ) = σ(x; {xi , yi}n

i=1, θ)·(γ(x)Φ(γ(x))+φ(γ(x))
(13)
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Acquisition function: How to pick next point(s)

dictates how to pick the next point: exploitation (focus on the
promising region) or exploration (focus on the
uncertain/unknown region)
different flavors:

3. upper confidence bound (UCB) schemeSrinivas et al. 2009;
Srinivas et al. 2012

aUCB(x; {xi , yi}n
i=1, θ) = µ(x; {xi , yi}n

i=1, θ)+κσ(x; {xi , yi}n
i=1, θ),
(14)

where κ is a hyper-parameter describing the
exploitation-exploration balance.

4. pure exploration∗:
maximal MSE σ2(x) ⇔ maximal entropy 1

2
log

[
2πσ2(x)

]
+ 1

2

maximal IMSE
∫

x∈X σ2(x)
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QRAK taxonomy for constrained optimization problem

Figure 17: Photo courtesy of Digabel and Wild 2015. Tree-based view of the QRAK
taxonomy of constraints. Constraints that are either not known beforehand or have to
assessed through simulations are called unknown.
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Constrained problems: known constraints

Problem statement
optimize f (x) subject to λ(x) ≤ c, λ(·) computationally cheap

known constraints:
known before evaluation
typically physics-based
formulated as inequality constraints λ(x) ≤ c, λ is computationally cheap
directly penalize the acquisition function a = 0 when constraints are violated,
i.e. λ(x) 6≤ c

aknown
constrained(x) = a(x)Iknown(x) (15)

where Iknown(x) is the indicator function

Iknown(x) =
{
1, λ(x) ≤ c
0, λ(x) 6≤ c

(16)

can be conveniently ignored to become unknown constraints if the model is
aware of the constraints violation, i.e. returns error 28



Constrained problems: unknown constraints

Problem statement
optimize f (x) where f (x) may or may not exist

unknown constraints:
can convert known → unknown but not vice versa
form a probabilistic binary classifier to predict the probability mass function of
passing unknown constraint at x, i.e. kNN, AdaBoost, RandomForest, GP, etc.
penalize the acquisition function based on the predicted feasibility from GP
classifier

aunknown
constrained(x) =

{
a(x), with Pr(clf(x) = 1)

0, with Pr(clf(x) = 0)
(17)

our approach:

use another GP to learn when f (x) does not exist
optimize the conditioned acquisition function
E[aunknown

constrained(x)] = a(x)Prunknown(clf(x) = 1)
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Batch parallel on HPC

Arguments:
focus on multi-core HPC
architecture and expensive,
high-fidelity simulations
Amdahl’s law: diminishing returns,
i.e. rewards for parallelizing solvers
diminish as # of processors increase
motivation: can we search for the
optimal point in faster wall-clock
time, assuming HPC power is
sufficient and/or abundant?

obviously beneficial when computing
resource is sufficient

Figure 18: Amdahl’s law for parallelization.
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Batch parallel on HPC

Might as well be beneficial when
computing resource is
insufficient; examples:

P = 0.95 → SpeedUp ≈ 20 times
CFD simulation takes 3 hours to
finish with 256 procs → 20 cases/60
hours
or 60 hours (2.5 days) with 1 proc
for 1 case → 256 cases/60 hours
fixed computational budget: 256
×60 CPU hours
question: in the period of 2.5 days,
are we better off with 20 sequential
runs, or with 256 batch-parallel runs?
what about 5 days (40 vs. 512)? 10
days (80 vs. 1024)? asymptotically?

Figure 19: Amdahl’s law for parallelization.
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Batch parallel on HPC
Strategies to design batches:

hallucination (GP-BUCB Desautels, Krause, and Burdick 2014): cast
µpredicted = µactual , σpredicted = 0 during one iteration

1 batches: all acquisition, zero exploration, UCB acquisition function

pure exploration (GP-UCB-PE Contal et al. 2013)
2 batches: 1 acquisition, the rest exploration, UCB acquisition function

couple with unknown constraints: pBO-2GP-3B: 2 GPs, 3 batches:
hallucination, exploration for GP1 (main), exploration for GP2 (classifier)

