This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Mesh Distance for Dimension Reduction and Visualization of
Numerical Simulation Data

Shawn Martin, Alex Sielicki, Matt Letter, Jaxon Gittinger, Warren L. Hunt, and Patricia J. Crossno

Abstract— Computational modeling frequently generates sets of related simulation runs, known as ensembles. These simulations
often output 3D surface mesh data, where the geometry and variable values of the mesh are changing with each time step. Comparing
these ensembles depends on comparing not only geometric properties, but also associated field data. In this paper, we propose a new
metric for comparing mesh geometry combined with field data variables. Our measure is a generalization of the well-known Metro
algorithm used in mesh simplification. The Metro algorithm can compare two meshes but doesn’t consider field variables. Our metric
evaluates a single variable in combination with the mesh geometry. Combining our metric with Multi-Dimensional Scaling, we project all
of the time steps from a set of example ensembles to demonstrate the effectiveness of this approach.

Index Terms—Surface Mesh, Dimension Reduction, Visualization, Numerical Simulation

1 INTRODUCTION

Numerical simulations are used to simulate physical phenomenon or
predict the behavior of prototype devices before they are manufactured.
The simulations considered in this work consist of 3D data produced
over time!. At each time step, the simulation will compute a 3D mesh
and the field variables associated with the nodes of the mesh. Field
variables can be either scalar or vector. Scalar variables might include
quantities such as temperature or pressure and vector variables might
include quantities such as velocity or acceleration.

When analyzing numerical simulation data, practitioners often want
to compare one simulation to another or understand how a given simu-
lation evolves over time. Typically this is done by simply viewing a set
of simulations and comparing them at each time step. This approach
quickly becomes infeasible, however, when the analyst has to consider
hundreds or thousands of time steps.

In this paper, we present a visualization approach to assist in un-
derstanding numerical simulation data by quantifying time step com-
parisons using a mesh distance. Most of the previous work in mesh
distance comes from the field of mesh simplification [5, 8]. In this field,
the goal is to derive a simplified mesh from an existing mesh, typically
for use in computer graphics and visualization scenarios. The simplified
mesh should represent the original mesh as accurately as possible but
have fewer nodes and edges. In order to evaluate the simplified mesh, a
mesh distance is required. Simplified mesh distance typically does not
use field variables [4, 15], but there are some exceptions [14]. There are
also metrics which consider visual quality that we do not consider [1].
Of the algorithms that incorporate field variables, our generalization of
the Metro algorithm [5] is most similar to the algorithm described in
the work by Roy et al., 2004 [14].

Our use of a mesh distance is where the similarity of our work to the
work in mesh simplification ends. Our end goal is not mesh comparison,
per se, but rather the visualization and comparison of multiple time
steps in a numerical simulation. Therefore, we use the mesh distance to
produce a pairwise distance matrix. The pairwise distance matrix is then
used with a dimension reduction algorithm known as multidimensional
scaling [3]. We could also use other algorithms that use pairwise
distance matrices, for example Isomap [16] or t-SNE [18]. Finally, the
resulting dimension reduction is used as the basis of a visualization in
a web-application called Slycat [7].

* Sandia National Laboratories, Albuquerque, NM

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints @ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

't should be noted explicitly that in this work we are concerned with surface
meshes, not volumetric meshes.

Slycat comes from the field of ensemble visualization [9, 10]. En-
semble visualization explores the visualization of data not from a single
numerical simulation, but from multiple runs (an ensemble) of numeri-
cal simulations. The goal of ensemble visualization is to understand not
only a given simulation but also the context of that simulation within
the wider scope of multiple similar simulations. Since our metric can
be used just as easily on an ensemble of numerical simulations, it can
also be used for ensemble visualization. Other algorithms in the field
of ensemble visualization include iso-surfaces [2], topological analy-
sis [11, 12], and comparative analysis [13] (among others). None of
these algorithms are particularly similar to our approach.

Slycat is a system which provides a web server, a database, and a
Python infrastructure for remote computation (on the web server). The
user is not burdened with installation/updates and the only requirement
is the presence of a Slycat supported browser (e.g. Firefox). In addition,
Slycat supports management of multiple users, multiple datasets, and
access control, therefore encouraging collaboration while maintaining
data privacy. Slycat is implemented using HTMLS, JavaScript, and
Python. Slycat is open source (github.com/sandialabs/slycat). It is
anticipated that an open-source version of our mesh distance software
will also be released.

