This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

WiP: Verification of Cyber Emulation Experiments Through
Virtual Machine and Host Metrics

Jamie Thorpe and Laura P. Swiler and Seth

Hanson and Gerardo Cruz and Thomas Tarman
{jthorpe,lpswile,shanson,gcruz,tdtarma}@sandia.gov
Sandia National Laboratories
Albuquerque, New Mexico, USA

ABSTRACT

Virtual machine emulation environments provide ideal testbeds for
cybersecurity evaluations because they run real software binaries
in a scalable, offline test setting that is suitable for assessing the
impacts of software security flaws on the system. Verification of
such emulations determines whether the environment is working as
intended. Verification can focus on various aspects such as timing
realism, traffic realism, and resource realism. In this paper, we
study resource realism and issues associated with virtual machine
resource utilization. By examining telemetry metrics gathered from
a series of structured experiments. These experiments involve large
numbers of parallel emulations meant to oversubscribe resources
at some point. We present an approach to use telemetry metrics for
emulation verification, and we demonstrate this approach on two
cyber scenarios. Descriptions of the experimental configurations
are provided along with a detailed discussion of statistical tests used
to compare telemetry metrics. Results demonstrate the potential
for a structured experimental framework, combined with statistical
analysis of telemetry metrics, to support emulation verification. We
conclude with comments on generalizability and potential future
work.

CCS CONCEPTS

+ Security and privacy — Formal methods and theory of
security.

KEYWORDS

cyber experimentation, system emulation, model verification

ACM Reference Format:

Jamie Thorpe and Laura P. Swiler and Seth Hanson and Gerardo Cruz
and Thomas Tarman and Trevor Rollins and Bert Debusschere. 2022. WiP:
Verification of Cyber Emulation Experiments Through Virtual Machine
and Host Metrics. In Proceedings of Hot Topics in the Science of Security
(HotSo0s2022). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
XXXXX.123456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HotSo0s2022, April 2022, Virtual Conference

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/XXXXX.123456

Trevor Rollins and Bert Debusschere
tkrollins6@gmail.com,bjdebus@sandia.gov
Sandia National Laboratories
Livermore, California, USA

1 INTRODUCTION

Cyber networks are commonly modeled using one of two approaches:
network simulation or network emulation. In network simulation,
such as the discrete-event simulator ns-3 [5] [15], the underlying
processes, components, and their interactions are simulated in soft-
ware code. In network emulation [11], actual software binaries (e.g.
operating systems and applications) are run on virtualized hard-
ware, offline and separated from real operational systems. Because
emulation models (hereafter called "emulations") run the same bi-
nary software found in real systems, they provide a more realistic
platform for assessing cybersecurity issues and their impact on
other components in the system. However, this additional real-
ism comes with an increased cost. While network simulators can
“control the clock” and simulations can run faster than real-time,
emulations need to run in actual clock time. Additionally, modeling
large networks with emulation requires hundreds or thousands of
virtual machines (VMs) which typically have to be managed over
multiple nodes of a supercomputer. A number of cyber emulation
testbeds have been developed to provide a platform for test and eval-
uation, cyber security investigation, research, and training. [16, 25].
Such testbeds include LARIAT [24], Emulab [26], DETER [8, 21],
and DARPA’s National Cyber Range [12]. Experimental frameworks
such as DEW [20] and SCORCH [13] have been developed to run
structured experimental scenarios on these testbeds.

An important consideration when using emulation is determin-
ing whether the emulation environment is working as intended,
also called verification [1] [23]. Verification of systems in general
typically involves software testing and quality assurance. A unique
aspect of cyber emulation in particular is assessing the performance
of the experiment in the virtualized environment and determining
whether there are sufficient resources available to run the exper-
iment properly. If there are not, the virtualized components may
produce experimental artifacts that result in the outcomes being
incorrect or unrepresentative of the system being modeled.

While there are many aspects of cyber emulation that could be
verified, in this paper, we focus on determining whether there are
sufficient physical resources to support the emulation experiment.
To this end, the goal of this study is two-fold: (1) develop and
exercise a process for verifying cyber emulation environments, and
(2) identify metrics that can indicate when there are insufficient
resources to reliably run an emulation.

In this work, we refer to these metrics as telemetry metrics, fol-
lowing the usage of this phrase from Google [6], Microsoft [3],
Intel [4] and others [7]. These companies use telemetry in the con-
text of network monitoring metrics (e.g. monitoring traffic to and
from VMs, round trip time for TCP flows [6]), virtual machine

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-2639C

https://doi.org/10.1145/XXXXX.123456
https://doi.org/10.1145/XXXXX.123456
https://doi.org/10.1145/XXXXX.123456

HotS0s2022, April 2022, Virtual Conference

resource usage (e.g. number of system processes, thread counts,
physical disk read/write time [3]), and application monitoring (e.g.
CPU utilization). A formal definition from Intel states “Telemetry
refers to monitoring and analyzing information about IT systems
to track performance and identify issues.” [4] Sumo Logic adds
“Telemetry data is used to improve customer experiences, monitor
security, application health, quality, and performance.” [7]. In this
paper, we focus on telemetry metrics relating to the performance
of virtual machines which are used in a cyber emulation study and
the physical machine hosting that study.

We will address resource verification specifically for an emula-
tion tool called minimega [19]. This study was performed on two
different scenarios, described later in this paper. These scenarios are
specific examples meant to demonstrate our proposed general ap-
proach to resource verification. While there has been some related
research in emulation verification and validation, there is generally
no common framework, set of standards, or evaluation metrics to
use when setting up an emulation; it is left to the developer and/or
analyst running the emulation model to examine experimental arti-
facts and decide whether the emulation ran correctly. We hope to
make this process more consistent and objective by providing a pro-
cess for resource verification and a method for identifying metrics
which can be used to detect anomalous experimental results.

The organization of this paper is as follows: Section 2 provides an
overview of related research. Section 3 summarizes our approach to
investigating telemetry metrics for emulation verification. Section
4 outlines the experimental configurations used in both scenarios
of this study. Section 5 presents a discussion of statistical metrics
used to compare telemetry metrics. Section 6 presents the results
for both scenarios. Section 7 discusses future work.

2 RELATED WORK

While the focus of this work is verification, it is also important to
address validation of emulated environments. Validation addresses
the question: is the behavior of the emulated model “close enough”
to the behavior of the physical system to be an acceptable and
adequate representation? Crussell et al. investigate this question
[10], identifying behavior at three levels of abstraction: application,
operating system, and network. A unique aspect of their work
was the use of Markov models to compare patterns of system call
orderings. While we acknowledge validation is also an important
area of research, the focus of our study is resource verification.