3 batches: some acquisition, some exploration (GP1), and some more
exploration (GP2);
all types of acquisition functions, dynamic batch settings are easily
extended
order to construct the batch matters

others: GP-KG Scott, Frazier, and Powell 2011; Wu and Frazier 2016, GP-SM
Azimi, Fern, and Fern 2010, GP-DPP Kathuria, Deshpande, and Kohli 2016,
GP-PPES Shah and Ghahramani 2015, GP-LP González et al. 2016, q-EI
Marmin, Chevalier, and Ginsbourger 2016 Chevalier and Ginsbourger 2013,
GP-Hedge Hoffman, Brochu, and Freitas 2011
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Asynchronous parallel

A cartoonist’s perspective

Figure 20: Synchronous (left) vs. asynchronous (right). Batch size = 3.
Photo courtesy of Kandasamy et al Kandasamy et al. 2017.
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Asynchronous parallel

... and a computer scientist’s perspective

Figure 21: Batch-sequential parallel Figure 22: Asynchronous parallel
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Multi-fidelity

Figure 23: 1D approximation function from Forrester et al. Forrester,
Sóbester, and Keane 2007, Han et al Solnik et al. 2017.

35



Multi-fidelity

Kennedy and O’Hagan Kennedy and O’Hagan 2000:
auto-regressive model based on a first-order auto-regressive
relation between model output of different levels of fidelity.

s-levels of variable-fidelity model yt(x)s
t=1

y1(x): cheapest, ys(x): most expensive
auto-regressive model:

yt(x) = ρt−1yt−1(x) + δt(x) (18)

Markov property: assuming that given yt−1(x), we can learn
nothing about yt(x) from any other model output yt−1(x′),
for x 6= x′

Cov[yt(x), yt−1(x′)|yt−1(x)] = 0, ∀x 6= x′ (19)
36



Multi-fidelity

model the lowest fidelity y1 as a classical GP
model the discrepancies δt ’s as GPs
for two levels of fidelity: �c = cheap, �e = expensive
covariance vector and covariance matrix

k(x) = (ρσ2
c kc(x) ρσ2kc(x,X)), (20)

K =
(

σ2
c Kc ρσ2

c Kc(Xc ,Xe)
ρσ2

c Kc(Xe ,Xc) ρ2σ2
c Kc(Xe ,Xe) + σ2

d Ke(Xe ,Xe)

)
(21)

low-fidelity MLE for θc ; high-fidelity MLE for θe and ρ

log p(yc |xnc , θc) = −
n
2

log (2π)−
1

2
log |Kc

θc + σ2
c I|−

1

2
(y−mθc )

T (Kc
θc +σ2I)−1(y−mθc )

(22)
log p(ye |xne , θe) = −

n
2

log (2π)−
1

2
log |Ke

θe + σ2
e I|−

1

2
(y−mθe )

T (Ke
θe+σ2I)−1(y−mθe )

(23)
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Multi-fidelity

ys(x) =
∑s−1

t=1 ρtyt(x) + δ(x) ⇔ δ(x) = ys(x)−
∑s−1

t=1 ρtyt(x)
Covariance matrix for s levels of fidelity Xiao et al. 2018

K =


σ2
1K1 0 · · · ρ1σ2

1K1(X1,Xe)
0 σ2

2K2 · · · ρ2σ2
2K2(X2,Xe)

...
...

. . .
...

ρ1σ2
1K1(Xe ,X1) ρ2σ2

2K2(Xe ,X2)
∑s

t=1 ρ
2
t σ

2
t Kt(Xe ,Xe) + σ2

d Ke(Xe ,Xe)


(24)

MLE hyper-parameters optimization of ρt happens at the highest
level of fidelity s, after all lower-fidelity hyper-parameters {θt}s−1

t=1

have been estimated.
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Multi-fidelity

Variations in formulation:
auto-regressive (Kennedy and O’Hagan Kennedy and
O’Hagan 2000) vs. recursive with nested structure (Le Gratiet
& Garnier Le Gratiet and Garnier 2014, Peridakis &
Karniadakis Perdikaris et al. 2015; Perdikaris and Karniadakis
2016): O

(
(
∑

nt)
3
)

vs.
∑

O
(
(nt)