In this paper, we describe our approach in detail. We discuss in
detail the algorithms we use to represent the simulation time steps and
describe the Slycat user interface. We consider computational cost
and demonstrate our system using a dataset obtained from a numerical
simulation of a punch impacting a metal plate.

Although we use specific algorithms in this paper, it is important to
note that the user interface is completely decoupled from the chosen
algorithms. Alternative or new algorithms can be easily substituted for
the algorithms described.

2 ALGORITHMS

We use a few different algorithms to produce our time step visual-
izations, including our generalization of the Metro algorithm. We
use the Python trimesh library (https://trimsh.org/index.html) to im-
plement our metric, and the Python library sklearn (https://scikit-
learn.org/stable/modules/generated/sklearn.manifold. MDS.html) to im-
plement multidimensional scaling. In this section we provide details
for the algorithms.

2.1 Metro

Metro is an algorithm for comparing two meshes proposed by Cignoni
et al. in 1998 [5]. Metro computes the approximation error between
two mesh surfaces. We start by defining the distance e(p, S) between a
point p and a surface S:

e(p,S) = [r)nég d(p,p'), (1

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-3064C

where d(p, p’) is the Euclidean distance between two points p and p'.

Next, we define the distance E(S1,S;) between surfaces S; and S5:

E(S1,S2) =max e(p,S»). 2)
PESH

The metric in Equation 2 is called the max distance. We also consider
the variations

1
ES1,85) =~), e(p.S), 3)
PES)

which we call the mean distance, and

1
E(S1,8) =, [~) e(p.52)%,)
PES)

which we call the root mean square (RMS) distance. In all cases, n is
the number of samples considered in the computation. These distances

are not symmetric since there exist cases where E(S1,52) # E(S2,S51)-

Thus they are not metrics in the strict sense. However, the Hausdorff
distance
EH(ShSZ):maX (E(S15S2)7E(S27S1) (5)

is two-sided, as is the mean distance
1
Em(ShSZ) = 7/ e(p7S2)dS7 (6)
|S1 ‘ Si

where S| is the area of the surface S;.

Once one of the variations in Equations (2)-(4) has been computed,
it is no more effort to compute the other two, so we generally report
all three values. Further, we typically report the mean distance in
Equation (6) based on the three variations. These distances can be also
extended to give signed values for orientable surfaces, but we do not
use such distances in this work.

2.2 Metro with Field Data

The Metro algorithm can be extended to consider both mesh geometry
and field data by supplementing the distance e(p,S’) in Equation (1)
with distances

er(p,S) =e(p,S)+ Y di(filp), £i(p'))

icF

= Lryng; d(p7p/)} +) di(fi(p) /(D))

icF

O]

where F is the set of field variables, f;(p) is the ith field value at point
p, d(fi(p), f;(p’)) is the Euclidean distance between field values at p
and p/, and p’ is the argument p’ € S which achieves the minimum in
Equation (1). We then denote the distance between surfaces S; and S
including field variables using

Ef(S1,82) = max ef(p,S2). ®)
PES

Note that the new distance ey (p,S) can be computed for minimal

additional cost once the point p’ is located according to Equation (1).

Also note that different combinations of field variables can be easily
computed in case the user is interested in a visualizing a particular
quantity or group of quantities.

2.3 Multidimensional Scaling

After computing a pairwise distance matrix using the mesh distance
we use classical multidimensional scaling (MDS) [3] to provide a
two-dimensional visualization of the time steps in a simulation. This
visualization is displayed in the central pane of the user interface, as
shown in Figure 1. To compute the MDS coordinates, suppose we have
a surface mesh dataset {S;}. We compute a pairwise distance matrix

Ef(S1,81) Ef(81,52)
D= Ef(SZ,SI) Ef(52752) B)

where E(S;,S;) gives a distance between mesh i and mesh j according
to Equation (8).

Now we use the MDS algorithm to compute coordinates for the
distance matrix D. The first step in MDS is to double center the
distance matrix, obtaining

B= f%HDzH,

(10)
where D? is the component wise square of D, and H =1 —117 /n, n
being the size of D. Next, we perform an eigenvalue decomposition
of B, keeping only the two largest positive eigenvalues A;,4; and
corresponding eigenvectors vi,v,. The MDS coordinates are given
by the columns of VA2, where V is the matrix containing the two
eigenvectors v,v, and A is the diagonal matrix containing the two
eigvenvalues A1, 4;.