In his Ph.D. thesis [14], Brandon Heller developed the idea of
“network invariants.” These are properties that can be used to verify
timing errors in the emulation. The network invariants should be
universal and apply regardless of the experiment being run, the
topology of the experiment, the platform upon which the emula-
tion is run, or the emulation code being used. In this paper, we
expand upon Heller’s idea of network invariants in order to de-
velop telemetry metrics. We choose to use telemetry metrics as
defined above instead of network invariants because performance
and health monitoring metrics will be more generalizable to larger
emulation scenarios that are not bandwidth limited.

It is also important to consider whether periodic polling to track
the metrics, a form of “health monitoring”, affects the behavior of
the emulation itself by using resources. Jia et al. [17] referred to this

Thorpe et al.

issue as a weak form of the Heisenberg uncertainty principle for
measuring host resource usage. They studied virtualized environ-
ments where hundreds of VMs were running on one physical host.
They concluded that frequent polling (sampling intervals between
0.001 and 0.1 seconds) did affect the performance of the emulated
environment. In the work we present in this paper, the polling was
much slower, at 5 or 10 second intervals, and our experimentation
suggests this frequency of polling did not introduce artifacts into
the results.

3 SUMMARY OF APPROACH

The first goal of this study is to develop and exercise a process for
resource verification. The process we developed is as follows:

(1) Plan a series of experiments to stress the physical resources
of your system. In this paper, we refer to a series of these
experiments as “runs”. Each run is defined by a different
emulation configuration that will put different amounts of
stress on on physical host. We achieved this by running
increasing numbers of experiments in parallel. Within each
run, a certain number of “replicates” will be executed in serial.
A replicate is a single iteration of the emulation experiment.
Collect telemetry data from the replicates. The platform may
already collect and return experiment results (“quantities
of interest”) for each replicate. These results help us an-
swer some question about the scenario being emulated. The
telemetry metrics will help us to answer questions about
the emulation itself, and to verify that the emulation had

—
N
~

sufficient resources to run.
Perform the planned experiments using emulation settings
that are increasingly likely to generate emulation artifacts.
For this study, we wanted to purposefully push the physical
resources to oversubscription, forcing a high likelihood of
emulation artifacts in the resulting data. This allowed us
to address the secondary goal of the study, which was to
develop indicators that could help detect unreliable experi-
ments run in oversubscribed conditions.

(4) Observe changes to the emulated scenario’s quantity of in-
terest as resource conditions vary. If the quantity of interest
changes drastically as more and more resources are utilized
on the physical host, then we know that there are likely
emulation artifacts affecting the results.

—
[SY)
=

In addition to establishing this verification process, the second
goal of this study is to identify telemetry metrics that can indicate
when the results of an experiment are likely to be unreliable. In
order to achieve this, we define indicators as a combination of a
telemetry metric and a threshold that that metric should not cross.
We wish to identify indicators where violation of the given thresh-
old during an experiment is highly correlated with unreliable results
in the quantity of interest for that experiment. We hypothesize that
this indicator can then be used to detect and filter experiments with
unreliable results even when the level of resource subscription is
not known.

We evaluate our approach using two scenarios, described further
in Sections 4.2 and 4.3.

WiP: Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics

4 EXPERIMENTAL SETUP

4.1 Emulation Infrastructure

e minimega and SCORCH
The emulation platform we used to run the emulations is
minimega [19]. We also leveraged SCORCH, a framework
that handles scenario orchestration for minimega. SCORCH
allows specific emulation experiments to be defined in a
highly modular way. [13]. Modules called “components” de-
fine a variety of aspects of the experiment, including the
network topology, the scenario (or attack) being run, and
any added tools for data handling. These components can
also be configured to feed resulting data directly to a database
for later analysis.

e Over-Committing Resources
We want to put increasingly more strain on the physical
resources available to the emulation experiments. This will
not only help test our verification process, but it will give
us sufficient data to develop telemetry-based indicators of
unreliable experiments. We oversubscribe resources by forc-
ing the physical host to perform increasingly more work in
parallel. When running an experiment using SCORCH, the
experiment is part of a “namespace”. This namespace can
be thought of as an isolated copy of the experiment envi-
ronment, as specified by the scenario being run. Multiple
namespaces can be started in parallel. Each will have its own
copy of the experiment environment and be able to run its
own series of experiments without affecting the actions of
the other namespaces. For the purposes of this study, we run
several iterations of the same experiment on an increasing
number of parallel namespaces. By increasing the number
of namespaces, we hope to reach a point of resource over-
subscription.

e Data Collection
In order to establish telemetry metrics to indicate unreliable
experiments, data must be collected from the emulations.
SCORCH components can be configured to parse data and
input it directly to a database. Some components that con-
struct the emulated scenario already report data in this way.
Such components may be extended to report additional data
by adding configurations to parse existing data in a new way.
Alternately, it may be useful to design a SCORCH component
specifically for collecting data that is not already collected.
These components run some command at a configured rate
during the experiment and output results that can be parsed.
For this study, collected data included telemetry from the em-
ulated VMs and the physical host running the emulations, as
well as the results, or “quantity of interest” of the experiment
scenario.

4.2 Scanning and Detection Scenario

The scanning and detection scenario is extensively documented in
[28] and [27]. It consists of an attacker conducting reconnaissance
using a scanning tool called nmap and is detected by the intrusion
detection system called snort [9].

The quantity of interest for this scenario is the time to detec-
tion, or “alert” time. There are two stochastic elements that can be

HotS0s2022, April 2022, Virtual Conference

modeled for this scenario: port scan order and rate of packet drop-
ping. As we are interested in the effects of the over-subscription of
resources on the results, both of these modes of stochasticity are
removed - the packet drop rate is set to zero and the port scanning
order is fixed. We then run 400 total replicates and try to capture
the variability in the quantity of interest.

4.3 Command and Control Scenario

The Command and Control scenario [29] emulates a network un-
der attack by a piece of malware with a command and control
communication pattern, such as Emotet [2]. This communication
involves a malicious actor leveraging a covert communication chan-
nel, such as the “cookies” field in HTTP requests, to communicate
with infected hosts within a network. A snort intrusion detection
system on this network attempts to detect and alert to this malicious
communication.

The quantities of interest for this scenario are the number of
alerts received by time t = 1, 5, 10, and 16 seconds. Because this
scenario has multiple quantities of interest, the statistical analysis
will differ slightly from the analysis of the Scanning and Detection
scenario, as will be further discussed in Section 5.2.