3
)

by decomposing the
covariance matrix
nested (Le Gratiet & Garnier Le Gratiet and Garnier 2014,
Peridakis & Karniadakis Perdikaris et al. 2015; Perdikaris and
Karniadakis 2016) vs. non-nested (Couckuyt et al. Couckuyt
et al. 2012; Couckuyt, Dhaene, and Demeester 2013;
Couckuyt, Dhaene, and Demeester 2014, Xiao et al. Xiao
et al. 2018)
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Selection of level of fidelity

Question: Fix a sampling location x∗, what level of fidelity should
be selected to query?
Compare computational cost vs. benefit:

1 ≤ t ≤ s: level of fidelity
if x∗ is queried, how much uncertainty is reduced?
at what cost?
balance computational cost vs. gain (reduction of uncertainty)

t∗ = argmin
t

(
Ct

∫
X
σ2(x)dx

)
, (25)

promote high-fidelity if the cost is similar: If
Ct∗ |D(t∗)| ≥ Cs |D(s)| then choose s.
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Multi-objective

Let:
x = {xi}d

i=1 ∈ X ⊆ Rd be input in d-dimensional space,
y = {yj}s

j=1 as s outputs.

argmax
x∈X

(f1(x), · · · , fs(x)) (26)

subjected to c(x) ≤ 0.
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Multi-objective

Pareto definition:

x1 is said to dominate x2, denoted as x1 � x2, if and only if
∀1 ≤ j ≤ s, such that yj(x1) ≤ yj(x2), and ∃1 ≤ j ≤ s, such that
yj(x1) < yj(x2).

x1 is said to strictly dominate x2, denoted as x1 ≺ x2, if and only if
∀1 ≤ j ≤ s, such that yj(x1) < yj(x2).

Scalarization: multi-objective → single-objective

1. weighted Tchebycheff y = max1≤i≤s wi(yi(x)− z∗
i ),

2. weighted sum y =
∑s

i=1 wiyi(x),

3. augmented Tchebycheff
y = max1≤i≤s wi(yi(x)− z∗

i ) + ρ
∑s

i=1 wiyi(x),

where z∗
i denotes the ideal value for the i-th objective, the weights

0 ≤ wi ≤ 1,
∑m

i=1 wi = 1, ρ is a positive constant (ρ = 0.05).
42



Multi-objective

Acquisition function:

a(x) = aobj(x)︸ ︷︷ ︸
objective GP

· aPareto(x)︸ ︷︷ ︸
uncertain Pareto

· Pr(x|c(x) = 1)︸ ︷︷ ︸
unknown constraints

· I(x)︸︷︷︸
known constraints

(27)
aobj(x): objective GP fitted through augmented Tchebycheff
with random weights
aPareto(x): Pareto GP classifier (Pareto/non-Pareto)
Pr(x|c(x) = 1): constrained classifier (feasible/infeasible)
I(x): indicator function if c(x) ≤ 0
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Multi-objective

Hypervolume approach:
hypervolume indicator, aka S-metric
strictly monotonic
complexity O(n log n + nd/2 log n)
d = 3: lower and upper bounds O(n log n) Beume et al. 2009
and any other sorts of approximation . . .

arguably more sample-efficient compared to Tchebycheff
decomposition
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Sparse GP

Low-rank approximation1for Kf,f

Low-rank approximation K ≈ K̃ = Kn×mK−1
m×mKm×n (cf. Section 8.1 Rasmussen

2006) and scales as O(nm2 + m3) instead of O(n3).
For n� m, this method scales as O(nm2).

Following Quiñonero-Candela and Rasmussen 2005; Quiñonero-Candela, Rasmussen,
and Williams 2007, Chalupka, Williams, and Murray 2013, Vanhatalo et al. 2012;
Vanhatalo et al. 2013.
Cost complexity:

local GP: O(m3)

sparse GP: O(nm2)

classical GP (Cholesky decomposition): O
(
1
3

n3
)

classical GP (LU decomposition): O
(
2
3

n3
)

classical GP (QR decomposition): O
(
4
3

n3
)

2https://en.wikipedia.org/wiki/Low-rank_matrix_approximations
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Sparse GP
p(·): true pdf
q(·): approximate pdf

Assume the fully independent training conditional (FITC) Quiñonero-Candela and
Rasmussen 2005; Quiñonero-Candela, Rasmussen, and Williams 2007, augment the
joint model p(f∗, f) as

p(f∗, f) =
∫

p(f∗, f, u)du =

∫
p(f∗, f|u)p(u)du, (28)

u: inducing variables at m locations Xu. The training and testing conditionals are

p(f|u) = N (m + Kf,uK−1
u,u (u−m), Kf,f − Qf,f), (29)

and
p(f∗|u) = N (m + K∗,uK−1

u,u (u−m), K∗,∗ − Q∗,∗), (30)

where
Qa,b := Ka,uK−1

u,u Ku,b. (31)

The likelihood and inducing priors remain the same, i.e. p(y|f) = N (f, σ2I), and
p(u) = N (m,Ku,u).
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Sparse GP
FITC training prior based on the inducing priors is modified as

q(f|u) =
n∏

i=1

p(fi |u) = N (m + Kf,uK−1
u,u (u−m),Diag[Kf,f − Qf,f]) (32)

and keeping the testing prior the same

q(f∗|u) = p(f∗|u) = N (m + K∗,uK−1
u,u (u−m), K∗,∗ − Q∗,∗), (33)

the effective prior under the FITC assumption is

q(f, f∗) = N
([

m
m

]
,

[
Qf,f − Diag[Qf,f − Kf,f] Qf,∗

Q∗,f K∗,∗

])
, (34)

which implies the testing distribution as

q(f∗|y) = N (m + Q∗,f(Qf,f + Λ)−1(y−m),K∗,∗ − Q∗,f(Qf,f + Λ)−1Qf,∗)
= N (m + K∗,uΣKu,fΛ

−1(y−m),K∗,∗ − Q∗,∗ + K∗,uΣKu,∗)
,

(35)
where Σ = [Ku,u + Ku,fΛ

−1Kf,u]
−1 and Λ = Diag[Kf,f − Qf,f + σ2I]. 47



Sparse GP

The marginal likelihood conditioned on the inducing inputs is therefore

q(y|Xu) =

∫ ∫
p(y|f)q(f|u)p(u|Xu)dudf =

∫
p(y|f)q(f|Xu)df, (36)

which implies the log marginal likelihood as

log q(y|Xu) = −
n
2

log(2π)−
1

2
log |Qf,f + Λ| −

1

2
(y−m)>[Qf,f + Λ]−1(y−m), (37)

where Λ = Diag[Kf,f − Qf,f] + σ2I.
Cost complexity: O(nm2) Williams and Seeger 2001; Li, Kwok, and Lü 2010. (Note:
do not multiply matrices directly – cf. Section 14.3 Martinsson and Tropp 2020).
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Variational inference: a hand-waving argument

Follows Frigola, Chen, and Rasmussen 2014 and Rasmussen’s corresponding slides. By
Bayes’ rule,

p(f|y, θ) =
p(y|f)p(f|θ)

p(y|θ)
⇔ p(y|θ) =

p(y|f)p(f|θ)
p(f|y, θ)

. (38)

The idea: approximate the (computationally intractable) p(f|y, θ) by a
(computationally tractable) parameterized variational q(f). For any q(f),

p(y|θ) =
p(y|f)p(f|θ)

p(f|y, θ)
q(f)
q(f)

⇔ log p(y|θ) = log
p(y|f)p(f|θ)

q(f)
+ log

q(f)
p(f|y, θ)

. (39)

Apply
∫

q(f)df to both sides

log p(y|θ)︸ ︷︷ ︸
marginal likelihood

=

∫
q(f) log

p(y|f)p(f|θ)
q(f)

df︸ ︷︷ ︸
Evidence Lower BOund

+

∫
q(f) log

q(f)
p(f|y, θ)

df︸ ︷︷ ︸
KL(q(f)||p(f|y,θ))

(40)

Turn our attention to maximizing the variational ELBO (or equivalently minimizing
the KL divergence) instead of maximizing the log marginal likelihood.
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High-dimensional: Gaussian random projection

Mostly follow Wang et al. 2013; Wang et al. 2016. Main idea:
choose (wisely) and optimize over Z ⊂ Rd

embed and project onto high-dimensional space as x← pX (Az)
A ∈ RD×d : tall-and-skinny random matrix with standard normal element

Figure 24: Photo courtesy of Wang et
al Wang et al. 2016. Optimizing a 2d
function (with 1d active subspace) via
random embedding.