2.4 Computational Costs

The main computational cost of the Metro algorithm is the identification
of the closest point p’ on S5 to a point p on Sy. The cost depends on the
surface area of S1 and the number of faces on S, [5]. Once p and p’
are identified, the additional cost for considering field variable data is
constant. In our implementation of the Metro algorithm, we considered
various approximations, both in terms of sampling the surfaces and
computing the closest points. We considered combinations of vertex
sampling, edge sampling, and face sampling while also considering
approximations to p’ in Equation 1 using nearest vertex values, nearest
face values, and reverse sampling. We conducted a comparison of the
accuracy of the various options using our punch-plate dataset. Finally,
we used the embarrassingly parallel nature of the calculation to simul-
taneously compute blocks of the full pairwise distance matrix. These
comparisons will be described in further detail in the Example section.

3 USER INTERFACE

The user interface for our mesh visualization tool is centered around
the use of the parameter space model in Slycat [6]. To accom-
modate 3D visualization, a 3D viewer was added using vtk.js
(https://kitware.github.io/vtk-js/index.html). The 3D viewer allows
interactive visualization of the surface mesh data.

The full interface consists of two large panes and a variety of con-
trols, some of which open additional panes. The interface is shown
in Figure 1. The controls are arranged above the central pane, which
is used to display the MDS dimension reduction coordinates, where
each point represents a surface mesh and the points are arranged so that
proximity reflects mesh distance. The lower pane contains a meta data
table, where each row corresponds to a point in the central pane. Points
selected in the central pane will be highlighted in the meta data table
and vice versa.

The 3D viewer is linked to the plots displayed in the central pane
and is fully interactive. The mesh can be rotated, scaled, efc. and can be
colored according to any of the meta data provided. Further, multiple
3D views can be opened simultaneously and synchronized according to
viewpoint. The viewers themselves can be organized arbitrarily within
the central pane by the user.

Finally, the contents of the central pane can altered to display any
data provided when the visualization is created, including meta data and
additional MDS computations. In fact, we provide multiple versions of
the MDS calculations by computing mesh distance matrices for each
field variable separately. The user can then select the MDS coordinates
according to whatever field variable is of interest. The points displayed
in the central pane can also be colored according to any field variable
statistics provided as meta data, for example averages or deviations.

4 EXAMPLES

When analyzing numerical simulations, there are two major considera-
tions. First, we want to be able to compare not only mesh geometry, but
other properties including location, orientation, field variable values,
and potentially even mesh resolution. To ensure that our metric is
capable of distinguishing between mesh objects having these differing

\>N¥e

Metro Paper / Punch-Plate Data

XT84 Info - Bookmarks ~ Delete ~ (IR 10d

Unclassified Unlimited Release

[X"V"Poimcalor"Med\a"D] (24 Acnons".f.‘:.] &‘BDColor"Co\orBy'] @

Time: 0.004750010280173238

'VON_MISES

200,000

150,000

100,000

'VON_MISES

50,000

Time: 0.004500000043254163 Elig
200,000 =
/ruua—
LY a
4 fi- 150,000 m
=
5' |- 100,000 0.005
o 4 &
50,000
Lo 0.000
>
o @
=
3
Time: 0.004500005316771781 8 005 (]
2 o
-200,000 /E]
- alom — | B
B = . 0.010 o
5‘ |- 100,000
>
I-50,000
0015
Lo T T T
0.08 0.0 0.0q

Index

friction

velacity
233 035
233 035

densit...
0.000214
0000214

densit...
0.000682
0000682

densit...
00265
0.0265

young...
10000000
10000000
10000000
10000000
10000000
10000000
10000000

young...
29500000
29500000
29500000
29500000
29500000

young... D
29500000
29500000
29500000
29500000
29500000

233 035
233 035
233 035

0.000214
0000214
0.000214

0.000682
0.000682
0.000682

0.0265
00265
0.0265
233 035
233 035

0.000214
0000214

0.000682
0000882

0.0265
0.0265

20500000
29500000

29500000
29500000

a
filez/ynulpscr... 0
file:/Aynxipscr...
file:/ynxlpscr... 100
file:/mynxipscr... 150
fle:/Aynxlpscr...
filez/ynlpscr.
file:/Avnoser.

=g T — MDS RMS X
009 0.02

0

eleme...
51412.17814
51412.17814

timestep eleme... eleme... eleme...

45419.62567
45419.62567

eleme...

eleme...
13915.3256
13915.3256

eleme...

