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Hydrocarbon growth: blessing and curse

Helpful Harmful
e (Carbon nanotubes Soot, particulate matter
— Drug delivery e Sources
— Structural material — Wildfires
e Black carbon — Diesel engines
— Nutrient absorber — Marine engines
— Rubber reinforcement e Effects
e Plastics — Respiratory ailment

— Lung cancer

_ — Climate forcing
Interesting

e Polyaromatics in space

— Likely growing in cold
environments
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Overview

e “Well-skipping” radical-radical reactions provide a direct chemical
pathway from small hydrocarbons to soot inception

e Qur result: these reactions are important to soot formation only
well below atmospheric pressure

— Relevant to astrochemistry

— Likely not relevant in forest fires

— Not relevant in combustion engines
— Could be industrially relevant
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How does soot form?

Oxidation products
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How does soot form?
Adding more rings
"o Leading explanation: HACA (Hydrogen abstraction, C,H, addition)
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How does soot form?
Adding more rings
Leading explanation: HACA (Hydrogen abstraction, C,H, addition)

: H abstraction
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How does soot form?
Adding more rings

" Leading explanation: HACA (Hydrogen abstraction, C,H, addition)
— Predicts stable molecules that must be “activated” by H abstraction

.
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How does soot form?
Adding more rings

Leading explanation: HACA (Hydrogen abstraction, C,H, addition)
— Predicts stable molecules that must be “activated” by H abstraction
— Too slow to explain soot
— Not enough large, stable molecules are observed for this explanation
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How does soot form?
Adding more rings

" e Leading explanation: HACA (Hydrogen abstraction, C,H, addition)
— Predicts stable molecules that must be “activated” by H abstraction

/

— Too slow to explain soot

— Not enough large, stable molecules are observed for this explanation

: H abstraction
Q osp D.., Acetylene addition
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.E_ 0.0 O.., - +H {+MJ ‘
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Proc. Comb. Inst. 2011, 33, 41-67

e OQOriginal idea: pyrene can dimerize and make a particle
— Debunked! A PAH needs around 10-20 rings to dimerize (at 1500 K)!
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How does soot form?
Bonds between PAHSs

PAC (Phenyl Addition dehydroCycllzatlon)

‘Hz @ (R3)
B R e

JPCA 2008, 112, 2362-2369
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How does soot form?
Bonds between PAHSs
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PCCP 2020, 22, 5314-5331
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“Well-skipping” non-Boltzmann reactions

Radical + Radical - [Adduct]* - Radical + Radical
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Potential energy
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i : kT ~ 12.5 kd/mol (1500 K
e Radical-propagating B mol ( )

|II

e Reactivation only required when caught in the “wel
e Rate depends on temperature and pressure
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3 Well-skipping reactions that make soot
precursors
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Apparatus
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e Flash pyrolysis (~100 us)
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Apparatus

Reflectron mass spectrometer

lon reflector

e Flash pyrolysis (~100 us) followed by
electron-ionization mass spectrometry

— 0N detector (MCP)
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Apparatus

Reflectron mass spectrometer

lon reflector

e Flash pyrolysis (~100 us) followed by
electron-ionization mass spectrometry

— 0N detector (MCP)
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Electron

. beam
Thermal camera image

AN

150 160 170
lon mass (m/z)

11400

4 1300

1200

(31) ®@4nyesadwa)

1100

1000

900

BIals

CHEMISTRY, COMBUSTION, AND MATERIALS CENTER 8500 () Sandia National Laboratories



Apparatus

Reflectron mass spectrometer

lon reflector

e Flash pyrolysis (~100 us) followed by
electron-ionization mass spectrometry

— 0N detector (MCP)
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Phenyl + Benzyl

| Cx CH,
D T

: e Chain reaction —the product becomes the reactant

Energy
(kJ/mol)
—
<

e O 9
corl SHs

N

Energy
(kJ/mol)

CHEMISTRY, COMBUSTION, AND MATERIALS CENTER 8300 () Sandia National Laboratories



Phenyl + Benzyl

e Chain reaction —the product becomes the reactant
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Phenyl + Benzyl

e Chain reaction —the product becomes the reactant

e Decomposition competes with further growth
— 5-member-ring radicals are quite stable
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Phenyl + Propargyl
-

| H,C—C=CH

Pz
e Both radicals are thermally stable to 1600+ K

e This reaction may resemble other og-radical + m-radical reactions

e Reaction rates have been calculated by experts
Rates from PCCP 2020, 22, 6868-6880
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Phenyl + Propargyl
CH,
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Phenyl + Propargyl
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well-skipping
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Phenyl + Propargyl
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Phenyl + Propargyl
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Phenyl + Cyclopentadienyl

| Cs (H:
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Phenyl + Cyclopentadienyl

Well-skipping

e Well-skipping is present, but expected product is low
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Phenyl + Cyclopentadienyl
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Conclusions

e o-radical + m-radical reactions tend to produce
5-member-ring m-radicals

e The well-skipping routes can be significant at 30 Torr

e Radical-radical well-skipping is negligible at 1+ atm

Ange. Chem. Int. Ed. 2021, 60, 27230-27235
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Implications of well-skipping

Within soot community, well-skipping reactions are likely occurring
in low-pressure flames that are often used to reduce complexity

e These well-skipping reactions probably are relevant to
astrochemistry

— PAHs form spontaneously at low pressures and low temperatures

e Could we grow carbon nanotubes or other particles by well-
skipping reactions?
— Requires occasional reactivation and low pressure
— Allows C;, C,, or C, feedstocks

— Makes imperfect structures, maybe useful as construction material
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Summary

e We studied three o-radical + m-radical reactions
— All three showed well-skipping behavior

— All three well-skipping products produced polycyclic hydrocarbon
radicals containing a 5-member-ring

e Simulation reveals that well-skipping is negligible at atmospheric
pressure but important at 30 Torr

— Low pressure flame studies must consider well-skipping reactions

— Radical-radical well-skipping may be dominant in extreme low
pressure astrochemistry
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