The Command and Control scenario was emulated using a sim-
plified network topology. This reduced emulation complexity while
still allowing us to track the number of alerts over time. The emu-
lated network consisted of a VM to generate background traffic, a
VM to generate malware traffic, a single traffic server VM, and a
single VM to host snort. There were several tunable parameters for
this scenario, but all parameters were set to constant values for the
duration of the verification study. There were 1000 benign packets
per second, and 1 in 1000 packets contained the malware signature
that snort would identify. There were 20 malicious packets per
second, and 3 in 20 (150 in 1000) contained the malware signature.

5 METHODS
5.1 Statistical Comparisons of Experimental
Results

As discussed in the scenario descriptions above, each emulation
scenario has a quantity of interest that is being monitored (e.g.
time to alert in the scanning and detection scenario). The telemetry
metrics such as CPU utilization and system load are also being
monitored as a function of time (e.g. recorded every second). The
distribution of the quantity of interest is used to compare similarity
of experimental outcomes at each namespace case. The assumption
is made that the 1-namespace case should be the expected results
of these experiments (as these are least likely to oversubscribe
the physical resources), and the distribution of the 1-namespace
quantities is taken as the ground truth. Two statistical comparisons
are the Tukey multiple comparison test and the ratio acceptance test
as described below. Additional statistical tests will be the subject of
future work.

5.1.1 Tukey Multiple Comparison Test. Tukey’s multiple compari-
son test is used to determine which means amongst a set of means
differ from the rest. A mean value in this context is the average of
a number of experimental replicate results. For example, the Tukey
test allows us to compare the alert time mean at each namespace

HotS0s2022, April 2022, Virtual Conference

case to all other namespace cases. That is, for a set of r means, the
Tukey test considers all possible pairwise differences:y; — pi; for
i# jandi,j=1...r.For each pair, the test checks the following
confidence limits to see if these lower and upper bounds encom-
pass zero. If they do, the differences in means are not significantly
different; if the bounds don’t cover zero, the means are considered

different:
N | .]2
Yi—Yyj* EQa;r,N—rU ; (1)

In this formula, 3; is the mean of group i, g4, N—r is the studentized
range value for a confidence interval of 1 — & with r observations
(r means) and N degrees of freedom, and & is the joint estimate
of the standard deviation. Note that the Tukey test assumes that
the groups associated with each mean are normally distributed
and it also assumes that the within-group variance is the same
across groups. The typical version assumes each group has the
same number of samples n but there is a variation that allows for
unequal groups. Finally, it assumes that the observations of the
groups are independent. The Tukey test is basically a version of the
t-test for comparison of means across multiple groups.

The Tukey test produces a p-value for each comparison, with a
high p-value indicating that the null hypothesis: g3 = pz cannot
be rejected. Thus, a high p-value indicates that our distributions
of alert times are similar, indicating that the experiment produced
comparable results in the two cases. The shortcomings of this sta-
tistical test are that it tends to be overly generous when there are
few samples, and overly strict when there are many samples com-
bined with a small variance. We used the Tukey test because it
is a robust multiple comparison tests. A recent survey [18] states:
“Tukey’s...presents a robust and widely available test for a variety
of situations.” We note that there are several non-parametric tests
which relax the assumption of normal distributions, such as the
Mann-Whitney-U test, the Dunn test, and others [22]. In future
work, we plan to investigate these non-parametric versions.

An example of how the alert times change in the scanning and
detection scenario is shown in Figure 1. The set of histograms in
subplot (a) show the systematic change in the alert time distribution
as the number of namespaces increases from one to 50. The 50
namespace experiment has a wider, longer tailed distribution than
the one namespace distribution and the mean is also larger. The
matrix of Tukey test values in subplot (b) of Figure 1 shows that
the alert times in the tests run on 20, 33, or 50 namespaces would
be considered significantly different, as evidenced by the small p-
values highlighted by the red colors. Thus, the Tukey test serves to
quickly summarize differences in mean alert times across varying
namespaces. Note that p-values appearing as “0.00” in the Tukey
figures throughout this paper indicate a non-zero p-value which is
less than 0.005.

5.1.2 Ratio of Acceptability. To augment the Tukey test, a second
metric, which we call the Ratio of Acceptability (RoA), is utilized.
We define “acceptability” as the range of values for the quantity
of interest of the middle 95% of samples in the 1-namespace case,
as seen in Figure 2. This means that if the quantity of interest of
an experimental run falls into this range, the replicate is deemed
acceptable. The RoA is then defined as the number of samples that
are acceptable divided by the total number of samples. The RoA

Thorpe et al.

goes beyond the mean comparison of the Tukey test: it indicates
the percentage of samples falling within a central 95% region of the
benchmark distribution.

2 - P-Values 10
Y .||. - | 0.90] 0.90 [0.90 (7Y 0.90 [LELY .00 | l
am L B Il o oo oo o J

50 o0 i oo Yoo o

Mmm oMo
032 031 034 034 [087] 0.9 0.01
® lli B 020 000000 [oe7 [l 05 [0
2 ""l © 030 029 033 033 m 02
© 509" ;‘;!1 I;I]II]" IS sae gm@@@m Ioo

10 20 33 50
Namespaces

0.4

Number of Parallel Namespaces
0 10 5 4

33 20 10
H
Namespaces

50

Time (Seconds)

(a) Alert time distribution at (b) Tukey multiple compari-
each namespace. son.

Figure 1: Overview of all scanning and detection emulation
runs.

Figure 2: This plot shows how the upper and lower limit for
the range of acceptable values is calculated. The shaded area
under the curve represents the middle 95% of alert times
for the 1-namespace case. (a) shows the lower bound of this
range, and (b) represents the upper bound.

5.2 Developing Telemetry Metrics

In addition to establishing a verification process, the second goal of
this study is to identify telemetry metrics that can serve indicators
of unreliability for an emulation experiment. In its simplest form,
defining these indicators involves selecting telemetry that can be
extracted from the emulation and thresholds that the telemetry
should not cross for the duration of a given experiment. If thresholds
are crossed, then we believe the results of the experiment to be
unreliable.

In practice, determining a good indicator can be done one of two
ways: from subject matter expert (SME) input, or through extensive
experimentation.

There are certain telemetry that have intuitive thresholds that
shouldn’t be crossed. One instance might be stolen cycles, which is
a measure of the time a VM has to wait for available resources. A
SME might suggest that any experiment for which there are any
stolen cycles is one that should not be trusted, because the amount
of time that a VM waits for resources will affect the timing-based
results of the experiment. But we might still ask: Is this always
the case? Could an experiment still give reliable results with some

WiP: Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics

stolen cycles? Answering these questions may be very difficult
based only on SME opinion.

