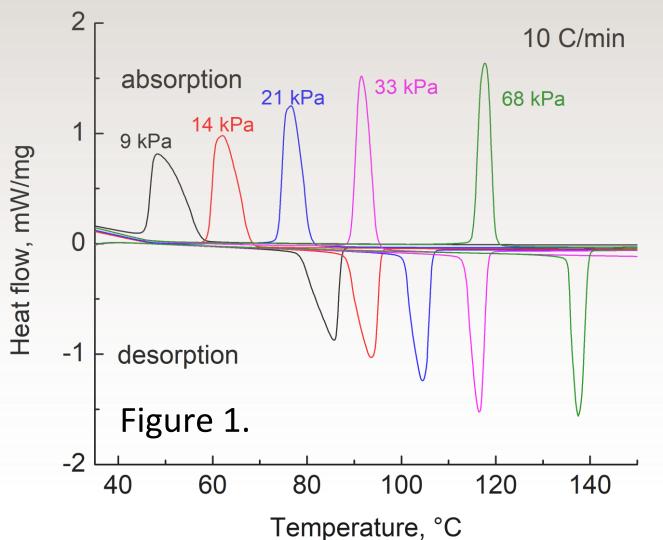
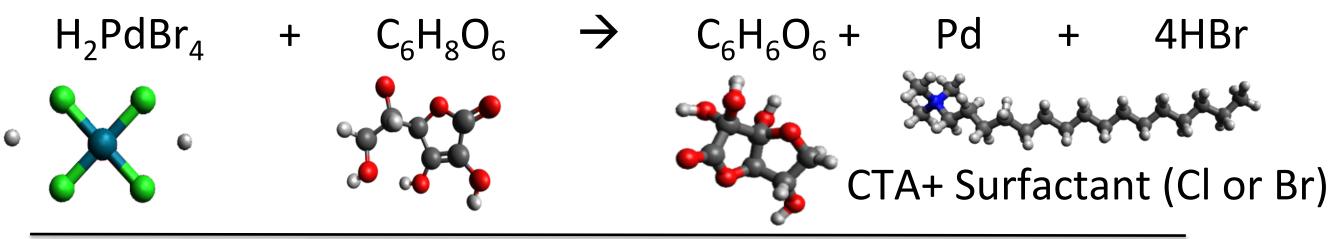
Improved Scalability of Palladium Nanocrystal Synthesis

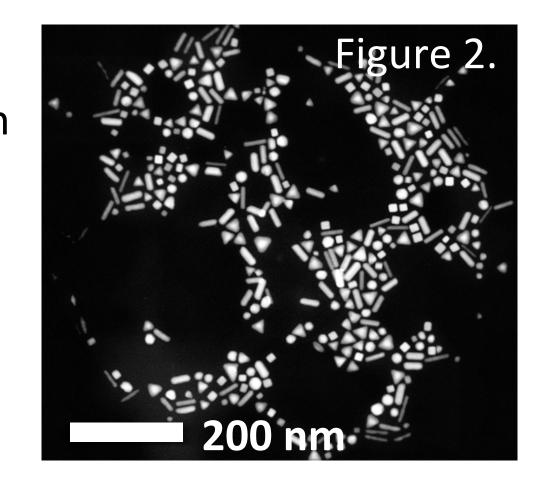

Carly Hui, David B. Robinson, Declan Mahaffey-Dowd, Vitalie Stavila, Ryan Nishimoto, Joshua Sugar, Jeffery Chames

Background:


Palladium nanoparticles aid the study of hydrogen interaction with solids. Hydrogen induces a phase transition to an expanded face-centered cubic lattice in Pd at specific temperatures and pressures, forming a near-

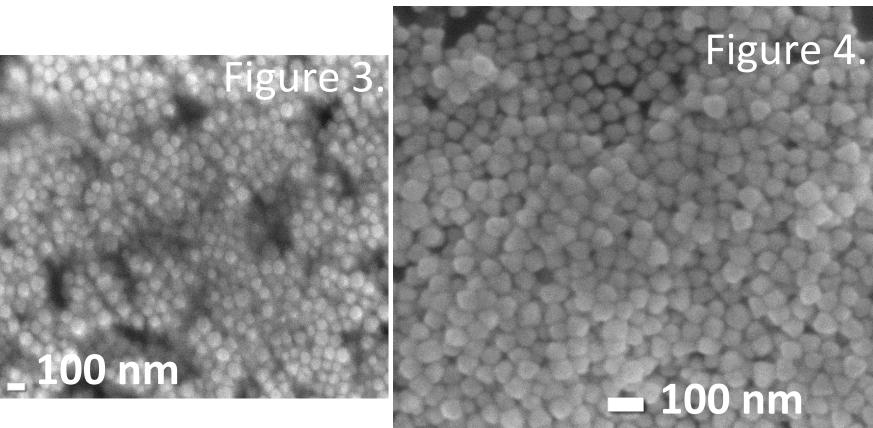
stoichiometric hydride, PdH_{0.6}.

This phase transition displays hysteresis in macroscopic calorimetry experiments. Differential scanning calorimetry of 10.636 mg Pd at various H₂ pressures shows desorptionabsorption hysteresis.



To study the relationship between hysteresis and induced lattice defects,⁵ large, single-crystal particles are preferred. This work is motivated by highly cited synthetic approaches that typically require 40L solution/g product² and aqueous suspensions that only require 1L/g product¹. We aim to further decrease the required volume while uniformly increasing size to hundreds of nm.

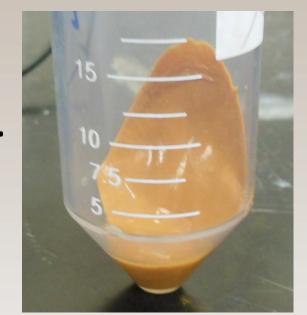
Synthesis of Uniform, Single and Polycrystalline Nanoparticles:


Attempts to reproduce cited synthetic approaches^{1,2} did not yield monodisperse seeds. We observed that the seed reaction occurred on the timescale of mixing. We think that this reaction is exceptionally sensitive to µM-level metal and halide impurities or other reaction conditions⁴. Experimental modifications were made to the procedures^{1,2,3} in an attempt to slow down reaction time.

We attempted a 2-step seed-growth reaction with 3x the amount of CTA Chloride as a previously cited procedure³. This reaction occurs slower than the timescale of mixing (~1 hour) and rather uniform 50nm faceted polyhedra were obtained. This reaction was then run 3+ times

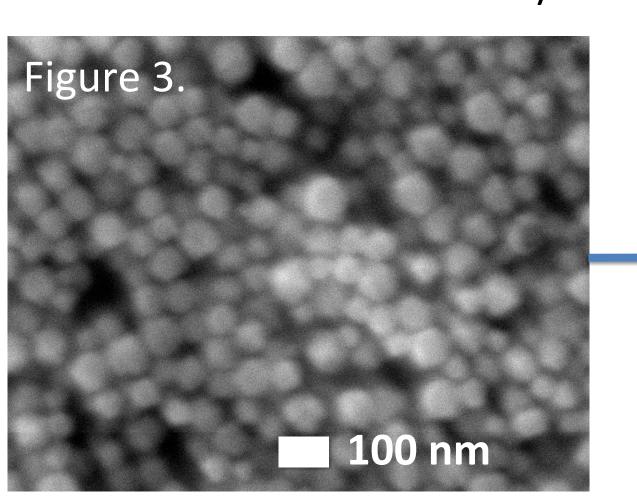
to verify reproducibility.

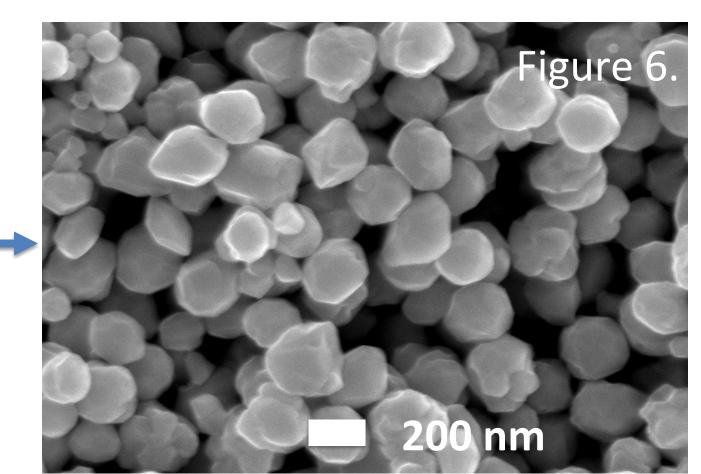
- •10 mL scale
- 45 mM CTA Chloride
- 1.05 mM H₂PdCl₄
- 0.75 μM KI
- 0.6 mM Ascorbic Acid (AA, less than 1 eq.)
- 45 °C 30 min
- Stir at 750 rpm


Previous work^{1,2} involves a 2-step process of synthesizing preliminary Pd seeds to grow the Pd nanocrystals from. Given that uniform seeds have been difficult to reproduce, we attempted a 1-step reaction to improve size and shape uniformity and improve yield/L of solvent used.

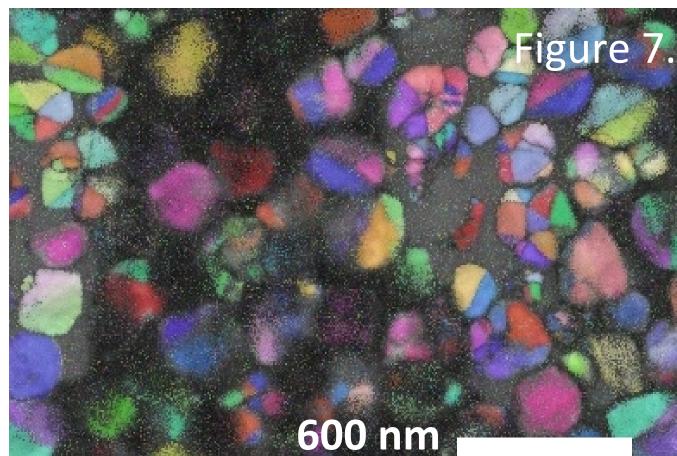
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-

- Isolate CTA₂PdCl₄
- Suspend 1 eq. 1 M HCl, 15.6 eq. 1 M AA, 0.0007 eq. 1 mM KI
- Chill reagents to 13 °C to start reaction
- Stir at 22 °C for 4 hours


Performing subsequent trials reveals that the chilling step is not necessary.


Isolated CTA₂PdCl₄

This produces ~150nm faceted particles with visibly improved size and shape uniformity. Scalability is also increased; the concentration is 57 mmol Pd/L added liquid. This is 2x as concentrated as our previous 2-step reactions.


Scaling up to Larger Particles

However, we found that to create nanoparticles even larger than 150nm, seeds from the 2-step reaction procedure are useful. We used unpurified 50nm particle suspension for seeds (Fig. 3 and 4) and higher concentrations for all reagents. This produced ~200nm particles. Pd concentration is 24 mmol Pd/L added liquid, similar to previous work 1,2 .

- 461 mM CTA Chloride
- $0.32 \text{ mL } 1 (NH_4)_2 PdCl_4$
- Stir at 22 °C
- 1.1 mL Pd seeds under stirring at 500 rpm
- 5 mL 1.0M AA
- Stirred at 45 for 4 hours

Grain maps of these and similar samples obtained by transmission Kikuchi diffraction reveal that these nanoparticles consist of both single -crystal and polycrystalline particles.

Conclusion:

We have developed procedures to synthesize single and polycrystalline particles with narrow size distributions exceeding 100 nm. We have also demonstrated increased scalability by successfully decreasing reaction volume/g product to a few hundred mL/g. We expect these to be valuable in future studies of metal hydride formation and in expanding single-particle studies⁵ to probe the behavior of bulk quantities in similar conditions.

References

[1] Klinkova, Anna et al. Large-Scale Synthesis of Metal Nanocrystals In Aqueous Suspensions. Chem Mater 2016, 28, 9, 3196-3202. [2] Niu, Wenxin et al. Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano 2010, 4, 4, 1987-1996. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly [3] Liu, Shu-Ya et al. Direct Synthesis of Palladium Nanocrystals in Aqueous Solution with Systematic Shape Evolution. Langmuir 2015, 31, 6538-6545. [4] Abutbul, Ran Eitan and Golan, Yuval. 'Beneficial impurities' in colloidal synthesis of surfactant coated inorganic nanoparticles. Nanotechnology 2021, 32, 102001. [5] Ulvestad, A. et al. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation. Nature Materials 2017, 16, 565-571.