-15707.35743
-15707.35743
-15707.35743
-15707.35743
-15707.35743

eleme... el
8987.110094
8987110994

-239235.6456 -250828.0627
~250828.0627
-250828.0627
-250828.0627
~250828.0627
-250828.0627

-279934 8775

0 -239235.6456 ~279934.8775

239235.6456 5141217814
51412.17814

51412.17814

45419.62567
45419.62567
45419.62567

-279934.6775 13915.3256
13915.3256

13915.3256

8987.110094
8987.110094
8987110994

-239235.6456 -279934 8775

00 -239235.6456 -279934.6775

50 230235.6456 5141217814

51412.17814

45419.62567
45419.62567

-279934.6775 13915.3256

13915.3256

-15707.35743
-15707.35743

8987.110094
8987110994

00 -239235.6456 ~250828.0627 ~279934.8775

‘ Unclassified Unlimited Release

Fig. 1. User Interface. Shown here is the user interface for the mesh distance visualization. The central pane contains the coordinates from the MDS
calculation. Each point is selectable and can be tied to a 3D viewer showing the original surface mesh associated with that point. The lower pane
provides an interactive table giving metadata for the time steps visualized (each row in the table corresponds to a point in the central pane). Finally,
controls are provided in a toolbar which allow the user to color by different metadata variables, show alternate reductions, and perform various other

functions (data export, figure adjustment, and so on).

characteristics, we studied the algorithm on a toy dataset consisting
of ellipsoids with various locations, orientations, sizes, shapes, and
resolutions.

Second, we want to ensure that the metric calculation runs in a rea-
sonable time but still gives good accuracy. For this study we compared
the computational cost and accuracy for different approximations com-
pared to the full calculation. The approximations we considered all
attempted to increase the speed of the closest point calculations between
two meshes. We considered reduced sampling strategies such as vertex
only sampling and sampling size, as well as approximations to closest
point calculations including nearest vertex and nearest face values. We
compared these strategies to the calculation using full vertex/edge/face
sampling and exact closest point calculation.

To examine the behavior of the mesh metric using different sampling
strategies and closest point approximations, we used an ensemble of
simulations for a punch-plate system. We used this same system to
examine the behavior of the metric and MDS visualization when using
field variable values.

4.1 Toy Data

Our toy data consists of ellipsoids constructed with different mesh prop-
erties held fixed and others varied. We generated seven datasets. Each
dataset consisted of 30 randomly generated ellipsoids. For location, we
generated spheres with the same shape and resolution, but randomly
distributed between three clusters. For orientation, we generated el-
lipsoids of the same shape and resolution, but randomly distributed
between three distinct orientations. For size we generated differently
sized spheres; for shape we generated ellipsoids with different major
and minor axis lengths; and for resolution, we generated spheres of
the same size and shape, but with different resolution. Finally, we
generated a dataset with randomly mixed combinations of location,
orientation, size, shape, and resolution. In all cases, the metric visual-
ization distinguished between the varied parameter. We show the results
for the orientation data in Figure 2, the resolution data in Figure 3, and
the mixed dataset in Figure 4. The results for size, shape, and location
are not shown due to the fact that the 3D mesh viewer automatically
translates and scales the object in the viewer so that size, shape, and

location are indistinguishable (although in those cases the MDS scatter
plot still reveals the three clusters embedded in the data).

4.2 Speed/Accuracy Trade-Offs

To test the metric algorithm performance using different sampling strate-
gies and closest point approximations, we used an ensemble of numeri-
cal simulations generated with Sierra/SolidMechanics (Sierra/SM) [17],
a Lagrangian, three-dimensional code for problems with large defor-
mations and nonlinear material behaviors. This ensemble was created
to explore the effects of changes in simulation parameters on material
fracturing. The modeled object is a punch impacting a metal plate
under various conditions, such as different punch velocities, material
properties, or plate thicknesses. For each run, the ensemble consists of
8 inputs and 38 outputs (12 scalar results, 6 event-triggered images, 16
variables changing over time, and 4 videos). The full ensemble is 15K
runs, with about a terabyte of data (including a total of 90K images and
60K videos). For our parameter study we used a very small subset of 5
randomly selected runs with 42 time steps each, giving a dataset of 210
total time steps.

We first examined the effect of reduced sampling on the accuracy
of the results. We measured accuracy by comparing against the a full
sampling strategy, consisting of all vertices, midpoints of edges, and
a random selection of samples for the mesh faces. For each reduced
sampling strategy, we computed the Frobenius norm of the difference
between the pairwise distance matrices computed using the reduced
sampling strategy and the full sampling strategy. The results are shown
in Figure 5. For our reduced sample sets, we first used vertex sampling,
following by edge sampling, followed by face sampling. For a typical
mesh in this dataset, there were 12k vertex samples, 150k edge samples,
and remaining samples randomly taken from the mesh faces. Thus the
25k sample dataset would contain half vertex samples and half edge
samples, and the 200k sample dataset would contain all the vertex and
edge samples plus 37k face samples.

Next we compared different closest point approximations when
computing the metric distance in Equation (1). We compared our ap-
proximations to the standard exact calculation, which computes for
each sample p € §; the closest point on the surface S;, thus approx-
imating the distance e(p,S) in Equation (1). We tried three different

0.16 7

T 1 Avg. X
0.15 0.19 ~0.05 ~0.00 0.05 0.10 015 0.29

Fig. 2. Ellipsoid Orientation Data. The results of the metric visualization using ellipsoids with the same geometry and mesh resolution, but with
orientation generated to cluster into three groups. The three clusters were discovered by the metric/MDS calculation. The cluster on the bottom left is
the ellipsoids oriented end-on; the cluster on the top corresponds to the ellipsoids oriented at an angle; and the cluster on the right corresponds to
the ellipsoids oriented left to right.

0.035-{
0.030
0.025+ 40
0.020 L35
F3.0
0.0154
2.5
c
> 2
. m =3
5. 0.010 3 20
L &
H15
005+
F1.0
0.000
05
-0.005+ Lo.o
-0.010- m]
]
-0.015+ =]
] -]
T T T = T T 1 Avg. X
-0.19 ~0.05 0.00 0.05 0.19 0.15

Fig. 3. Sphere Resolution Data. The results of the metric visualization on spheres with three distinct resolutions. In this case, the metric separated
the three clusters into two groups. On the left side of the scatter plot are the spheres with higher resolutions and and the right are the spheres with
very low resolution.

Fig. 4. Ellipsoid Data. The results of the metric visualization on a random combination of ellipsoids of different sizes, shapes, resolutions, locations,
and orientations. Although there were many random variations, the metric nevertheless managed to co-locate similar shapes, orientations, and
resolutions in the scatter plot.

40
0.05
359
0.04

304
0.03

254
0.02

Frobenius Norm Error

Time (Minutes)

201
0.01 A

151

0.00

10

T T T T T T T T
(b) 25000 50000 75000 100000 125000 150000 175000 200000
Number Samples

Fig. 5. Sampling Study. Here we compare the effect of varying the number of samples used to compute the mesh metric. On the left (a), we compare
a baseline sampling strategy taking 250k samples (labeled VEF) with reduced sets of samples. For the reduced sample datasets, we computed
the geometric mesh metrics Max, Mean, and RMS in Equations (2)-(4), as well as the geometric field variable metrics based on stress for the
punch-plate dataset. On the right (b), we show that the algorithm’s time requirement scales linearly with number of samples.

approximations: first using the nearest vertex in S to p € S;; next
using reverse sampling, a variation using the nearest vertices in Sy
to a random sample on S, (including faces); and last using nearest
faces, which determines nearest faces on S, as containing the nearest
vertex on S instead of the faces within a bounding box around p € ;.
Note that the nearest faces method is much faster than the standard
implementation, but is not guaranteed to identify all the nearest faces
from S,. If it does identify the correct faces, however, the results are
identical. We show the results of our approximations in Figure 6(a).
Even with our approximations and reduced sampling strategies, the
mesh metric is computationally expensive. However, the full pairwise
distance calculation is in fact embarrassingly parallel, and scales well by
simply splitting full pairwise distance matrix into submatrices. We show
the how the algorithm scales with number of processors in Figure 6(b).

4.3 Simulation Data

We provide examples from two simulation ensembles to demonstrate
the use of our metric on real-world data. Both ensembles are parameter
studies from impact simulations. The first ensemble is from the punch-
plate simulation used previously to understand speed/accuracy trade
offs in our algorithm (Section 4.2). The second is a canister-plate
ensemble, where the effects of different initial position and angle are
examined when a canister strikes a plate.

4.3.1 Punch-Plate

The punch-plate data consists of 10 simulations, each with 20 time
samples (every 50th time step over 1000 steps). In Figure 7(a), we
superimpose all of the time steps for the 10 runs of the punch ensemble.
The points are color-coded by time step, transitioning from blue to
white to red as time increases. Highlighting the final time steps (larger
dark red points), a shared pattern can be seen across all runs, in which
they all begin at the origin, curve up to the right, peak at a sharp
transition, dip down to the left, then end with a rise, also to the left.
Most runs end along the upward slope on the left, though two stand out
as being anomalous. To understand what distinguishes these two, we
pull up the surface meshes for all of the final runs and compare them,
as shown in Figure 7(b). The runs that finish together on the left are
all the simulations where the punch has penetrated the plate. The two
anamolous runs are those where the punch has failed to penetrate.