For this verification study, we turn to experimentation to help
us determine good indicators. As previously described, we define
a range of acceptable quantities of interest, determined by some
baseline set of experiments. In order to identify a good indicator,
we want to find a telemetry metric and threshold such that the set
of experiments that cross this threshold and the set of experiments
with results outside the acceptable range are highly correlated.
Once we identify this indicator, we can use it to find experiment
results that are likely unreliable when running future experiments.
Although an ideal indicator would be useful across different exper-
iment scenarios, the best telemetry metric and threshold may be
highly scenario-dependent.

A good indicator will filter out many unreliable experiments,
so that the Tukey and RoA metrics will show better agreement
to the baseline compared to the set of results when there was
no filtering applied. However, it is also important to look for an
indicator that doesn’t over-filter the experiments. Thus, the success
of different indicators can be compared using the Tukey and RoA
metrics described above as well as with a confusion matrix applied
to the indicator’s results.

The confusion matrix compares the “true” validity of the repli-
cates to the results of filtering with a particular indicator. Validity
is determined using the RoA test described above. If the quantity
of interest for a given replicate falls within the range of acceptable
values given by the RoA test, then the true label for that replicate is
“Valid”. Otherwise, the label is “Invalid”. The test label is assigned to
the replicate based on the telemetry and threshold for the indicator
in question. The confusion matrices are then normalized over the
true conditions. A high ratio of false negatives indicates that the
telemetry metric is over-filtering reliable replicates. A high ratio of
false positives indicates that the telemetry metric is not successfully
filtering out replicates that are invalid.

Note that this process of filtering according to some indicator
may need to be approached differently depending on the nature of
the scenario’s quantity of interest. For example, the Command and
Control scenario has four discrete quantities of interest, as opposed
to a single continuous quantity from the Scanning and Detection
scenario. The method used to evaluate agreement to the baseline
based on all or some of these quantities of interest may affect the
perceived success of failure of an indicator.

6 RESULTS

6.1 Scanning and Detection Results

Recall that the method used for oversubscribing resources in this
study is to run more and more copies of the experiment scenario in
parallel. Experiments for the Scanning and Detection scenario were
run under several different emulation configurations, each of which
differed in the number of parallel namespaces used to run replicates
of the scenario experiment. A summary of these settings can be
seen in Table 1. Note that several replicates were removed from
the study due to corrupted or insufficient data. Across all settings,
there were 3038 total runs with sufficient data for further analysis.

In the scanning and detection scenario, three candidate telemetry
metrics were considered independently:

HotS0s2022, April 2022, Virtual Conference

Table 1: Summary of Scanning and Detection Emulation Set-
tings

Parallel Namespaces 1|2 |4]5(10]20(33|50
Replicates per Namespace | 400 | 200 | 100 |80 | 40|20 |12 | 8

e Stolen Cycles — The amount of time stolen from the virtual
machine waiting for the host CPU to become available. The
threshold for this metric is no cycles stolen during the ex-
periment.

o System Load — This is the CPU demand on the physical host
in terms of the number of processes running. The thresh-
old for this metric is that the system load will not exceed
the number of logical host cores for the duration of the ex-
periment (in this case, 64 cores). Note that system load is
calculated as a minute average, and these experiments last
on the order of seconds.

o Throughput — This is the number of bytes per second of TCP
traffic averaged over the course of the experiment. 250 KB/s,
the average of all 1-namespace experimental run, was chosen
as the minimum threshold for this study.

These metrics are captured every second for the virtual machine
statistics, and every 10 seconds for the host statistics.

Recall that we consider the 1-namespace experiments the base-
line set. In Figure 3(a), we can see the distribution of data deviates
significantly from the baseline for numbers of parallel namespaces
greater than 20. From these analyses, we would say that the results
from 20-, 33-, and 50- parallel namespaces come from different dis-
tributions than the baseline data, and that at least some of the repli-
cates under these conditions are unreliable. The other histograms
in Figure 3 show the data distributions when certain replicates are
filtered out according to the specified indicator. All three metrics
appear to do a reasonable job of removing replicates with alert
times dissimilar to the baseline distribution.

However, looking at the Tukey comparisons and confusion ma-
trices in Figure 4, the indicators are giving ideal results. System
load and throughput do the best job of leaving replicates with alert
times that match with the 1-namespace distribution. Stolen cycles
is actually not as successful as a telemetry metric, according to
the Tukey results. However, the Load-based indicator does have a
higher false positive rate and the Throughput-based indicator has a
higher false negative rate. In fact, in all cases, each of these metrics
seem to filter out many replicates that have acceptable alert times —
especially those at higher namespaces. This can be seen in Figure 5.

Overall, these results could indicate that the thresholds for the
telemetry could be better tuned, although this may make the in-
dicators highly specific to this particular scenario and emulation
platform configuration. For all indicators, although the Tukey and
confusion matrix results are not perfect, there is a clear improve-
ment in agreement to the baseline distributions when replicates
are filtered compared to the unfiltered replicate set. Performance
on this specific scenario should be weighed against the desire for
generalizable indicators.

The results of the Scanning and Detection study show consid-
erable success in applying the proposed verification procedure to
an emulated scenario. We are clearly able to identify the point at

HotS0s2022, April 2022, Virtual Conference

B 200 o 00 |
iy I . I
g~ i £~ o I
8- I fem
E 0 S g 0
2, 20 | z , 2 |
37 . = 0 I
= M
gam . gmm .
5 5
550 the. R
- 1
28 % .4.||||.||....., 2R 0 |
0 !
&|.|||I"Il|||n eBnaenties aone 8 o
5.09 5.10 511 5.12 5.13 5.14 5.09 5.10 511 512 513 5.14
Time (Seconds) Time (Seconds)
(a) All Replicates. (b) Replicates with no stolen
cycles.

g g~ Iy
g S 2 o i
4 a
§ | g < 100 |
g o L H s L
s 200 I z , 00 |
3 o I =z o I
] o 100
fewm l £ e I
bt 0 < 0 |
5 s 2
5 & 100 | T I
2 o I | PP H °
25, 28 |l
z o R

1

2 g !
o °

5.09 5.10 5.11 5.12 5.13 5.14
Time (Seconds)

5.09 5.10 511 5.12 513 5.14
Time (Seconds)

(c) Replicates with a system (d) Replicates with TCP
load under 64. throughput above 250kB/s.

Figure 3: Histograms of the distribution of alert times at each
namespace.

which physical resources are over-subscribed. Based on this, we can
identify several promising telemetry-based indicators that could be
used to help filter out experiments with unreliable results.

Now that we have seen success on one scenario, we aim to apply
the same process to the Command and Control scenario and see
how the results differ.

6.2 Command and Control Results

As with the Scanning and Detection scenario, Command and Con-
trol experiments were run under different emulation configurations,
each with increasingly more parallel namespaces. A summary of
the settings tested for the Command and Control scenario can be
seen in Table 2. The total number of replicates for the command
and control verification study is 1187.

Table 2: Summary of Command and Control Emulation Set-
tings

Parallel Namespaces 1 2 5 |10 | 20 | 40
Replicates per Namespace | 200 | 100 | 40 | 20 | 10 | 5

Recall that the quantities of interest for this scenario are the num-
ber of alerts by time t=1, 5, 10, and 16 seconds. Due to the multiple
quantities of interest, Tukey statistics must be aggregated across
all quantities of interest in order to compare result distributions.
The aggregate function used in this study was the mean.

Figure 6 shows the Tukey analysis performed on all replicates for
this scenario. We can see that around 20 parallel namespaces, the
quantity of interest results deviate significantly from the baseline.

Thorpe et al.

P-Values
1.0
-G - G |
Stolen Cycles <= 0
3 -~ B) 10
0.6
o EEIEE o
Em -
B |-
I : Valid ~ 0.25

1 2 4 5 10 2 33 ’ Invalid Valid
Namespaces Telemetry Metric Label

4

33 20 10
i
@
@

Namespaces
5

RoA Label

(a) Replicates with zero Stolen Cycles.
P-Values

1.0
m m OIB

-
$ 1.0
N o - -
] _ Invalid 08
N e
I 5
z S 032 030 034 034 0.80 3 0.4
02 &
0.0
1 2 4 5 10 2 invalid valid 0
Namespaces Telemetry Metric Label

(b) Replicates with Load under 64.
P-Values

1.0
- | B em I
0.8

Y s o oo e o oo P,
:-COCHCN COCOEREE | W |o.e
4] .05 [007 009] 0.06 [l 050] 000 000 RPN 06
8 ool oo AU i,
J o0 0.00] 0.00[0.00 [000 [000 o IO'2 € \aidl 036 o6s [N
B 5[0 o oo oo N I -

1 2 4 5 10 20 33 50 : Invalid Valid 0.0
Namespaces Telemetry Metric Label

(c) Replicates with Throughput above 250kB/s.

Figure 4: Tukey and Confusion Matrix Results for Selected
Indicators on Scanning and Detection Scenario.

=4
®
°

o x
o

-, System Load |
[-
oat %
[= Stolen
oyel g 02 Stolen
0.0 yeles 00 Cycles
1 2 4 5 10 2 33 50 1 2 4 5 10 20 33 50
Number of Namespaces

°
B

Fraction of Runs Filtered
°
g

Ratio of Acceptability

Number of Namespaces

(a) Ratio of runs filtered out at (b) RoA at each namespace.
each namespace.

Figure 5: Comparing the number of filtered replicates to the
improvement in the RoA metric.

This is also reflected in the histograms for the scenario. From these
analyses, we would say that some of the replicates from 20- and 40-
parallel namespaces are likely unreliable.

We wished to first test the exact same indicators as the Scanning
and Detection scenario. If the same metrics worked approximately
as well in both scenarios, it could indicate a highly generalizable
metric. In addition, we tested a variety of other available teleme-
try and thresholds. During experimentation, telemetry is captured
every 5 seconds for the VM statistics and every 10 seconds for the
host statistics. The set included:

WiP: Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics

“alll.
o " Mean P-Value

50 I

o - I
50

ol -

o ¢
B ¢
T g
50 £
£

5

10 5
°
2
o
Y

o w-n.llwoe oo ____ ..

Number of Parallel Namespaces

~ 02
e
o = S °
0 2 4 6 8 10 12 14 16 <
2 5 10 0 40 00

Alerts Received by Time t=10s 1 2
Namespaces

(a) Number of Alerts at 10 (b) Tukey multiple comparison.
seconds, distribution at each
namespace.

Figure 6: Overview of all command and control emulation
runs.

o Stolen Cycles — See Scanning and Detection results for teleme-
try description. The best-performing threshold tested was
no more than one stolen cycle.

o System Load — See Scanning and Detection results for teleme-
try description. Although we tested the same threshold as
the Scanning/Detection method used (64), we found that
the Command and Control scenario needed a much lower
threshold, so we chose no more than 14 processes.

o Interrupts per Second — This is the number of times in one
second that the system is interrupted. The more interrupts
there are, the more clock time a single process will take to
complete. From looking at the resulting data, a threshold of
no more than 2250 was set.

Note that although we wanted to test the Throughput metric
with this scenario as well, throughput data was not successfully
collected from enough experiments to utilize this metric.

The Tukey comparisons and associated confusion matrices for
these indicators can be seen in Figure 7.

The approach to verification analysis taken with the Scanning
and Detection scenario needed to be adapted for the Command and
Control scenario. Even if the same telemetry has the potential to
make a good indicator, the filtering thresholds often needed to be
adjusted for the new scenario, as is discussed in subsection 6.2.1.
Although there isn’t an obvious candidate for a good universal
indicator between the Scanning and Detection and the Command
and Control Scenarios, we were still able to find good indicators
for the Command and Control scenario specifically.

6.2.1 Setting Thresholds. In order to strike a balance between the
results of the Tukey comparisons and the confusion matrices, we
can tune the threshold settings for each telemetry. Figure 8 com-
pares the Stolen Cycles indicator with a threshold of 0 (used in the
Scanning and Detection Scenario) vs a threshold of 1. We see that
the more forgiving threshold of 1 allows us to keep more replicates
while still improving the Tukey results overall. As discussed ear-
lier, it is important to choose an indicator that can both improve
Tukey results and avoid over-filtering in order to maintain as many
reliable replicates as possible.

Figure 9 compares the results of the host load-based indicator
when using different thresholds. For the Scanning and Detection

HotS0s2022, April 2022, Virtual Conference

Mean P-Value

10

- 0.77 0.44 0.81 0.56 I

0.8

~ | 077 0.50 0.60 0.56
g 06 Stolen Cycles <=1 .
2 044 0.50 0.72 0.56
g Invalid 0.8
2 0.6

10
e H
o
3
o
9
N
o
o
o
o
RoA Label

02 04
0.057
S 056 056 056 0.56 I Valid
0.0

1 2 5 10 20 . Invalid Valid
Namespaces Telemetry Metric Label

(a) Replicates with Stolen Cycles less than or equal to 1.

Mean P-Value
1.0
- o o nn I
0.8
0.60 0.89

~ 077 0.50

Namespaces
5
o
IS
2
o
&
3
o
3
N
o
@
8

RoA Label

0.055

I ’ Valid
0.0

20 - Invalid Valid
Telemetry Metric Label

0.72
-n
5 10

Namespaces

(b) Replicates with Load less than or equal to 14.

1.0
I 0.8
06 Interrupts/s <= 2250 _,

Mean P-Value

Invalid 0.28 08

0.4

Namespaces

0.6

0.4

0.2 . 0.20
I Valid 2 0.2
0.0 0.0

1 2 5 10 40 . Invalid Valid
Namespaces Telemetry Metric Label

RoA Label

(c) Replicates with Interrupts/second less than or equal to 2250.

Figure 7: Tukey and Confusion Matrix Results for Selected
Indicators on Command and Control Scenario

scenario, the threshold was chosen to be 64 to match the number of
cores. For reasons discussed in the next subsection (6.3), the number
of cores available on the host was reduced to 32 for running the
command and control scenario. Therefore, we tested the load-based
indicator with thresholds of 64 and 32, but found that an even lower
threshold of 14 was more effective at filtering out the unreliable
replicates.

Additional insight about thresholds can be gained by looking
at the distribution of telemetry values collected from all replicates
in each emulation setting. This is one tactic for approximating
reasonable thresholds to set for our metrics, as long as we accept
that the threshold will be very scenario-dependent. However, such
data can also help to find telemetry that will likely not be useful
indicators. Figure 10 shows two box plots, one for load and one for
number of interrupts per second. For load, we see a smooth increase
in load as we increase the number of parallel namespaces, with a
very sharp increase as we get to 20- or 40- parallel namespaces.
It is easy to conceive of a horizontal line on this plot that might
linearly separate datapoints of “good” replicates from datapoints
of “bad” replicates. This separability indicates that load could be
a good indicator, and the plot gives us an idea of how to set the

HotS0s2022, April 2022, Virtual Conference

Mean P-Value

1.0
- 069 033 0.56 I
0.8
o Stolen Cycles <= 0
8 ~ 0.69 0.51 0.56 0.6 Yy 1.0
2
g 058
g _
Sn 033 0.51 0.56 0.4 2!; 0.6
< 0.4
02 &
=1 0.56 0.56 0.56 0.2
1 2 5 10 0.0 Invalid Valid 00
Namespaces Telemetry Metric Label
(a) Replicates with zero Stolen Cycles. (b) Filter success.
Mean P-Value
1.0
- 077 044 n 056
0.8
050 060 056
” _
g o6 Stolen Cycles <=1
2 044 0.50 0.72 0.56 0.8
g Invalid .
£ 04 g
2 2 0.6
ol o060 | 072 056 K}
o2 & 0.4
&
id 0057
S 056 056 056 056 I Valid 0.2
0.0
1 2 5 10 20 invalid — valid %©
Namespaces Telemetry Metric Label

(c) Replicates with Stolen Cycles less
than or equal to 1.

(d) Filter success.

Figure 8: Results using two different thresholds on “stolen
cycles” telemetry.

threshold. On the other hand, notice the wide range of collected
values for the interrupts per second telemetry. The box plots are
mostly centered around the same values, but there are also many
low- and high-end outliers. This pattern persists regardless of the
number of parallel namespaces. These factors could indicate that
developing an indicator based on interrupts telemetry would be
difficult or unsuccessful.

Threshold identification is challenging. Ideally, we want to iden-
tify thresholds which do not rely on experiments, especially because
one may not be able to generate controlled conditions in larger,
more complicated emulation scenarios. Threshold setting for verifi-
cation testing deserves more attention in the emulation community.

6.3 Process Generalizability

The verification process we established showed considerable promise
on the Scanning and Detection scenario. However, the process was

not immediately applicable to the Command and Control scenario.
Additional factors had to be considered, such as the difference in re-
sources required to run each scenario, the type and amount of data

to be collected from each scenario, and how simplifying decisions

in the emulation model affect our verification methods.

In the results for the Scanning and Detection scenario (Figure 1),
there is a clear point where the physical host was oversubscribed,
around 33 parallel namespaces. We did not initially see this same
point in the histogram data for the Command and Control sce-
nario - all distributions looked approximately the same regardless
of the number of parallel namespaces run. In addition, looking at
the Tukey analysis, no p-values were lower than 0.05. Therefore,

Thorpe et al.

Mean P-Value

1.0

Load <= 64
ﬂﬂ ﬂ-m e
Invalid o 1 0.8
0.4
0.6
(X (X
~ -m-- m 0.2 04
S
1 2 5 10 20 00

Namespaces

5

Namespaces
10

RoA Label

Invalid Valid
Telemetry Metric Label

(a) Replicates with 64 or fewer parallel
processes.

(b) Filter success.

Mean P-Value
Load <= 32

10
Invalid| 0.4 |°'B
0.6
0.4
Valid 0.0097 o2
0.0

Invalid Valid
Telemetry Metric Label

Namespaces

RoA Label

Namespaces

(c) Replicates with 32 or fewer parallel
processes.

(d) Filter success.

Mean P-Value

Namespaces

ROA Label

Valid 0.055

Invalid Valid
Telemetry Metric Label

Namespaces

(e) Replicates with 14 or fewer parallel
processes.

(f) Filter success.

Figure 9: Tukey and confusion matrices when using three
different thresholds on “load” telemetry.

Range of Values for Stat “load Range of Values for Stat “in” (Interrupts)

4000]
40 3500
I 8 3000 T
S 2500
2 2000 %
1500 g o
10 % o0 g
500 ' 8
I = o [I T |
1 2 s 10 20 4 12 s 10 20 4

Number of Namespaces Number of Namespaces

(a) Load Telemetry. (b) Interrupts per Second
Telemetry.

Figure 10: Boxplot of Data Collected Across All Replicates.

we could not reject the null hypothesis that all experiments were
reliable.

WiP: Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics

There are a couple factors that we theorized would cause the
Command and Control results to be inconclusive. Although the
Command and Control scenario seemed more complex logically, the
scenario implementation for emulation was simplified. The Scan-
ning and Detection scenario involved emulating 27 VMs while the
Command and Control scenario only contained four. The Scanning
and Detection scenario had one host connecting to many, which
requires TCP connection maintenance throughout the experiment.
The Command and Control scenario simplified all network traffic
emulation by having only one VM actually output the traffic. For
both of these reasons, the Command and Control scenario as it was
defined in this study required far fewer resources to run than the
Scanning and Detection scenario.

We considered several approaches to address this. One approach
was to run more parallel namespaces. However, we found during
testing that our emulation infrastructure did not allow us to run 50
or more parallel namespaces (contact authors for a discussion of
these issues, which were traced to Python socket handling).

Another approach to increasing physical resource demand is to
reduce the amount of resources available to the host. We did so by
reducing the available processing power on the physical host by half.
The results described in 6.2 came from a set of experiments where
resources were limited in this way. From the results shown, it is clear
that this configuration did lead to resources being oversubscribed
in a similar way to the Scanning and Detection scenario.

Several additional methods are left to explore in Future Work.

With the conclusion of the two scenario studies, we have shown
that our proposed verification process is generalizable. A great
deal of insight was gained through the process of applying our
verification methods to two different scenarios.

e More consideration was required to process Command and
Control data in a timely and meaningful manner due to the
volume of data. Modifications to data collection methods
were required to preemptively reduce the volume of output
traffic data, and even then 1200 experiment replicates output
approximately 20Gb of data total.

o Verification can highlight subtleties in physical host con-
figurations. Using our local computing cluster, we found a
marked difference in results depending on which physical
host ran the experiments, even though each host should have
similar specifications.

e The design of the emulated system model can effect verifi-
cation methods. When addressing the level of fidelity with
which to model a system, consider the abilities of the physi-
cal host running the emulation. Similarly, when telemetry is
collected, consider the emulation model when interpreting
results. It is possible that the design of the model or the em-
ulation platform could affect the outcome of the verification
experiments.

Overall, the verification process we have outlined presents a
significant step forward in emulation verification. We were able
to use our process to verify the capabilities of our physical host
to run large numbers of parallel emulations successfully without
introducing emulation artifacts to the resulting data. In addition, our
process shows great promise of being a generalizable framework
for emulation verification.

HotS0s2022, April 2022, Virtual Conference

7 FUTURE WORK

We have only scratched the surface of what can be explored through
verification. First, the Results section (6) discussed two methods we
pursued to force the Command and Control scenario to stress the
available physical resources of the system. One method we did not
test was making the scenario itself more complicated. We could try
any of the following:

e Add more VMs to the scenario without changing the func-
tionality of any existing VMs or implementing functionality
on new VM’s. This could stress memory resources.

e Have the VMs perform more resource-intensive processes.

e Make the network for the scenario more complex. The phys-
ical host must maintain network connections in the emula-
tion, so increasing traffic complexity could stress the host.

Performing any of these experiments could further inform new
research questions, such as which tactics are more effective at
causing stress to the system. Answering this might help to direct
the selection of more informative telemetry for defining verification
metrics.

Additionally, there is more than one way to think about verifica-
tion. So far, we have only explored the topic of resource verifica-
tion. There are other levels of realism to verify, including realistic
network traffic patterns and software execution[14]. The type of
verification may depend on the questions being asked about the
scenario, and different questions may require different metrics.

There is also a great deal more to explore in the way of metric
formulation. One path that we considered in a limited way was
the application of a machine learning model to develop indicators
from multiple telemetry metrics. This approach could give more of
a comprehensive evaluation of experiment health and reliability as
compared to a single-telemetry metric. Using a machine learning
model to learn weights for various telemetry could help develop
a combined metric which would be able to better determine un-
reliability of replicates. Additionally, high feature importance in
the model could be used to drive further single-telemetry indicator
studies.

Finally, there are a couple fundamental assumptions on which
our verification analysis relied, and these assumptions should be
further explored.

o Our metrics relied on a baseline set of data to determine the
base distribution for acceptable experiment results. This was
calculated from results given when only one experiment was
run at a time, since this was the minimum resource utilization
for our set of experiments. But how do we know that this re-
ally is an acceptable baseline? If the scenario was sufficiently
large and complex, or the physical resources were sufficiently
limited, only a single experiment may overwhelm the physi-
cal host, giving unreliable results. The assumption that the
physical host has enough resources for one experiment is
akin to a mathematical axiom. We need this assumption to
help “prove” other hypotheses, but proving the axiom itself
could be very difficult.

o We define “sameness” of distributions by a successful Tukey
test. But is this enough? How close do two distributions
have to be to each other to be considered the same? And is

HotS0s2022, April 2022, Virtual Conference

this sameness of distributions sufficient to indicate reliable
experiment results?

We made early, sensible assumptions at the time that allowed us to
build this study. But it may be fruitful to look back and reconsider
these assumptions.

8 CONCLUSIONS

Verification is a key process for ensuring that system emulation
successfully models the real world. We demonstrated a proposed
verification process on two different cyber attack scenarios. In
the Scanning and Detection scenario, we found that we could use
telemetry-based metrics to detect experiments that were likely to
have unreliable results. By applying a similar method to the Com-
mand and Control scenario, we were able to show that the same
verification process, while not immediately applicable, was fairly
generalizable to the new scenario. The exercise also gave us key in-
sights into the subtle differences to be aware of in physical resource
configuration, the importance of fidelity and implementation deci-
sions in the emulation platform, and differences in data collection
and storage demands from scenario to scenario.

In general, experiment repeatability is key to bringing rigor and
scientific process to cybersecurity. Just as reported experiments and
results in the physical sciences should be repeatable and verifiable,
so too should cyber experiments. Failure to reproduce a result may
be the fault of emulation artifacts rather than faulty experiment
design. These artifacts can come from the abilities and resources of
the physical host running the emulation or from the emulation plat-
form itself. The process of verification and use of telemetry metrics
can help evaluate these factors. Repeatability and reproducibility
of experiments can strengthen belief in the validity of the results.
A result that holds under repetition and various modeling environ-
ments is more likely to hold in the real system as well. In this way,
verification can help to give us more confidence that experimental
environments can help to inform our decisions on real life cyber
systems.

ACKNOWLEDGMENTS

This work has been supported by the SECURE project within the
Grand Challenge LDRD Program at the Sandia National Labora-
tories. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering So-
lutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.
This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

REFERENCES

[1] 2012. IEEE Standard for System and Software Verification and Validation. IEEE
Std 1012-2012 (Revision of IEEE Std 1012-2004) (2012), 1-223. https://doi.org/10.
1109/IEEESTD.2012.6204026

[2] 2018. Alert (TA18-201A) Emotet Malware. Techncial Report. US CERT. https://us-
cert.cisa.gov/ncas/alerts/TA18-201A

[3] 2021. Azure Monitor. (2021). https://docs.microsoft.com/en-us/azure/azure-
monitor/autoscale/autoscale-common-metrics.

Thorpe et al.

[4] 2021. Cloud Telemetry: Advancing Your IT Strategy. (2021). https://www.intel.

com/content/www/us/en/cloud-computing/telemetry.html.

[5] 2021. A Discrete-Event Network Simulator for Internet Systems. (2021). https:

//Www.nsnam.org/.
[6] 2021. Network Telemetry. (2021). https://cloud.google.com/network-telemetry.
[7] 2021. What is Telemetry? The Guide to Application Monitoring. (2021). https:
//www.sumologic.com/insight/what-is-telemetry/.

[8] Terry Benzel, Bob Braden, Ted Faber, Jelena Mirkovic, Steve Schwab, Karen Sollins,

and John Wroclawski. 2009. Current developments in DETER cybersecurity

testbed technology. In 2009 Cybersecurity Applications & Technology Conference

for Homeland Security. IEEE, 57-70.

Cisco. 2019. Snort intrusion detection and prevention system.

https://www.snort.org/.

[10] Jonathan Crussell, Thomas M Kroeger, Aaron Brown, and Cynthia Phillips. 2019.
Virtually the Same: Comparing Physical and Virtual Testbeds. In 2019 Interna-
tional Conference on Computing, Networking and Communications (ICNC). IEEE.

[11] Jon Davis and Shane Magrath. 2013. A survey of cyber ranges and testbeds.

Technical Report. Cyber and Electronic Warfare Division, Defence Science and

Technology Organization, Australian Government.

Bernard Ferguson, Anne Tall, and Denise Olsen. 2014. National cyber range

overview. In 2014 IEEE Military Communications Conference. IEEE, 123-128.

Seth Hanson, Jerry Cruzy, and Casey Glatter. 2021. SCORCH User Guide. Technical

Report SAND2021-11504 O. Sandia National Laboratories.

Brandon David Heller. 2013. Reproducible Network Research with High-Fidelity

Emulation. (2013).

Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph

Kopena. 2008. Network simulations with the ns-3 simulator. SIGCOMM demon-

stration 14, 14 (2008), 527.

Alefiya Hussain, David DeAngelis, Erik Kline, and Stephen Schwab. 2020. Repli-

cated Testbed Experiments for the Evaluation of a Wide-range of DDoS Defenses.

In 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).

IEEE, 46-55.

Quan Jia, Zhaohui Wang, and Angelos Stavrou. 2009. The Heisenberg Measuring

Uncertainty in Lightweight Virtualization Testbeds.. In CSET.

Stephen Midway, Matthew Robertson, Shane Flinn, and Michael Kaller. 2020.

Comparing multiple comparisons: practical guidance for choosing the best mul-

tiple comparisons test. Peer] 8 (2020). https://doi.org/10.7717/peer;j.10387

[19] minimega developers. 2019. minimega: a distributed VM management tool.
http://minimega.org/

[20] Jelena Mirkovic, Genevieve Bartlett, and Jim Blythe. 2018. DEW: Distributed Ex-
periment Workflows. In 11th USENIX Workshop on Cyber Security Experimentation
and Test CSET 18).

[21] Jelena Mirkovic, Terry V Benzel, Ted Faber, Robert Braden, John T Wroclawski,

and Stephen Schwab. 2010. The DETER project: Advancing the science of cy-

ber security experimentation and test. In 2010 IEEE International Conference on

Technologies for Homeland Security (HST). IEEE, 1-7.

Kimihiro Noguchi, Riley S Abel, Fernando Marmolejo-Ramos, and Frank Koni-

etschke. 2020. Nonparametric multiple comparisons. Behavior Research Methods

52, 2 (2020), 489-502.

William L Oberkampf and Christopher J Roy. 2010. Verification and validation in

scientific computing. Cambridge University Press.

[24] Lee M Rossey, Robert K Cunningham, David J Fried, Jesse C Rabek, Richard P

Lippmann, Joshua W Haines, and Marc A Zissman. 2002. Lariat: Lincoln adapt-

able real-time information assurance testbed. In Proceedings, IEEE Aerospace

Conference, Vol. 6. IEEE, 6-6.

Stephen Schwab and Erik Kline. 2019. Cybersecurity Experimentation at Program

Scale: Guidelines and Principles for Future Testbeds. In 2019 IEEE European

Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 94-102.

Christos Siaterlis, Andres Perez Garcia, and Béla Genge. 2012. On the use of

Emulab testbeds for scientifically rigorous experiments. IEEE Communications

Surveys & Tutorials 15, 2 (2012), 929-942.

[27] Thomas Tarman, Trevor Rollins, Laura Swiler, Jerry Cruz, Eric Vugrin, Hao
Huang, Abhijeet Sahu, Patrick Wlazlo, Ana Goulart, and Kate Davis. 2021. Com-
paring reproduced cyber experimentation studies across different emulation
testbeds. Proceedings, 14th Workshop on Cyber Security Experimentation and Test
(CSET21), ACM (2021).

[28] Eric Vugrin, Jerry Cruz, Christian Reedy, Thomas Tarman, and Ali Pinar. 2020.
Cyber threat modeling and validation: port scanning and detection. In Proceedings
of the 7th Symposium on Hot Topics in the Science of Security. Association for
Computing Machinery.

[29] Eric Vugrin, Seth Hanson, Jerry Cruz, Casey Glatter, Thomas Tarman, and Ali
Pinar. 2021. Detection of command and control traffic: model development and
experimental validation. in preparation (2021).

[

[12

[13

[14

[15

[16

(17

[18

[22

[23

[25

[26

https://doi.org/10.1109/IEEESTD.2012.6204026
https://doi.org/10.1109/IEEESTD.2012.6204026
https://us-cert.cisa.gov/ncas/alerts/TA18-201A
https://us-cert.cisa.gov/ncas/alerts/TA18-201A
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-common-metrics
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-common-metrics
https://www.intel.com/content/www/us/en/cloud-computing/telemetry.html
https://www.intel.com/content/www/us/en/cloud-computing/telemetry.html
https://www.nsnam.org/
https://www.nsnam.org/
https://cloud.google.com/network-telemetry
https://www.sumologic.com/insight/what-is-telemetry/
https://www.sumologic.com/insight/what-is-telemetry/
https://doi.org/10.7717/peerj.10387
http://minimega.org/

	Abstract
	1 Introduction
	2 Related work
	3 Summary of Approach
	4 Experimental setup
	4.1 Emulation Infrastructure
	4.2 Scanning and Detection Scenario
	4.3 Command and Control Scenario

	5 Methods
	5.1 Statistical Comparisons of Experimental Results
	5.2 Developing Telemetry Metrics

	6 Results
	6.1 Scanning and Detection Results
	6.2 Command and Control Results
	6.3 Process Generalizability

	7 Future Work
	8 Conclusions
	Acknowledgments
	References

