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View from the Semiconductor Industry

SRC Decadal Plan for Semiconductors, 2020
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Revolutionary Systems

 What do we want in the future?
 >10 TOPS/W: 
Supercomputing at the edge

 Deep networks (100M+ parameters) 
execute and train in the field

 Lots of applications interested in this: 
Particle detectors, safe, full 
autonomous navigation in ground, 
air and space vehicles

 Getting to this goal may require 
imperfect hardware…and this might 
be ok.
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State of the Art CMOS Efficiency: Apple A13
 Apple’s iPhone 11 main SoC processor
 7nm+ TSMC process

 Lightening AMX 8-core Neural Engine accelerator IP
 Apple spec: 5 TeraOps/s (TOPS) @ 8 bit precision
 Power is ~2.5-5W 
 State of the art smartphone chip is ~ 1-2 TOPS/W
 ~1pJ per 8 bit operation 

 von Neumann architecture has limitations, especially 
when off chip data movement is needed

 CMOS research is continuing to push efficiency with low 
voltage, weight on chip designs – how much more 
possible? 

 Where will the next orders of magnitude improvements 
come from?

apple.com, techinsights.com

Memory

Chip to Main Memory (i.e. DDR) 
: 

Slow and Power Hungry

Logic
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Keep Data in Memory & Exploit Physics for 
Computing
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Tunable Resistor: Oxide ReRAM

 Known as ReRAM, OxRAM, “memristor”

 Bipolar resistance modulation in metal-insulator-metal 
structure
 +V pulse, R decreases.  -V pulse, R increases

 Fast, scalable, low switching energy, tunable resistor

 Potential for 100 Tbit of ReRAM on chip

 Perfect Analog In-Memory Compute Energy & Latency 
candidate! 

Highest current 
switching 
process

Read Window
SET-RESET
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Neural Network Basics

Inference 
 Feed forward operation of the network to 

perform task, i.e. classification
 Ex: Image recognition
 Computationally requires ingle feed forward 

pass through network
 Typical device update through write-verify

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017

Training 
 Adjusting the weights to reduce error 

and improve
 Typically done with backprop
 Parallel update possible on crossbar 

architecture
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Physically Mapping a Neural Network to Resistive 
Array
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Tile Analysis
Oxide 

ReRAM

Initial results: two orders of magnitude beyond digital!

Component Vector Matrix 
Multiply 
(8-bit, Inference)

Outer Product 
Update 
(8-bit, Training)

Energy/Op ReRAM (fJ) 12.2 2.1

Energy/Op Digital (fJ) 2718 4102

Array Latency ReRAM (µs) 0.38 0.51 

Array Latency Digital (µs) 4 8

 
++

+ +

- -- - -
-

+++
+

++
+

--

MJ Marinella, S Agarwal, et al, IEEE J. Emerging Topics in Circ. And Sys, 8, 2018. 

14nm 
PDK
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Semiconductor-Oxide-Nitride-Oxide-Semiconductor 
(SONOS)
 Mature, commercial technology pioneered by Sandia in the 1980’s
 Basis of modern SSD’s (your iPhone uses SONOS)
 Can be used as resistive array similar to ReRAM
 Collaborating with Infineon to evaluate 40nm SONOS In Memory Computing

Deep neural 
network

SONOS Device SONOS Analog VMM Array 
Implementation
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ISAAC (2016) Newton (2018) This work

32 nm, ReRAM 32 nm, ReRAM 40 nm, SONOS

16 bits 16 bits 8 bits

0.63 TOPS/W
(theoretical peak)

0.92 TOPS/W
(theoretical peak)

21.8 TOPS/W
(on ResNet-50)

55 TOPS/W 
(custom net, near 

peak)

78 TOPS/Watt 8-bit Inference using 40nm SONOS

TOPS = TeraOperations / sec • Based on 40nm SONOS devices from 
our commercial collaborator, InfineonT.P. Xiao et al, accepted, IEEE J. Circuits and Systems, 2021. 

Commercial SONOS has excellent inference potential!

Tile Architecture

CNN
Mesh
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Analog Required a Paradigm Shift

 Analog processing offers great benefits…

 …but comes with great challenges

 Digital: Deterministic, accurate results

 Analog: Device characteristics affect algorithm 
accuracy!
 Research challenge: analog behavior must give acceptable algorithm

-level results

 Inference Accuracy Challenges (this section)
 Measured device conductance should be proportional to weight – but 

this is only approximately true
 Caused by analog programming accuracy versus state, current drift, 

read noise

 Training Accuracy Challenges (next section)
 Actual analog device state change does not match intended weight 

update 
 Caused by write nonlinearity, asymmetry, stochasticity
 Device to device variation
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Multiscale CoDesign Framework Enables Accuracy Prediction

17

Algorithms

Sandia Cross-Sim: 
Translates device 
measurements and crossbar 
circuits to algorithm-level 
performance

Architecture

Circuits

Devices

Materials

Target Algorithms
• Deep Convolutional Nets
• Sparse Coding
• Liquid State Machines

Drift-diffusion model of transport

Energy/Performance Model
Model performance and 
energy requirements 

In situ Characterization

Analog 
characterization

Architecture 
Simulation

Ab Initio Modeling

En
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gy
 (J

)
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Compact Modeling Dataset for Neural Accuracy Model

Measure Devices Construct Lookup Tables
Assess Neural 

Algorithm 
Accuracy, 
Efficiency, 

Performance, 
Radiation 

Degradation 

Model Array 
Circuitry, 

Architecture, &  
Algorithms

Component VMM OPU

Energy/Op 
ReRAM (fJ)

12.2 2.1

Array Latency 
ReRAM (µs)

0.38 0.51 

Xiao et al TCAS, accepted, 2021. 

100 ns
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Sandia TaOx ReRAM Inference Resistance Distributions 
200ohm spacing between resistance targets
100ohm spread between Rmin, Rmax

Resulting conductance distribution
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Sandia TaOx ReRAM Error Model
Conductance Error as a Function of 

Conductance Target

• Conductance error approx parabolic with 
conductance target – this is ideal:
• Lower conductances have lowest error and map to 

weights near zero. 
• Weights near zero hold most information, hence 

device error is minimized

• Modeled Accuracy in CrossSim Inference
• ResNet50 CNN, ImageNet Dataset
• 1000 image average
• 8-bit ADC, 8-bit weight quant
• Assume GON/GOFF = 10 

• ReRAM accuracy on ImageNet: 
• Top-1 76.4%
• Top-5 92.91%

• Compared to Digital (32 bit FP)
• Top-1 77.18% (analog loss = 0.78%)
• Top-5 93.06% (analog loss = 0.15%)

• Analog Inference predicted <1% loss!
• Caveat: preliminary data – relaxation will degrade

Conductance-Weight Distribution 



21

Effect of Network and Dataset on Accuracy

ImageNet, CIFAR-10, & MNIST Accuracy 

ImageNet (top-1)
ResNet-50

25.6M weights

CIFAR-10
ResNet-56v1
858K weights

MNIST
6-layer CNN
119K weights

 Different common datasets and CNN 
architectures often analyzed

 MNIST (uses simple CNN)
 28x28 pixel grayscale
 10 classes
 60k training images 
 10k test images

 ImageNet (requires large CNN arch.)
 224x224 pixel color
 1000 classes
 1.3M training images 
 100k test images

 ImageNet represents production-grade 
dataset
 Sometimes smaller nets like MNIST are used due 

to computing constraints, esp for modeling 
training

 Excellent accuracy on MNIST does not translate 
to excellent accuracy on ImageNet!
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40nm SONOS Deep CNN Inference Modeling

T.P. Xiao et al, IEEE TCAS, in press, 2021.

Infineon 40nm SONOS Characterization Chip Data
Modeled 7-bit Weight 

Distribution and Mapping
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Infineon 40nm SONOS for CNN Inference - ImageNet

Add Analog 
non-idealities

T.P. Xiao et al, IEEE TCAS, 2022.

Floating 
point

+ 8-bit 
weights

+ 8-bit 
ADCs
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±0.82
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Error and Inference Accuracy Summary: ReRAM, SONOS, 
PCM

PCM2,*

SONOS1

HfO2 
ReRAM3,*

SNL TaOx 
ReRAM

Technology+ Top-1 
accuracy

Top-5 
accuracy

Floating point 
digital 77.5% 93.3%

SNL TaOx 
ReRAM

76.4% ± 
0.2%

93.3% ± 
0.1%

SONOS1 74.0% ± 
1.0%

92.5% ± 
0.4%

PCM2 28.2% ± 
6.4%

49.7% ± 
7.8%References and notes:

1T.P. Xiao et al, IEEE TCAS, 2022.
2V. Joshi et al, Nat Comm. 11, 2020. 
3Milo et al, IEEE IRPS, 2021. 
+All analog simulation also includes 8-bit weight quantization, 8-bit activations, and 8-bit ADCs
*PCM and HfO2 error are modeled entirely from data and programming used in publication only. 
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Device-Level Radiation Impacts Algo Accuracy

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 

How will the accuracy 
degrade in radiation 

environments ?

erase ‘1’ program ‘0’

Total ionizing 
dose (Si)

oxide
nitride

poly

n+ n+

poly

n+
p-well

Select gate Control gate

–
–
–

–– –––
–
–– –

Ionizing Radiation

Threshold Distribution Shifts due to 
TID 

Algorithm Accuracy Degradation due to 
TID 
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Analog Device Requirements
Property Inference Training

Analog programing error (w/ write verify) Critical Less Important

Long term retention Important Less Important

Read noise Important Less Important

Conductance Range Important Important

Short term state drift Important Important

Device to device variability Important Important

Write stochasticity Less Important Important

Write speed Less Important Important

Write linearity Less Important Important

Write symmetry Less Important Critical 

Endurance Less Important Critical
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Perspective: IMC Devices
Property ReRAM PCRAM SONOS/FG ECRAM

Analog programing error (w/ write verify)

Long term retention

Read noise
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Short term state drift
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Inference  Training 
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Final Thoughts

 Traditional digital CMOS computing is hitting disruptive roadblocks for 
continuing energy efficiency

 Analog In Memory Computing offers path to >10 TOPS/W 
 Idea for deep neural nets/convolutional nets

 Analog In Memory Computing has significant new challenges
Algorithm accuracy depends on the device
 Inference and training have distinct challenges, with some overlap. 
 Inference: excellent behavior predicted with commercial SONOS and 

ReRAM
 Future work: Training: more challenging, future devices such as ECRAM and 

related nonfilamentary devices may provide a path forward
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Thank You – Questions?
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Impact of Ionizing Radiation on Deep Net Accuracy

erase ‘1’ program 
‘0’

Total ionizing 
dose (Si)

oxide
nitride

poly

n+ n+

poly

n+
p-well

Select gate Control gate

–
–
–

–– –––
–
–– –

Ionizing Radiation

Threshold Distribution 
Shifts Across Array

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 

Uniform Gamma 
Irradiation
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Analog Neuromorphic SONOS In Space: Physics to 
Algorithm
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TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 
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Analog Neuromorphic SONOS In Space: Physics to 
Algorithm

CoDesign provides insight for fielding neuromorphic devices
TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 

ResNet-50 for ImageNet
25.6M weights, 4.1B ops

How will the accuracy degrade in space?

6-layer CNN for CIFAR-10
4.36M weights, 100.4M ops
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Neural Network Basics
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Neuron 
(activation 
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Simple Network:
Inference & Training 
(Backpropagation)

Inputs
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Device Challenges for Training

 Training has an overlapping set of 
challenges

 Ideally weight increases and decreases 
linearly proportional to learning rule result

 Issue for open loop nonvolatile memory: 
altered the relationship between intended 
and actual update
 Nonlinear and asymmetric state change
 Cycle to cycle random variability (write 

stochasticity)
 Device to device random variability

 Also: very high endurance (>1012)

C
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Pulse Number
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Nonlinear

Stochastic 
variability

Pulse voltage 
polarity changes
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Characterization for Training

37

10 ns 1 µs100 ns

SET

RESET

SNL 
TaOx 

ReRAM
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Initial TaOx ReRAM Training Accuracy Modeling 
(MNIST)

Unexpected results:

TaOx ReRAM was not ideal 
device for open loop 
training

Training is significantly more challenging than inference!

Increasing Network Size

Performance 
Gap

Performance 
Gap

Performance 
Gap



39

Physical Insight from Multiscale Model - CrossSim
Challenges using Filamentary ReRAM for Training

Stochasticity
G depends on 
position of a few 
atoms

Asymmetry
Inherent property 
of bipolar device – 
Schottky-like and 
ohmic junctions

Nonlinearity
1. Tunneling current, esp in high resistances
2. Current crowding – high temperature 

required for change give runaway effect
3. Nonlinear E-field

Linear Resistive Device 

Loss due to fabrication

R. Jacobs-Gedrim et al, Proc. 2017 IEEE ICRC, 2017. 

MNIST Training Accuracy
SNL TaOx ReRAM
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Electrochemical RAM (ECRAM) Synapse

 As we used codesign to understand the challenges 
with ReRAM, Sandia was exploring doping 
modulation of Lithium battery cathode

 Novel device discovery: resistivity across cathode 
changes linearly with battery charge/discharge

 Battery can function as an analog nonvolatile 
transistor!

E. Fuller et al, Adv Mater, 2017

Li
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Ba

tt
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Conductance vs Voltage
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ECRAM
PCM Array

Analog State Comparison

GW Burr et al, IEEE TED 2015

TaOx ReRAM

E. Fuller et al, Adv Mater, 2017

ECRAM-MNIST
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Electrochemical Neuromorphic Organic Device 
(eNode)

van de Burgt et al, Nature Mater., 16, 414, 2017
Proton-based polymer ECRAM synapse: fast, better endurance
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ECRAMs Array Parallel Update Training 
Demonstration

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D. 
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).

Near ideal Near ideal 
accuracyaccuracy
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Novel Devices for Accurate Inference/Training

Y. Li et al, Adv Mater. 2020. 

 Battery Inspired Devices
 Bulk ReRAM
 Bulk nanoionic devices
 Two terminal charge tunnel 

junction
 Organic and bio compatible 

switches 

 Linear write: dG does not 
depend on G. 
 Ideal for training

Y. Li et al, Adv Mater. 2020. 
E. J. Fuller et al, Science 364, 570, 2019.
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Exploration of Novel Magnetic Synapses for Training

S. Liu et al, Apl Phys Lett, 2021 (under revision)
M. Almadar, Appl. Phys Lett, 2021 (in press)

Collaboration with

IN CLK

OUT

Low-energy domain wall 
synapses

Integration in a crossbar array Demonstrating linear 
updates and neural 
network accuracy
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Component Vector 
Matrix 
Multiply

Matrix Vector 
Multiply

Outer 
Product 
Update 

Energy/Op ECRAM (fJ) 11.9 11.9 0.2
Energy/Op ReRAM (fJ) 12.2 12.2 2.1
Energy/Op SONOS (fJ) 13.7 13.7 68.2
Energy/Op SRAM (fJ) 2718 4630 4102
Array Latency ECRAM (µs) 0.39 0.39 1.9
Array Latency ReRAM (µs) 0.38 0.38 0.51 
Array Latency SONOS (µs) 0.40 0.40 20 
Array Latency SRAM (µs) 4 32 8

Training Accuracy and Tile Energy/Summary

ECRAM

ECRAM: Use for training ECRAM: Use for training 
& inference& inference

SONOS: While accuracy, program SONOS: While accuracy, program 
is slow: use for inferenceis slow: use for inference

Codesign to Model Performance & Energy

ReRAM: Training is not ReRAM: Training is not 
accurate: better for accurate: better for 
inferenceinference
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Comparison of State of the Art Accelerators
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Example Standard Visual Recogntion Datasets

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017

• 28x28 pixel grayscale
• 10 classes
• 60k training images 
• 10k test images

• 256x256 pixel color
• 1000 classes
• 1.3M training images 
• 100k test images
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How much computing needs to be done?
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Key Circuit Block/Kernel Analysis

Vector Matrix Multiply 
(Inference)

Rank-1 Update 
(Training)

Marinella, Agarwal, et al, IEEE JETCAS, 2018

S&H S&H S&H S&H

ramp 
generator

+ + + +– – – –

V

t

registers
digital 

counter
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Mesh architecture

Analog MVM core

Neural network

Data batch 1

ADC ALUIn SRAM 
W/R Out

ADC ALUIn OutSRAM 
W/R

MVM

MVM

Data batch 2

Pipelined MVM tile

295 clock 
cycles

Circuits designed and simulated 
using commercial 40nm PDK

Neural Network Inference Architecture 

T.P. Xiao et al, In preparation, IEEE J. Circuits and Systems, 2021. 


