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Hydrocarbon growth: blessing and curse

Helpful
• Carbon nanotubes

– Drug delivery
– Structural material

• Black carbon
– Nutrient absorber
– Rubber reinforcement

• Plastics

Harmful
Soot, particulate matter

• Sources
– Wildfires
– Diesel engines
– Marine engines

• Effects
– Respiratory ailment
– Lung cancer
– Climate forcing

Interesting
• Polyaromatics in space

– Likely growing in cold 
environments



Overview

• “Well-skipping” radical-radical reactions provide a direct chemical 
pathway from small hydrocarbons to soot inception

• Our result: these reactions are important to soot formation only 
well below atmospheric pressure
– Relevant to astrochemistry
– Likely not relevant in forest fires
– Not relevant in combustion engines
– Could be industrially relevant



How does soot form?

Proc. Comb. Inst. 2017, 36, 717-735

Aromatic radicals

Poly-aromatic 
hydrocarbons (PAHs)

Sticky PAHs
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How does soot form?
Adding more rings

• Leading explanation: HACA (Hydrogen abstraction, C2H2 addition) 
– Predicts stable molecules that must be “activated” by H abstraction
– Too slow to explain soot
– Not enough large, stable molecules are observed for this explanation
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How does soot form?
Adding more rings

• Leading explanation: HACA (Hydrogen abstraction, C2H2 addition) 
– Predicts stable molecules that must be “activated” by H abstraction
– Too slow to explain soot
– Not enough large, stable molecules are observed for this explanation

• Original idea: pyrene can dimerize and make a particle
– Debunked! A PAH needs around 10-20 rings to dimerize (at 1500 K)!

H abstraction

Acetylene addition

Pyrene
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How does soot form?
Bonds between PAHs

PAC (Phenyl Addition dehydroCyclization)

JPCA 2008, 112, 2362-2369



How does soot form?
Bonds between PAHs

PCCP 2020, 22, 5314-5331



“Well-skipping” non-Boltzmann reactions

• Radical-propagating
• Reactivation only required when caught in the “well”
• Rate depends on temperature and pressure

0 kJ/mol
-32 kJ/mol

-375 kJ/mol



3 Well-skipping reactions that make soot 
precursors



Apparatus

Helium + radical precursors
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Phenyl + Benzyl

• Chain reaction – the product becomes the reactant
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• Chain reaction – the product becomes the reactant

Benzyl Diphenylmethane Diphenylmethyl

Diphenylmethyl
Triphenylmethane Triphenylmethyl

Phenyl



Phenyl + Benzyl

Ange. Chem. Int. Ed. 2021, 60, 27230-27235

• Chain reaction – the product becomes the reactant
• Decomposition competes with further growth

– 5-member-ring radicals are quite stable



Phenyl + Propargyl

Rates from PCCP 2020, 22, 6868-6880

No further 
decomposition



Phenyl + Propargyl

• The experiment cannot 
distinguish isomers

• The simulation agrees pretty 
well with experiment

• C9H7 is mostly indenyl radical 
according to simulation

C9H8

C9H7



Phenyl + Propargyl

• We scanned each precursor 
concentration

• Concentration dependence 
of each species agrees well 
with the simulation



Phenyl + Propargyl
C9H8

C9H7



Phenyl + Propargyl

• We cut well-skipping from the 
simulation

• C9H7 yield changes, no longer 
agrees with experiment

• Conclusion – well-skipping is the 
dominant source of C9H7 here
– Though C9H8 yield is higher

C9H8

C9H7



Phenyl + Propargyl

• Well-skipping is negligible at 
atmospheric pressure

C9H8

C9H7

Atmospheric pressure

30 Torr



Phenyl + Cyclopentadienyl

• Simplest in a class of (mostly) unexplored reactions

• Great well-skipping candidate

+

Well-skipping



Phenyl + Cyclopentadienyl

• Well-skipping is present, but expected product is low
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Phenyl + Cyclopentadienyl

• Well-skipping is present, but expected product is low
• Many decomposition pathways are accessible

c-C5H5

C6H5-c-C5H5

C6H5-c-C5H4

C6H5-c-C5H5

C6H5-c-C5H4 

C6H5C5H3 (+H)
C6H5C3H2 (+C2H2)
C6H5C2H (+C3H3)

+

Well-skipping

+H

-H

+C2H2
+C3H3



Conclusions

Ange. Chem. Int. Ed. 2021, 60, 27230-27235



Implications of well-skipping

• Within soot community, well-skipping reactions are likely occurring 
in low-pressure flames that are often used to reduce complexity

• These well-skipping reactions probably are relevant to 
astrochemistry
– PAHs form spontaneously at low pressures and low temperatures

• Could we grow carbon nanotubes or other particles by well-
skipping reactions?
– Requires occasional reactivation and low pressure
– Allows C3, C6, or C9 feedstocks
– Makes imperfect structures, maybe useful as construction material
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