REMBO algorithm Wang et al. 2016 with
deviation from BO highlighted.
1: generate a random matrix

A ∈ RD×d : aij ∼ N (0, 1)
2: choose the bounded region set Z ⊂ Rd

3: D0 ← ∅
4: for i = 1, 2, · · · do
5: locate next sampling point

zi+1 ← argmaxz∈Z a(z) ∈ Rd

6: query
Di+1 ← Di ∪ {zi+1, f (pX (Azi+1))}

7: update GP
8: end for
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High-dimensional: Gaussian random projection2

x
∈
R

D

1

=

D
ro

ws A

d cols

z
∈
R

d

1

Figure 25: A random embedding or a
random projection x = Az is built as a
corollary from the Johnson-Lindenstrauss
lemma, where A is a random normal
matrix.

Theorem (Johnson-Lindenstrauss
lemma (cf. Lemma 15 Mahoney 2016))
Given n points {xi}n

i=1, each of which is in
RD , A ∼MND×d (0, I, I), and let z ∈ Rd

defined as z = A>x. Then, if d ≥ 9 log n
ε2−ε3

,
for some ε ∈

(
0, 1

2

)
, then with probability

at least 1
2

, all pairwise distances are
preserved, i.e. for all i, j, we have

(1−ε)‖xi −xj ‖
2
2 ≤ ‖zi − zj‖

2
2 ≤ (1+ε)‖xi −xj ‖

2
2

(41)

Compared to active subspace method: also
linear and does not require gradient and
the rotation matrix W>.
There are alternative approaches, e.g.
additive GP.

2https://en.wikipedia.org/wiki/Random_projection
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Mixed-integer

Main idea: (1) decompose to a set of
continuous and discrete variables
x = (xd , xc), (2) enumerate clusters, then
(3) combine using linear weighted average

decompose a large dataset into
smaller clusters
build a GP for each cluster
each cluster corresponds to a unique
tuple of discrete variables
formulate a Gaussian mixture
prediction: weighted average (weight
tuned adaptively by statistical
metrics, e.g. Wasserstein distance,
Manhattan distance)
applicable when |xc | � |xd |, i.e. not
combinatorial optimization problems

Figure 26: Neighborhood B(`) of a
local GP ` with xd = (3, 2).
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Mixed-integer

Gaussian mixture model predictions for posterior mean and
variance:

µ̂ =
∑

`∗∈B(`)

w`∗

(
µ̂(`∗) + µ̄(`) − µ̄(`∗)︸ ︷︷ ︸

bias correction term
E[µ̂]=µ̄(`)

)
(42)

σ̂2 =
∑

`∗∈B(`)

w2
`∗σ

2
(`∗) (43)

B(`) is the neighborhood, defined by thresholding a similarity measure of
discrete tuples
weighted average estimation, weights depends on (1) cluster distances, (2)
original cluster predictions
theoretical bounds for weighted average prediction

asymptotic behavior when n→∞
53



Mixed-integer

A special case: Wasserstein distance (Earth mover’s distance). Assume the query
point x = (xd , xc), where xd corresponds to `-th cluster.

w`∗ ∝
[
σ2

l + W2

(
N (y(`∗), σ2

(`∗)),N (y(`), σ2
(`))
)]−1

. (44)

W2

(
N (y(`∗), σ2

(`∗)),N (y(`), σ2
(`))
)
=
∥∥∥y(`) − y(`∗)

∥∥∥2 +
∥∥∥√σ2

(`)
−
√

σ2
(`∗)

∥∥∥2 (45)

Weighted prediction
The largest weight is associated with the `-th cluster.

Asymptotic analysis n → ∞
limn→∞ wl →∞, as σl → 0 and W2(·l , ·l ) = 0.

Interpretation: If data is abundant, then the proposed approach converge
asymptotically to a single local GP prediction.
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Mixed-integer

Simple bounds
The predicted mean µ̂ =

∑
`∗∈B(`) w`∗

(
µ̂(`∗) + µ̄(`) − µ̄(`∗)

)
is bounded by

min
`∗

(
µ̂(`∗) + µ̄(`) − µ̄(`∗)

)
≤ µ̂ ≤ max

`∗

(
µ̂(`∗) + µ̄(`) − µ̄(`∗)

)
(46)

The predicted variance σ̂2 =
∑

`∗∈B(`) w2
`∗σ

2
(`∗) is bounded by

(∑
`∗

w2
`∗σ(`∗)

)2

≤ σ̂2 ≤ max
`∗

σ2
(`∗) (47)
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Gaussian process / Bayesian optimization

Multi-scale engineering applications
Numerical functions (analytical)
Flip-chip BGA package design (FEM)
Heart valve optimization (FEM)
Metamaterials (FEM)
Pump design optimization (CFD)
AM process-structure modeling (kinetic Monte Carlo)
Random ternary alloy composition design (DFT +
MD/ML-IAP)
Infer microstructure distribution (CPFEM)

Conclusion

References 56



2d three-hump camel
(parallel blind constraints)

(joint work w/ Yan Wang)

Figure 27: 2d three-hump camel. Figure 28: Batch sampling location at
iteration 5.
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2d three-hump camel
(parallel blind constraints)

(joint work w/ Yan Wang)

Figure 29: 2d three-hump camel.

Figure 30: Convergence comparison with different
classifiers.
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2d Rastrigin
(parallel blind constraints)

(joint work w/ Yan Wang)

Figure 31: 2d three-hump camel.

Figure 32: Convergence comparison with different
classifiers.
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6d Rastrigin
(parallel blind constraints)

(joint work w/ Yan Wang)

gi(x) = ‖x− 2.56vi‖2 ≥ 5,
for i = 1, · · · , 6, vi =
[−1, · · · , 1 · · · ,−1] is a
vector where i-index
element is 1, and other
elements are −1.

Figure 33: Convergence comparison with different
classifiers.
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Welded-beam design optimization
(2d+4d) (mixed-integer)

(joint work w/ Yan Wang)

Figure 34: Welded-beam
design

Figure 35: Convergence plot of welded
beam design.
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Speed reducer design optimization
(1d+6d) (mixed-integer)

(joint work w/ Yan Wang)

Figure 36: Speed reducer
design

Figure 37: Comparison against GA.
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High-dimensional discrete sphere function
(5d+50d) (mixed-integer)

(joint work w/ Yan Wang)

f (x(d), x(c)) =
f (x1, · · · , xn, xn+1, · · · , xm) =∏n

i=1 |xi |
(∑m

j=n+1 x2
j

)
where

1 ≤ xi ≤ 2(1 ≤ i ≤ n) are n
integer variables and
−5.12 ≤ xj ≤ 5.12(n+1 ≤ j ≤ m)
are m − n continuous variables.

Figure 38: Comparison against GA.
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High-dimensional discrete sphere function
(5d+100d) (mixed-integer)

(joint work w/ Yan Wang)

f (x(d), x(c)) =
f (x1, · · · , xn, xn+1, · · · , xm) =∏n

i=1 |xi |
(∑m

j=n+1 x2
j

)
where
1 ≤ xi ≤ 2(1 ≤ i ≤ n) are
n integer variables and
−5.12 ≤ xj ≤
5.12(n + 1 ≤ j ≤ m) are
m − n continuous
variables.

Figure 39: Comparison against GA.
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Multi-objective: 2 objectives
(joint work w/ Mike Eldred)

Figure 40: ZDT1. Figure 41: ZDT3.
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Multi-objective: 3 objectives
(joint work w/ Mike Eldred)

Figure 42: DTLZ2. Figure 43: DTLZ5.
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Multi-fidelity: borehole8d
(joint work w/ Scott McCann, Tim Wildey)

fH(x) =
2πx3(x4 − x6)

log(x2/x1)
(
1 + 2x7x3

log(x2/x1)x21 x8
+ x3

x5

) , (48)

fL(x) =
5x3(x4 − x6)

log(x2/x1)
(
1.5 + 2x7x3

log(x2/x1)x21 x8
+ x3

x5

) . (49)

Figure 44: Borehole function (8d) - 2 levels of fidelity. 66



Asynchronous parallel
(joint work w/ Mike Eldred)

Hart4 function, t ∼ U [30, 900]s

f (x) =
1

0.839

1.1− 4∑
i=1

αi exp

− 3∑
j=4

Aij(xj − Pij)
2

 , (50)
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Sparse GP for Big Data
(joint work w/ Bart G van Bloemen Waanders)

Intel Xeon Platinum 8160 CPU @
2.10GHz
24 cores, 48 threads
RHEL 7.1 (Maipo)
180 GB of memory

sphere function y =
(∑3

i=1 xi
)2

,
X = [−1, 1]3

training data points:
n ∈ {101, 102, . . . , 106}
number of inducing points:
m ∈ {10, 50, 100, . . . , 300}
GPstuff with SuitSparse toolbox on
MATLAB
m = 300, n = 106 takes ∼48
minutes Figure 45: Benchmark of training

time. 68



Sparse GP for Big Data
(joint work w/ Bart G van Bloemen Waanders)

Figure 46: Benchmark of testing
time. Figure 47: Benchmark of accuracy.
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High-dimensional (with low effective dimensionality):
Gaussian random projection
(joint work w/ Bart G van Bloemen Waanders)

The modified ZDT1 function, which is
defined on [−1, 1]D , is

f2(x) = g

1−

√
x2
1

g

 , (51)

where g = 1 + 9
(∑D

i=2
xi

D−1

)2
.

(non-unique) global minimizer
x∗ = [1, 0, . . . , 0]

f2(x∗) = 0

D = 104

d = 10

de = 2

Figure 48: Convergence plot with
D = 10, 000, d = 10.
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High-dimensional (with low effective dimensionality):
Gaussian random projection
(joint work w/ Bart G van Bloemen Waanders)

The modified ZDT2 function, which is
defined on [−1, 1]D , is

f2(x) = g
[
1−

(
x1
g

)2
]
, (52)

where g = 1 +
(
9
∑D

i=2 xi
)2

.

(non-unique) global minimizer
x∗ = [1, 0, . . . , 0]

f2(x∗) = 0

D = 104

d = 3

de = 2

Figure 49: Convergence plot with
D = 10, 000, d = 3.
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Flip-chip BGA package design (multi-fidelity BO + FEM)
(joint work w/ Scott McCann (Xilinx))

Figure 50: FE model geometry

2.5D FE on (ANSYS) APDL: half symmetry to reduce comp. time
evaluate component warpage at 20◦C and 200◦C, and the strain energy density
to predict the fatigue life of the solder joints during thermal cycling
two levels of fidelity: varies mesh density parameter
average comp. time: 0.4 CPU hr for low-fidelity, ∼ 1 CPU hr for high-fidelity 72



Flip-chip BGA package design (multi-fidelity BO + FEM)
(joint work w/ Scott McCann (Xilinx))

Table 1: Design variables for the FCBGA design optimization.

Variable Design part Lower bound Upper bound Optimal value
x1 die 20000 30000 20702
x2 die 300 750 320
x3 substrate 30000 40000 35539
x4 substrate 100 1800 1614
x5 substrate 10 · 10−6 17 · 10−6 17 · 10−6

x6 stiffener ring 2000 6000 4126
x7 stiffener ring 100 2500 1646
x8 stiffener ring 8 · 10−6 25 · 10−6 8.94 · 10−6

x9 underfill 1.0 3.0 1.52
x10 underfill 0.5 1.0 0.804
x11 PCB board 12.0 · 10−6 16.7 · 10−6 16.7 · 10−6
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Flip-chip BGA package design (multi-fidelity BO + FEM)
(joint work w/ Scott McCann (Xilinx))

Figure 51: Warpage
at -40◦C

Figure 52: Warpage
at 20◦C

Figure 53: Warpage
at 200◦C

74



Flip-chip BGA package design (multi-fidelity BO + FEM)
(joint work w/ Scott McCann (Xilinx))

Figure 54: FE model

Figure 55: Conv. plot at high-fidelity
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Heart valve optimization (FEM)
(joint work w/ Yan Wang, Wei Sun)

Figure 56: (A) Parameterization of 2D
leaflet geometry; (B) 3D attachment edge
shape; (C) Template leaflet mesh and
nodes transformation.

Figure 57: (A) 3D suturing line; (B) 2D
attachment edge; (C) 2D-to-3D
transformation; (D) Node and element
mid-leaflet sets.
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Mechanical metamaterials/AM
(joint work w/ Yan Wang)

Figure 58: Hierarchical multiscale
structure of octahedral (second-order).
Printed in Georgia Tech Invention Studio.

Figure 59: Design optimization of fractal
cube. Printed in Georgia Tech Invention
Studio.
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Mechanical metamaterials/AM
(joint work w/ Yan Wang)

Figure 60: Parametric design.
Figure 61: ABAQUS FEM.
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(Fractal) auxetic metamaterials
(joint work w/ Yan Wang)

Figure 62: Stretchable electrode.
Photo courtesy of Cho et al Cho
et al. 2014.

Figure 63: Application on auxetic (negative
Poisson ratio) metamaterials.
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Impeller design optimization using CFD
(joint work w/ GIW Industries)

Figure 64: Multiphase CFD simulation for design optimization of 33d slurry pump
impeller: Convergence plot.
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Materials Design

process-
structure-
property linkage
in materials

Figure 65: Process-Structure-Property linkage.
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AM with kinetic Monte Carlo (AM/kMC)
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

Figure 66: Reverse engineering an AM specimen through kinetic Monte
Carlo (Sandia/SPPARKS). Tran et al. 2020a.
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DFT + ML-IAP MD: multi-fidelity
(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Tran et al. 2020c: coupling DFT and MD. Multi-fidelity for
multi-scale ICME.

Figure 67: Iteration 4: 2 LF + 2 HF
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Figure 68: Iteration 24: 21 LF + 3 HF
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DFT + ML-IAP MD: multi-fidelity
(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Tran et al. 2020c: coupling DFT and MD. Multi-fidelity for
multi-scale ICME.

Figure 69: Iteration 35: 31 LF + 4 HF
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Figure 70: Iteration 130: 116 LF + 14 HF
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Data-consistent for structure-property (joint work w/ Tim Wildey)

microstructure generation

microstructure propertiesmachine learning

spatially average

DREAM.3D

DAMASK

crystal plasticity

finite element model

ParaView
DAMASK MTEX

PETSc

Figure 71: Microstructure-homogenized materials properties map over an ensemble of microstructures with a

heteroscedastic GP.
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Data-consistent for structure-property (joint work w/ Tim Wildey)

Figure 72: Stochastic forward vs. stochastic inverse problems in
structure-property context.
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Data-consistent for structure-property (joint work w/ Tim Wildey)

Figure 73: Ensemble average yield
stress via Monte Carlo with
different grain sizes

Figure 74: Comparison: GPR (ML)
with uncertainty and the Hall-Petch
(ordinary least square)
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Data-consistent for structure-property (joint work w/ Tim Wildey)

Figure 75: Initial density and
updated density: normal case

Figure 76: Comparison:
Distributions of materials properties
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Conclusion

This talk: two parts
theoretical / computation aspects of GP/BO

how to modify GP to suit the problem needs
how to improve BO in HPC, constrained,
multi-{objective,fidelity}
numerical toy functions demonstration
plenty of open problems in Big Data, high-dimensional
problems
state-space models

Multi-scale engineering applications
density functional theory
molecular dynamics
kinetic Monte Carlo
computational fluid dynamics
phase-field
crystal plasticity finite element
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Thank you for listening.
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Methodology:
Anh Tran (Aug. 2021). “Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel
high-dimensional Bayesian optimization framework on supercomputers”. In:
Proceedings of the ASME 2021 IDETC/CIE. vol. Volume 1: 41th Computers and Information in
Engineering Conference. International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. American Society of Mechanical Engineers
Anh Tran et al. (Aug. 2020d). “srMO-BO-3GP: A sequential regularized multi-objective constrained
Bayesian optimization for design applications”. In: Proceedings of the ASME 2020 IDETC/CIE.
vol. Volume 1: 40th Computers and Information in Engineering Conference. International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference. American
Society of Mechanical Engineers
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arXiv preprint arXiv:2003.09436
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Applications:
Anh Tran and Tim Wildey (2020). “Solving stochastic inverse problems for property-structure linkages
using data-consistent inversion and machine learning”. In: JOM 73, pp. 72–89
Anh Tran et al. (2020c). “Multi-fidelity machine-learning with uncertainty quantification and Bayesian
optimization for materials design: Application to ternary random alloys”. In:
The Journal of Chemical Physics 153 (7), p. 074705
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