An additional point is interest occurs at discontinuity in the timelines.
In Figure 8, we examine the surface meshes for two runs, focusing
on the time steps immediately before and after the reversal. We’ve
overlaid arrows on the image to highlight the time sequence of the
points. In both cases, the Von Mises stresses are building until the point
of transition (the red coloration of the post), then sharply dropping off
once a chunk of the plate has started to separate as a plug.

These two examples demonstrate that patterns can be used to reveal
events and other transitions, reducing the number of surfaces that the
user needs to visually inspect.

4.3.2 Canister-Plate

The canister data has 124 simulations, each with 25 consecutive time
steps. In Figure 9(a), we show all of the time steps for the 124 runs
of the simulation. In this example, we see very different patterns from
those observed in the punch-plate example. Here the runs do not follow
a single pattern, but instead the represent differences in the angles of
the canister’s initial position and that of the plate. In Figure 9(b), we
look at a subset of runs for a pitch angle of 45 degrees. We see that the
clock angles of 90 and 180 degrees generate patterns that are almost
mirror images of each other. Similar patterns can be seen with other
combinations of pitch and clock angles.

Using the trajectory visualization technique for the punch-plate data
(Figure 8), we show a typical trajectory for a canister-plate simulation
in Figure 10. In the case of the canister-plate data, the trajectory
proceeds from the upper left corner of the reduced dimensional space to
the lower right, where the canister experiences maximum overall Von
Mises stress as it bounces off the plate. The trajectory the curves back to
the center of the scatter plot, where the canister experiences high local
stress causing the lid to open. It is interesting to note that the canister

experience a similar state and stress both as it first traverses the center
of the scatter plot and during the final moments of the simulation. This
can be seen using the 3D viewer, as shown for both cases in Figure 10.

4.3.3 Metric Comparisons

The punch-plate data can also be used to illustrate some of the prop-
erties of our mesh metric and it’s behavior using field variables. First,
it is interesting to observe the difference between the max, mean, and
RMS options using geometry alone, as shown in Figure 11.

Second, we look at the effect of using a field variable on the mesh
metric. The field variables associated with the punch-plate data are
primarily involved with measuring the stress in the plate. In Figure 12,
we show the metric visualization considering both geometry and Von
Mises stress. See also Figure 11.

5 DISCUSSION

Comparing time steps using mesh data from numerical simulations
is a very difficult problem for a variety of reasons. First, mesh data
is not uniform in either space or underlying dimension. For example,
objects modeled by a mesh in a numerical simulation will very often
change in shape and orientation from one time step to the next, and
hence the number of vertices, edges, and faces in the mesh will change
as well. Second, mesh data encodes not only geometry but also field
data described by both scalar and vector quantities of interest. Third,
mesh data is “big,” because all of the encoded 3D geometric and field
information mush often be recorded at a high resolution over many
time steps to obtain good simulation results. Then, of course, we desire
to analyze ensembles of simulations rather than just one simulation at
a time. Finally, the metric comparisons must be presented in a usable
form for scientists and engineers for interpreting the results of their
simulations.

Our proposed metric for mesh comparison attempts to address all
of these difficulties and provide a visualization tool for ensembles of
simulations. We demonstrated using the toy data that the underlying
metric can differentiate between shape, orientation, and even mesh
resolution. We demonstrated that the metric can be extended to include
field variables as desired, and compared the results using data from a
punch-plate simulation. A particular strength of this approach is that
we can tailor our analysis by considering different field variables and
geometric metrics, all of which can be computed simultaneously.

In practice, our biggest challenge was computation expense, which
we addressed by comparing different approximations for speed and
accuracy using the punch-plate data and using parallel implementations.
In the future, we would like to further speed up the algorithm and
processing larger ensembles and greater numbers of time steps.

Our mesh metric can be used as a stand-alone tool, but it is far more
useful to an actual analyst as a part of a visualization system. To that
end we developed a 3D viewer for the time step data and incorporated
the comparisons into Slycat as an end-user visualization system. This
systems supports rapid investigation of simulation ensembles.

6 CONCLUSION

Surface mesh output from numerical simulations is often of primary
interest to scientists. As the number of time steps and simulations
increase, however, scientists cannot reasonably examine each mesh
individually. We have developed a mesh metric to compare time steps
and provide an abstraction using dimension reduction to simultaneously
visualize all the time steps in a simulation ensemble. Our representation
allows scientists to analyze large collections of surface mesh time steps
from multiple simulations simultaneously. Our metric provides not
only comparison based on geometry, location, and orientation, but also
scalar and vector field variables.

Further, the results of our calculations have been integrated into an
interactive web application using the Slycat framework. This appli-
cation lets scientists easily view and interact with both the abstract
representation of the data as well as examine each time step in detail.
Observations can be bookmarked and shared between collaborators.

7.5

7.0

6.5

6.0

Frobenius Norm Error

Log (Time in Minutes)

5.5 A

5.0 4

& & o) 20 25 3.0 3.5 4.0 a5
Log (Number of Cores)

Fig. 6. Approximation Study. Here we compare the effect of different closet point approximations used to compute the mesh metric. On the left (a),
we compare the nearest vertex, reverse sampling, and nearest faces approximations to the exact calculation. For each approximation, we computed
the geometric mesh metrics Max, Mean, and RMS in Equations (2)-(4), as well as the geometric field variable metrics based on stress for the
punch-plate dataset. On the right (b), we show how the embarrassingly parallel version of the algorithm scales with number of processors.

Time:
2o 900
150000 3 800 [Time: =
! 0
1= = 0 =
104
o 150000 g 60 o0
1,000 . 10000 g 500 100000
lsnn) £ Laoo S0
800 o 300 o
i

timestep

, Eﬁﬁ iz : :

mamcn " o8 E ik | |
j ° -0.03 jj q

(@) s ==2" (b) s =" Per—

[} - - . MDS VON_MISES X . MDS VON_MISES X
“0.0g 005 0oq4 00z 000 002 Oog Oos 0O0s 0.9

MDS VON_MISES Y
MDS VON_MISES Y

Bl

005 “0.0s 00g4 002 000 002 Oog O0s 0O0g O.7p

Fig. 7. Punch Timestep Evolution. On the left (a), we simultaneously view all time steps from all runs in the punch ensemble. The points are
color-coded by the time step, with earliest time step in dark blue and the the final time steps highlighted and colored dark red. The intial time steps
are all superimposed at the origin. Following time steps curve up and to the right until there is a discontinuity, after which the sequences reverse
direction and curve back and to the upper left. All but two simulations have their final time step along this final vertical section. On the right (b), we
have retrieved the surface models for each of the final time steps. Note that the punch has failed to penetrate the plate in the two unusual runs.

] s & 007 Time: Time: 1,000
. [ol h 2 w000 N\ 0.001909014343 0. 312768 g [
2000 | 0.0101 - g o / N\ 0.06 g 200000 800
- 100000 ooos| o Time: 0.05 100,000
B o 600
m [xo. cosen -] .
|

g e
z00m
. 0.000 =] g 0.04 - 3
0.0051 % \S/ - 003 ‘ . £ lano
> 0010 a - ° o |
1,000 & B @ 0.02 l 200
2 .0.015{ ~ EJ @ |
‘900 : 0015 EE 0Bg— = o001 \ /
1800 2!-0.020{ o [Time: 3 ‘0 - / -
~ 0.00
o 15 I P
2 E 2 001 5] \ Time: Time:
g 500 = -0.030] " = m Opm 0.000250019441| 0.000800012463) g |
£ La00 -0.035/ o 0.02 i 200000
£300 0.03 B 2 oo

S 0040 0,
iwo -0.0454 -0.04 /
(@)) -0.050! / (b) -0.05

MDS VON_MISES X L
L - “0.08 -0.0s 0.04 002 0.00 002 0og4 0.0s 0O0g 010

. MDS VON_MISES X
©00g 005 00og 007 00p 00 0Oog 0Oog Oog 010

Fig. 8. Punch Trajectories. On the left (a), we show how the trajectory for a mid-range punch velocity appears using our mesh metric with the Von
Mises feature. In particular, the trajectory proceeds from the lower left to the upper right as the Von Mises stress builds, whereupon the plate is
punctured, the stress released, and the trajectory loops back to the upper left. A similar pattern is observed using a higher punch velocity on the
right (b).

0.01
EE W
0.02 0.00 o EH P
[" 0o
0.01 -0.01 go DEF
0.00 -0.02 !hj Hy
-0.01 25 } [g 25
0.03 lg
0,02 a 8"
> -0.03 20 N -0.04 B = . 2
> ty w 005 o "ny
9 .0.04 8
] a a =
E 005 5 s £ 0.0 oD g 15
o ') @ | b4
§ -0.06 %] = o Elo g -007{® um o, H»
@ -0.07{ O [~ a @ -008{m o & =
= 008{@ 'iu =] I’ 5 = .09 " 5
-0.09/ ul
0.09 ﬁ & 0.10 o%h
0.10) B 0 - 0
o 0.1
0.1
0.12! E & -0.12
5]
013] o 013
(a) +H = MDS von_mises X (b) = MDS von_mises X
029 015 019 005 00p 0Oos 019 015 02 02p 015 079 005 Oop 0o0s 019 075 02

Fig. 9. Canister Timestep Evolution. On the left (a), we simultaneously view all time steps from all runs in the canister ensemble. Here the pattern
reflects differences in the parameters around the angle of the can and the angle of the plate. On the right (b), we have filtered the angles, revealing
that the 90 and 180 degree clock angles generate patterns that are mirror images of each other.

MDS von_mises Y
s
2
3

-0.10 o

-0.11

-0.12

-0.13
T T T T T T T —& MDS von_mises X
0.04 0.06 0.08 0.19 012 0.174 0.16 0.18

Fig. 10. Canister Trajectory. Here we show the trajectory of a single canister-plate trajectory in the reduced dimension scatter plot. The trajectory
proceeds from the upper left of the scatter plot to the lower right, passing through the center as the end of the canister bounces off the plate. The
Von Mises stress is highest on the lower right as the canister fully contacts the plate then lower as the trajectory continues back to the center of the
scatter plot, where the canister again bounces off the plate, this time causing the lid to open.

0.08 m ¥ 0.012 nEy By

0.06 0.003 = 0.010 = L [] [=x]

0.04 0.002 =) "o 0.00 n,

002 L 150 0.001 ‘ll im - 0.006 Ll T

0.00] m @ -150 0.004] -150

200 0.000 - n

-0.02 = 0,001]] -200 0.002 -200

% 004 L 250 > w u 250 > 0,000 -250
£ 300 §-0002 z 2 2

Z-006 8" e £ a0 £-0002 . 2
Q008 ® o T 350 2-0003 3 %50 @ -0004 L] e
=010 - m 400 8 004 400 = -0.006 m ® 400

-0.12 -450 0,005 450 -0.008 L] :FP 450

n = -500 s0 0010 ® 500
014 -0.006 o
0,012
0.16 - o -)
=
@ = S MDS Max X (0) & . MDS MeanX OF = MDS RMS X
“0.450.45°0.35°0.30°0.25°0.2°0.15°0. 19°0.050.00 0.05 00; 0op 007 00> 0oz Oog 00g 005 Vog 002 Oo0p 002

Fig. 11. Metric Geometric Behavior. Here we compare the effect of using Max, Mean, or RMS to compute the mesh metric, as defined in
Equations (2)-(4). On the left (a) we show the Max metric, in the middle (b) we show the Mean metric, and on the right (c) we show the RMS metric.
In all cases, the five simulation runs in the punch-plate data can be easily distinguished as trajectories in the scatter plot. They originate at the same
point (same initial conditions), and diverge depending on punch velocity. For the Max metric (a), the trajectories diverge in a waterfall pattern. For the
Mean metric (b), the points follow an oscillating pattern, most likely corresponding to the vibration of the plate when struck by the punch. For the
RMS metric (c), the points diverge from the moment the punch strikes the plate.

Time:
0.005000007436162867 |

Time:

0.001500014644604 118 300,000

Time:

200.000 0.0010000,143432517218

100,000

'VON_MISES

0

VON_MISES

Time: =
0.003500008058731468 L 300,000 [0 17270 15,

Y

|
-200,000

'VON_MISES

|- 100,000

MDS VON_MISE:

-0

Time: =

0.0002500132176182619 300000 | 0024
200000 | 0031
il

100,000

VON_MISES

300,000

200,000

100,000

0

200,000

'VON_MISES

Time:
0.0007500312762578947

100,000
300,000

xO [15398 K*, 200,000

'VON_MISES

100,000

x 0L

0 171°8 X"~

300,000

200,000

VON_MISES

100,000

/ |_-0041
“o = m
— -0.05 |
. i T T ; ;

MDS VON_MISES X

Fig. 12. Metric Field Variable Behavior. Here we show the effect of a field variable on the mesh metric, in particular the Von Mises stress on the plate
in the punch-plate data. