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View from the Semiconductor Industry
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Revolutionary Systems

= What do we want in the future?

= >10 TOPS/W:
» >Supercomputing at the edge

» Deep networks (100M+ parameters
execute and frain in the field

= Lots of applications interested in this:
Particle detectors, safe, full
autonomous navigation in ground,
air and space vehicles

» Getfing to this goal may require
iImperfect hardware...and this might
be ok.

Sl




State of the Art CMOS Efficiency: Apple A13

= Apple’s iPhone 11 main SoC processor
= /nm+ TSMC process

» Lightening AMX 8-core Neural Engine accelerator IP
» Apple spec: 5 TeraOps/s (TOPS) @ 8 bit precision
» Power is ~2.5-5W
= State of the art smartphone chip is ~ 1-2 TOPS/W
= ~1pJ per 8 bit operation

= von Neumann architecture has limitations, especially
when off chip data movement is needed

» CMOS research is contfinuing to push efficiency with low
voltage, weight on chip designs — how much more
possible?

= Where will the next orders of magnitude improvements Chip to Main A;\emc-:ry (i.e. DDR)

) BSipe from?
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Keep Data in Memory & Exploit Physics for
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Tunable Resistor: Oxide ReRAM

Known as ReRAM, OxRAM, “memristor”

structure

= +V pulse, R decreases. -V pulse, R increases

Fast, scalable, low switching energy, tunable resistor

Potential for 100 Tbit of ReRAM on chip

Perfect Analog In-Memory Compute Energy & Latency i | '. B
andidqie! SET-RESET /_!_\ MlM::apmmmqt/{} |
ol  ReadWindow N
- ™ ] Device mu]_ | . | | = |
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Neural Network Basics

Inference

» Feed forward operation of the network to
perform task, i.e. classification

» Ex: Image recognition

= Computationally requires ingle feed forward
pass through network

» Typical device update through write-verify

Class Probabilities

Dog (0.7)
: Cat (0.1)
Machine .
Learning Bike (0.02)
(Inference) Car (0.02)
Plane (0.02)
House (0.04)

Training
» Adjusting the weights to reduce error
and improve

» Typically done with backprop

= Parallel update possible on crossbar
architecture

backpropagation
<€

(b) Compute the gradient of the loss
relative to the filter inputs

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017 10



Physically Mapping a Neural Network to Resistive
Array
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Tile Analysis

Oxide
ReRAM
oo Component Vector Matrix Outer Product

S Multiply Update

(8-bit, Inference) (8-bit, Training)

N \\ o Two Energy/Op ReRAM (fJ) 12.2 2.1
.{) m w@ || s Energy/Op Digital (fJ) 2718 4102
e — Wi, Array Latency ReRAM (us) 0.38 0.51
P Array Latency Digital (ps) 4 8
e A
o Wy T POK

Initial results: two orders of magnitude beyond digital!

|'|'| E.l MJ Marinella, S Agarwal, et al, IEEE J. Emerging Topics in Circ. And Sys, 8, 2018.
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Semiconductor-Oxide-Nitride-Oxide-Semiconductor

~ ~(SONOS)

= Mature, commercial technology pioneered by Sandia in the 1980’s
» Basis of modern SSD's (your iPhone uses SONQOS)
= Can be used as resistive array similar to ReRAM

» Collaborating with Infineon to evaluate 40nm SONOS In Memory Computing

m) ASU
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/8 TOPS/Watt 8-bit Inference using 40nm SONOS

afineon

Tile Architecture
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Analog Required a Paradigm Shift

Analog processing offers great benefits...

Digital Multi-level Cell Distribution

# Devices

...but comes with great challenges

Digital: Deterministic, accurate results

WAAAAA

Conductance (G) «< Weight

Neural Weight Distribution

. o _gze . 0
Analog: Device characteristics affect algorithm g
accuracy! 'S
= Research challenge: analog behavior must give acceptable algorithm 8 S
-level It
eVelresulis i Conductance (G) < Weight
Inference Accuracy Challenges (this section)
» Measured device conductance should be proportional to weight - but
this is only approximately true Pulse voltage
= Caused by analog programming accuracy versus state, current drift, _p°'a”ty changes
read noise o Stochastic Symmetric
g A Varia ility and Linear
Training Accuracy Challenges (nhext section) 2 Guaxt- 50 Asymmetric,
» Actual analog device state change does not match intended weight 3 OoO o® g °
update 2 o _e3 o ®
o o_e® o e
= Caused by write nonlinearity, asymmetry, stochasticity (&) Gy L0 ® 0o 0n2a s

Mice to device variation

Pulse Number
16



Multiscale CoDesign Framework Enables Accuracy Prediction

Energy (J)
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Compact Modeling Dataset for Neural Accuracy Model

Assess Neural

| | 1 —-200
0 200 400 600 8001000 -300

Pulse Number —400

Measure Devices Construct Lookup Tables Model Array Algorithm
Circuitry, Agcgracy,
Archltecture & Efficiency,
100 Performance,
400 NS . Radiation
300 100 =
00 ' = 80 1

20000 25000 0 2 4 6 8 10

State-independent error a (%)

1200

1000 :
a b

(@ start ®)_ 50T ral t = 1 se0) 800
¥ 3 40 group 600 '

Soft erase o 30 mean 400
pulse £ 20 ,4'_, group '

- @ 10 | | stelev 200
Program = J 0 .

, pulses % 04 08 T2 16 200
IRefill xN Drain current (MA) .

Component VMM OPU
£
L= | ol Energy/Op 12.2 2.1
(c) 20000 25000 - R
=50 12 | _ eRAM (fJ)
Short program S 40 t=5days Conductance (5) — Pl —
or erase pulse S 30(|, {i=a ."_‘_"I_""“ J Array Latency 0.38 0.51
N LS9 | j——ry
ZROSS SIM HEF_ ISP B | ReRAM (us)
Y - A = ||| somos I o | (ors ) ooy
finish UD 0.4 0.8 1.2 1.6 I | ] - .ii || oy J-_T...I“b RiEs I u.:'.l*_ . r
Drain current (JA) . = ¥ 4 2 L

ﬁ I BN ql
'l.l iao et al TCAS, accepted, 2021. —
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Sandia TaOx ReRAM Error Model

Conductance error approx parabolic with
conductance target - this is ideal:

« Lower conductances have lowest error and map to

weights near zero.

 Weights near zero hold most information, hence
device error is minimized

Modeled Accuracy in CrossSim Inference
« ResNet50 CNN, ImageNet Dataset

« 1000 image average

« 8-bit ADC, 8-bit weight quant

« Assume Ggy\/Goi =10

ReRAM accuracy on ImageNet:
« Top-176.4%
« Top-592.91%

Compared to Digital (32 bit FP)
 Top-177.18% (analog loss = 0.78%)
+ Top-593.06% (analog loss = 0.15%)

Analog Inference predicted <1% loss!
» Caveat: preliminary data - relaxation will degrade

Conductance Error as a Function of
Conductance Target

10
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107
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Q
3 10°
2 104
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T 102
* 101
100.

0 100 200 300 400 500
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Effect of Network and Dataset on Accuracy

Different common datasets and CNN
architectures often analyzed

MNIST (uses simple CNN)

ImageNet, CIFAR-10, & MNIST Accuracy

» 28x28 pixel grayscale

= 10 classes 901
= 460k training images _ 89
= 10k test images ) 28
>
ImageNet (requires large CNN arch.) 8 50
= 224x224 pixel color g 40
= 1000 classes < 30
= 1.3M training images ?8
= 100k test images ol

100 F—————a—

MNIST
6-layer CNN
119K weights

ImageNet (top-1)
ResNet-50
25.6M weights

ImageNet represents production-grade
dataset
= Sometimes smaller nets like MNIST are used due

to computing constraints, esp for modeling
training

ellent accuracy on MNIST does nof translate
xcellent accuracy on ImageNet!

1

2 3 4 5 6 7 8
Uniform write error 0 rite (% Of Imax)

9

10
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40nm SONOS Deep CNN Inference Modeling

Modeled 7-bit Weight

Infineon 40nm SONOS Characterization Chip Data Distribution and Mapping
(a) tart b -
sta ( )‘E 501| initial (t=1sec) -
v 3 40 group O
Soft erase o 30 mear s ;
pulse 2 20 o, group 26
* Q>’ 10 ! Stdev DE_E :
Program & & L XA
pulses % 04 08 12 16 0 0.5 o010 L
Refill xN | Drain current (pA) rain current (A)

~—~
(2]
S

o Sfaé;?gﬂ?;g % ig t=5days (@) 10s ResNet50
> . -
. .Y 00 » s = g | 0 0.2 04 9.6 0.8 10 0.2 0.4.0.6 08 1
finish Drain current (UA) 2 :gj InceptionV3 MobileNetV2
102

100
B 0 02 04 06 08 10 0.2 04 06 0.3

Normalized conductance

1

T.P. Xiao et al, IEEE TCAS, in press, 2021. 22



Infineon 40nm SONOS for CNN Inference - ImageNet

880

> | 7646 7620 76.08 74.30 73.43 4,44

o 66.61
& -0 +2.62
O

1T

L 65

®

£

| Floating + 8-bit + 8-bit + Write +1 day +2days +5days
point weights ADCs errors &
read noise SONOS
Add Analog

non-idealities > State drift >

T.P. Xiao et al, IEEE TCAS, 2022. 23



Error and Inference Accuracy Summary: ReRAM, SONOS,

- PCM

5%
4%
3%
2%
1%
0%

Normalized error

m) ASU

i /’A A
_ /‘ o

4 -
'-.-.*'/“"-! ! !"

|
-—
-

® SONOS
A PCM?%

v HfO,
ReRAM?3”

¢ SNL TaO,
ReRAM

h e ,"”

0O 02 04 06 08 1
Normalized conductance

References and notes:
T.P. Xiao et al, IEEE TCAS, 2022.

2\/. Joshi et al, Nat Comm. 11, 2020.

3Milo et al, IEEE IRPS, 2021.

Technology* Top-1 Top-5
gy accuracy accuracy

Floating point
digital

SNL TaOx
ReRAM

SONOS'

PCM?

77.5%

76.4% *
0.2%

74.0% +
1.0%

28.2% +
6.4%

*All analog simulation also includes 8-bit weight quantization, 8-bit activations, and 8-bit ADCs
*PCM and HfO, error are modeled entirely from data and programming used in publication only.

93.3%

93.3% +
0.1%

92.5% +
0.4%

49.7% =
7.8%
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Device-Level Radiation Impacts Algo Accuracy

Py

How will the accuracy f’
degrade in radiation
environments ?

Select gate  Control gate

Algorithm Accuracy Degradation due to

. : 100 TID
Threshold Distribution Shifts due to 90
7 erase ‘1’ 1Y program ‘0’ S 80
10 > 70
(= &) .
£ ] S 60 one-sided
> 10° Total ionizing 3
g dose (Si) @ 50
o 5 °©
— 10 — Prerad z 40 :
] 4 1 25 ket % 30 two-sided
. T 0 1 — £
lonizing Radiation g 10 50 krad E 20
/ >, —— 100 krad 10
A S /s 3 10 —— 150 krad
T 7T X T - — 2
Ot : :"‘—g : s T Mot 0610 20 30 ~ 40 ° 50
T T ’ T o 10 I i Total ionizing dose, krad (Si)
. / o LA £ 500 krad
L K L ¥ L / = 101 € 5] ImageNet
_I_J_‘-_.I%L_' .I.J_L.I%L_" ? 4 _I_J—r_.l%l.;" A ;222:24 anv1§ggg.
ng T T . 20 45 40 05 00 05 10 15 20 isoai ] =
_I_J—r_.l_l._" _I_J_r_.l_l._" _I_J_r_.l_l._" ] . . . . . . . - . Conv1/64 Convi/512/2 Convi
ol I 2 A 2 V4 Threshold voliage (V) o Sl
x E x3 E3,
j_ i j_ j_ ‘ Conv1/128/2% | reoma AvaPool7
m) At St S o] !
T = = x = ‘snow leopard’
= == < <+ TP Xiao et al, IEEE Trans Nuclear Sci, 2021 O (1000 categories) 25
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Analog Device Requirements

Property Inference Training
Analog programing error (w/ write verify) Critical Less Important
Long term retention Important Less Important
Read noise Important Less Important
Conductance Range Important Important
Short term state drift Important Important
Device to device variability Important Important
Write stochasticity Less Important Important
Write speed Less Important Important
Write linearity Less Important Important
Write symmetry Less Important Critical

Endurance Less Important Critical




Inference

Both

Training

Perspective: IMC Devides

he

Property

SONOS/FG

Analog programing error (w/ write verify)
Long term retention
Read noise

Conductance range

Short term state drift

Device to device variability
Write stochasticity

Write speed

Write linearity

Write symmetry

Endurance

®©l J 1G] I |BIelCIel®,

@l I 6] 16lGIelGIeI®

OOOOOOCLOEOCOOG

OOOCLOOLOOOLO

m) ASU

Inference ©

Inference ©

Training ©
2
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Final Thoughts

= Traditional digital CMOS computing is hitting disruptive roadblocks for
confinuing energy efficiency

* Analog In Memory Computing offers path to >10 TOPS/W
» |[dea for deep neural nets/convolutional nets

= Analog In Memory Computing has significant new challenges
= Algorithm accuracy depends on the device
» Inference and training have distinct challenges, with some overlap.

» Inference. excellent behavior predicted with commercial SONOS and
ReRAM

» Future work: Training: more challenging, future devices such as ECRAM and
related nonfilomentary devices may provide a path forward

FSlU
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Thank You — Questions?
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Impact of lonizing Radiation on Deep Net Accuracy

Select gate  Control gate

lonizing Radiation

Threshold Distribution

Uniform Gamma Shifts Across Array
Irradiation
+ K/ . / . //‘/ o erage‘? program
= = cAVaEd % 10° Total ionizing
e /o J A o dose (Si)
L ¥ L ¥ RS / = 105 I
St I /AJ'KL‘;‘_.. Epap! C —
¥ T T T/ o 25 krad
+ + / / 8 50 krad
K|l L s —— 100 krad
Lt Tt ;{u—‘_ '/ S 10° —— 150 krad
T T b 3 © —— 200 krad
T T T T 4 g 10’ —— 300 krad
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TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press).

32



Analog Neuromorphic SONOS In Space: Physics to
Algorithmegram

state
(A)
ionizing% _
radiation | 2N V; versus Total lonizing
E, R N Dose: Model and
control channel Experiment
gate nitride 15
E, — )
_ < synapse range (two
vocns 7|t ™ et s
oxide (BO) ) <
S 05
Erase %
state _; 0.0
[e
(A)\Li ®.05
=
— —
-1.01 __
ng:::l channel 15 W/’
0 200 400 600 800 1000
Total ionizing dose, krad(Si)
—
) ASU & o

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 33



~ Analog Neuromorphic SONOS In Space PhyS|cs to

~ Algorithm

CIFAR-10

image (32x32)

Conv3 / 64

Conv3 / 64

MaxF‘lunl -2

Conv3 /128

Conv3 / 128

MaxPool-2

I

Dense-500

Dense-10

‘automobile’
(10 categories)

CIFAR-10 accuracy (%)

6-layer CNN for CIFAR-10
4.36M weights, 100.4M ops

one-sided

two-sided

0 50 100 150
Total ionizing dose, krad(Si)

200

c5| ImageNet
S0y | image
| 224x224

MaxPool3/2

Conv7/64/2

Conv1/64

Conv3/64

Conv1/256

Conv1
256*

x3 0O

Conv1/128/2

*

Conv3/128

Conv1/512

Conv1

512/2*

x4 &

How will the accuracy degrade in space‘7 4 "

ResNet-50 for ImageNet
25.6M weights, 4.1B ops

100
90
——
g %
Conv1/256/2*
Conva/2s6 || o1 | 2 70
Conv1/1024 |[1024/2 &
6 ¥ 5 60
&)
—
Convi/512/2° | MGonv] 8 50
Conv3/512 .
Conv1/2048 |12048/2 =
I z 40
AvaPool7
Den53/1000 =X 30
‘snow leopard’ § 20
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10
0
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0 10 20 30 40 = 50
Total ionizing dose, krad (Si)

QqDesign provides insight for fielding neuromorphic devices

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press).
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Neural Network Basics

Simple Network:
Inference & Training

Basic Building Block (Backpropagation)
Incorrect -
adjustif 0 9 0 # Correct Inference
y = ! ,RelLU, etc. training 0 a e e Outputs
1+e7%
Neuron _
(activation Eldden
function) ayer
Weights
(synapses) Inputs
Inputs X4 X, *n




Device Challenges for Training

* Training has an overlapping set of

challenges
» |deally weight increases and decreases
linearly proportional to learning rule result I':g,'jfitfc'fg:ges
= |ssue for open loop nonvolatile memory: e y(rjnlr_netrlc
an Inear

altered the relationship between intended
and actual update
= Nonlinear and asymmetric state change

O L

= Cycle to cycle random variability (write °® °
S'l'OChCISﬁC“'Y) Gun 6.2 °o Cn e 3

. . . . Pulse Number
» Device to device random variability

A
G Asymmetric,
MAX g o O Nonllnear

O
Q

Conductance

= Also: very high endurance (>10'2)

FSlU N




Characterization for Training

TiN

Ta (15 nm)

RESET
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Accuracy
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___Training is significantly more challenging than inference!
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Unexpected results:

TaOx ReRAM was not ideal
device for open loop
training
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Physical Insight from Multiscale Model - CrossSim

Accuracy (%)

Challenges using Filamentary ReRAM for Training

100

MNIST Training Accuracy
SNL TaOx ReRAM

90 |
80 |
70|
60 |

(

50
40
30
20
10

0
0

inear Resistive Device

Loss due to fabrication

—— Numeric
Linearized
No Noise
—— No Manipulation )
5 10 15 20 25 30 35 40
Training Epoch (#)

*ZROSS SIM

h

5. Jacobs-Gedrim et al, Proc. 2017 IEEE ICRC, 2017.

Nonlinearity

1. Tunneling current, esp in high resistances
2. Current crowding — high temperature

Displaced required for change give runaway effect
Oxygen 3, Nonlinear E-field
Anions (07?)
Positively Asymmetry
Inherent property
Charged v V% ] :
Vacancies 5o / of bipolar f:lewce -
vy o Schottky-like and
( o ) \® . . .
beSoNd ohmic junctions
Vieo— Baw -l |
— Stochasticity
OE G depends on
Ta TaO, Pt position of a few
" atoms
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Electrochemical RAM (ECRAM) Synapse. Conductance vs Voltage

250F
= As we used codesign to understand the challenges — 200}
with ReRAM, Sandia was exploring doping E
modulation of Lithium battery cathode 8T
100
= Novel device discovery: resistivity across cathode
changes linearly with battery charge/discharge S0r
= Battery can function as an analog nonvolatile e
transistor! Ve V)

I current collector
500 nm anndefgate

|

@

Vg

anode/gate

T
electrolyte/insulator *

LiCoO, = LisxCop + xLi* + xh

source  cathode/channel  drain

V;-I__ —— T

v source cathode/channel 8|02 drain
"1 muer et al, Adv Mater, 2017
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Analog State Comparison
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"1 mler et al, Adv Mater, 2017
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GW Burr et al, IEEE TED 2015
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Electrochemical Neuromorphic Organic Device
T TAKNKIAAARN
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ECRAMs Array Parallel Update Training

Demonstration
99¢
S - MNIST
control gate B
g_.',:_.. 2‘98-
Agt Yoo S b i
migration SiO0, S97F ¥ o Ideal array Near ideal
(ON) = i go o |FG array accuracy
96k - - -
0 10 20 30 40
Training epoch
F ¥
2 %

20h
- 0.5
:'." 0.0
-0.5 [
~ 0.5 [ e
- Q.OF TR E R E AL
L5k oo T i
. 05F F e
= (0.0 T e T T
0.5h T

0 25 50 -] 100
read-write operation

uller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
., M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019). 43



Novel Devices for Accurate Inference/Training

= Battery Inspired Devices a Filamentary-RRAM  d Bulk-RRAM
= Bulk ReRAM Probabalistic & stochastic Statistical & deterministic
= Bulk nanoionic devices S B I 2 MG Contact 1
. kg A N Q:ﬁ' - _Base layer
= Two terminal charge tunnel e ¥ s ¥ (ion reservoir)
jun ction :g% Solid electrolyte
= Organic and bio compatible . ..;:}7 - hotonat
switches v. @
AT . 3 So T N
= Linear write: dG does not ) val

YSZ electrolyte
e TiO, switching - -

depend on G.
» |deal for training

od
-od
od

99, 2
: £ 400
: 3
a‘\ 08 _ % 300
L © i © 4
5 [ of 2 200 —6— —5—First ramps
U - ng Z & —7——<— Final ramps
£ 97} @ o Ideal array 8 100 : : '
965 o ©IFGarray 0 50 100 150
2 : : : Pulse count
Emr otal, Science 364, 570, 2015, o 0 10 . 20 30 40 Y. Li et al, Adv Mater. 2020
Y. Li et al, Adv Mater. 2020. Training epoch ' , o 44




Exploration of Novel Magnetic Synapses for Training w

Low-energy domain wall
synapses

ouT
IN CLK

Magnetic tunnel

9 .
1 Domain wall (DW) junction (MTJ)

m %él, Apl Phys Lett, 2021 (under revision)
. Almadar, Appl. Phys Lett, 2021 (in press)

Integration in a crossbar array

Vi

Vs

High-Z

High-Z

High-Z

p

Demonstrating linear

Fashion MNIST accuracy (%)

Collaboration with

Professar

updates and neural

network accuracy
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Training Accuracy and Tile Energy/Summary

Codesign to Model Performance & Energy

Component

Vector Matrix Vector Outer
Matrix Multiply Product

Multiply Update

Energy/Op ECRAM (fJ) ';1_1_9 _______ 1 _1._9________0_2 ______
Energy/Op ReRAM (fJ) 12.2 12.2 2.1
Energy/Op SONOS (fJ) 13.7 13.7 68.2
Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency ECRAM (us) 039 039 19
Array Latency ReRAM (ps) 0.38 0.38 0.51

Array Latency SONOS (us) 10.40 0.40 20 1
Array Latency SRAM (us) 4 32 8

SONOS: While accuracy, program
FSU is slow: use for inference

ECRAM: Use for training
& inference

100 ] , ,

95 -
> 90 — Ideal 4
© — IFG
S 85 — ECRAM"
< 80 — TaOx

Je \,\NV\/J"\/\/'\/\,\/\:

70 ] | ]

0 10 20 30 40
Training Epoch

ReRAM: Training is not

accurate: better for
inference
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Comparison of State of the Art Accelerators

TABLE II. Comparison of selected digital and mixed-signal neural network inference accelerators from industry and research.” TOPS: Tera-Operations per second. We have
counted MACs as single operations where possible. Note that performance (TOPS) is measured at the specified level of weight and activation precision, which differs
between accelerators. The results for NVIDIA T4, TPU, Goya, UNPU, and Ref. 122 are measured; others are simulated. TOPS/mm? values are based on the die area, where
provided.

Google Habana Reference 122

NVIDIA T4'"” TPU v1**" Goya HL-1000""°  DaDianNao™* UNPU™ mixed-signal®
Process 12 nm 28 nm 16 nm 28 nm 65 nm 28 nm
Activation resolution 8-bit int 8-bit int 16-bit int 16-bit fixed-pt. 16 bits 1 bit
Weight resolution 8-bit int 8-bit int 16-bit int 16-bit fixed-pt. 1 bit* 1 bit
Clock speed 2.6 GHz 700 MHz 2.1 GHz (CPU) 606 MHz 200 MHz 10 MHz
Benchmarked workload ~ ResNet-50""" Mean of six MLPs, ResNet-50 Peak Peak Co-designed binary

(batch =128) LSTMs, CNNs (batch =10) performance  performance CNN (CIFAR-10)
Throughput (TOPS) 22.2, 130 (peak) 214, 92 (peak) 63.1 5.58 7.37 0.478
Density (TOPS/mm?) 0.04, 0.24 (peak)  0.06, 0.28 (peak) 0.08 0.46 0.10
Etficiency (TOPS/W) 0.32 2.3 (peak) 0.61 0.35 50.6 532

*To enable performance comparisons across a uniform application space, we did not consider accelerators for spiking neural networks.

®The TPU v2 and v3 chips, which use 16-bit floating point arithmetic, are commercially available for both inference and training on the cloud. MLPerf inference benchmarking
results for the Cloud TPU v3 are available,'” but power and area information is undisclosed. The TPU v1 die area is taken to be the stated upper bound of 331 mm?; the listed
TOPS/mm? values are therefore a lower bound.

“The mixed-signal accelerator in Ref. 122 performs multiplication using digital logic and summation using analog switched-capacitor circuits.

4The UNPU architecture flexibly supports any weight precision from 1 to 16bits. The results are listed for 1-bit weights.



Example Standard Visual Recogntion Datasets

MNIST ImageNet
FeY/ 79 6b6al
6757¢634¢9¢%
21790/ av+5
4L 71 90| ¢ %9y
Tl ¥4d /560
1789265 % 97
A22JAddD¥YFO
03 § 073657 _ )
Ol by b2« 3D it :=';.-";"-- Eoaat-d e
7/ 28N0bg 886/ '. ’L‘H .‘7""".-':;."-':- -3_ E '
» 28x28 pixel grayscale « 256x256 pixel color
* 10 classes * 1000 classes
* 60k training images * 1.3M training images
* 10k test images * 100k test images

"1 m VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017

"l. .
21
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How much computing needs to be done?

Metrics LeNet AlexNet Overfeat VGG GoogLeNet ResNet
5 fast 16 vl 50
Top-5 error n/a 16.4 14.2 7.4 6.7 5.3
Top-5 error (single crop)’ n/a 19.8 17.0 3.8 10.7 7.0
Input Size 28 %28 227 %227 231x231 224 %224 224 %224 224 %224
# of CONV Layers 2 5 5 13 57 53
Depth in # of CONV Layers 2 5 5 13 21 49
Filter Sizes 5 3.5,11 3.5,11 3 1,3,5.7 1,3,7
# of Channels 1, 20 3-256 3-1024 3-512 3-832 3-2048
# of Filters 20, 50 06-384 96-1024 64-512 16-384 64-2048
Stride 1 1.4 1,4 1 1,2 1,2
Weights 2.6k 2.3M 16M 14.7TM 6.0M 23.5M
MACs 283k H66M 2.67G 15.3G 1.43G 3.86G
# of FC Layers 2 3 3 3 1 1
Filter Sizes 1,4 1.6 1,6,12 1,7 1 1
# of Channels 50, 500 256-4096 1024-4096 | 512-4096 1024 2048
# of Filters 10, 500 | 1000-4096 | 1000-4096 | 1000-4096 1000 1000
Weights 58k 58.6M 130M 124M IM 2M
MACs 58k 58.6M 130M 124M 1M 2M
Total Weights 60k 61M 146M 138M ™M 25.5M
Total MACs 341k 724M 2.8G 15.5G 1.43G 3.9G
Pretrained Model Website [56] [57, 58] n/a [57-59] [57-59] [57-59]

FsU
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Key Circuit Block/Kernel Analysis

Rank-1 Update

Vector Matrix Multiply (Training)

(Inference)

Vi, Va, Vi, Vi
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Coding | Drivers Two ‘\%‘
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§ 7V0]tagc Coding
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Logic 1024 x 1024

Crossbars
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"1 ﬂ.l Marinella, Agarwal, et al, IEEE JETCAS, 2018




Neural Network Inference Architecture

Neural network

Pipelined MVM tile Analog MVM core

! o .F—A\ Row SONOS array
A - "
: oy Lo
Recaiva|Receaivel = 2kB 2kB N OV 01v
FIFOs | FIFOs D D— ﬁ;'-tiéﬂ | — .
4kB | 4kB P . i . ’ . ?
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7 1kB 12s  ||MaxPool| AvgPoaol [{ evel |3 TETT g TETEqg Tt SR
Analog Analog o i ] shifters Iy )
—J b mmm——— 4 512 i °
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: 64 kB l; N 1% E 256 512 i Bit line l Bit line l
e fnainany. | 54 AR i| adders |512| adders !
53 conv, 128 N | =16 =16 ] 1
MVMin|| Analog MVMin|| Analog A [ — ez 1 . |¢ Bt ine
1125 || MM 1125 || Mvm ALUIN [y ! _ : intearator  OPeETa
kB core kB core 1 kB ! 3;’" e | ntegrator  amplifier
m 1| adders 1
1152x256 1152x256 ﬁ'—:c-'é" Y x18 1.5kB !
gy e ———— i
N
Control 54 ALUIn|[y ™8  Arithmetic logic
unit D D 1kB N unit (ALU)
H 64 &4 ALUin N
Mesh architecture os 1KB B }
\\ s &bit |1
N ragistar
A Y
Convi Convi Conv2 Convz Data batch 1 AN
N i
N ~ Analog
[E] @ | SR MVM ADC ALU O t \\ pipeline buffer
n u
Convi Conv1 Conv2 Comz2 W [T EICIE
CLK (extamal to cona)
SR
Conv3 Conv3 Conv3 Conva In W MVM ADC ALU Out
® ® Circuits designed and simulated
> . .
using commercial 40nm PDK
Comv3 conva| [conva Conva Data batch 2 295 clock g
cycles

m Xiao et al, In preparation, IEEE J. Circuits and Systems, 2021.
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