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Shock Initiation of Explosives at Sandia

Quantum / MD Large Scalable
Codes
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Tests and Experiments
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Stochastic reactive shock waves

Formation Modeling
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Objective: Science-based

engineering and design of new

explosive components

Microstructural Analysis
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Mesoscale Simulations

Reactive shock waves in
pressed explosive




» Role of Porosity in Shock Initiation

“*Some degree of porosity present in almost all energetic
materials

fopore SRUAPSREAREAEUIREhgnSm for hot spo

shock direction

*What about pore
interactions?

**Can we link
particular porosity
configuration with
some metric of
: sensitivity to

- detonation?

Behavior Mater. 1(2015) 423-
438
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Microstructure of Pressed Energetics

“»Energetic material powder pressed to ~90% TMD

Loose Energetic Crystals

C.D. Yarrington, R.R.

Thresholded SEM image of pressed microstructure
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s oynthetic Microstructure Generation

“+2D Discrete Element Method (DEM) simulations used to
generate many microstructures with different porosity
confisqurations

Initial state: spheres placed at random in 250 X 500 nm domain, no overlaps
Langevin dynamics with range of contact cohesion values:

Low cohesion‘i High cohesiog
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t=4.66 ns

. Hierarchical Length Scales in SDT

“»Two-pore collapse studies
+*Small microstructure subset studies
“»Full run to detonation distance
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;  Continuum Hydrocode Simulations—CTH

“*Reverse ballistic impact calculation

<*Evaluate many microstructures to elucidate geometries
that show higher propensity for hot spot formation

Material Models

Up Pores filled with air
— Energetic matrix:
Mie-Gruneisen equation of
Symmetric | state
impact | Stienberg-Guinan-Lund

viscoplastic strength model
Arrhenius burn model

Single-pore collapse rate was used to
calibrate SGL model from MD simulations



Mine Temperature Field Data for Sensitivity
s Indicators

“»*Temperature histograms provide fingerprint for each
microstructure and its hot-spot evolution---note these change
over time and include both ignition and growth information

Temperature at t = 153,90 ps -
- Temparatura at t - 153,89 pa
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“*Area fraction of reacted material, F, provides information
about reaction growth  area(A > 0)
" totalarea




Area Fraction of Reacted Material Across
Many Different Microstructures

< F, calculated at fixed time (150ps) when shock has traversed

~450 nm
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Length Scales, Time History, and
° Appropriate RVE size

“»Consider kurtosis of temperature distribution

Larger pores, lower SSA, smaller pores, lower 55A,
lower 2-body fractions higher 2-body fractions,

Temperalure alt=153.89 ps
Temperature at 1 - 153.90 ps " ?
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« Large Multipore Simulations

Need larger microstructures to see run-to-
detonation behavior

“Small” Multipore

Geometry 1
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Large Multipore Simulati
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Post-overtake

Pre-detonation wave
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s lemperature Histograms

“»Pre-detonation hot spot “*Detonation
1&G -

t=4.66ns

Temperature Histograms
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“*New trends in temperature statistics appear at detonation transition

“*Mean and o level out, but kurtosis continues climbing
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s QOther Detonation Indicators

“*Extent of reaction in shocked zone — 1 post-overtake

“*Specific rate of energy release plateau
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Conclusions

“*Evolution of temperature distribution with time and shock
run distance is a complex function of chemistry and
microstructure features

“*Pre-detonation vs post-detonation

“*shock propagation & chemical reactions introduce different length
and time scales

<+ Different “sensitivity” indicators for hot spot ignition, growth, and
coalescence phases

“»*Specific surface area and pore 2-body fraction are leading
geometric indicators of sensitivity
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Thank Youl!




+ Continuum Hydrocode Simulations—CTH

+CTH—3D, large deformation, multi-material shock physics
hydrocode developed at Sandia National Laboratories

—=—pVeJ
Mass P
dV - .
Momentum ,OE:—VP—V' _6+Q(V,CS)]
E -0 ~ -
Energy pC;—tz—PVOV— _6+Q(V,cs)]OVV
Lagrangian and remap solution Density-temperature
steps as they appear in CTH equilibrium for reactive burn
mogdels t;+ At
AV, AE, AX UR
w o
RP
RP
Vi, E;, B, TG, N density-temperature
equilibrium

Problem Start

McGlaun, J. M., Thompson, S. L., and Elrick, M. G., Int. J. Impact Engng., 10 (1990) 351-
260



CTH Strain Rate Dependent Model —
" Steinberg, Guinan and Lund (1988)

+» Assume a constant shear modulus
** Neglect work hardening
+» Assume linear variation of the Grineisen parameter

Yield Strength: Y ={Yr(&,T) + Yaf (&)}

Shear Modulus: G(P,T) = Go

Thermal Activation: ¢ = [Lopl2U(y YTy 4 C2) Y.<V,
(Implicit Equation) P {{:1 [ e (175) ] YT}

Melting Curve: T,, = Teexpi{2a(l — 1/n)}n20o—a=1/3)

(Y =0whenT =>T,,)

Grlineisen parameter: Y =vYo/(1+ 1)



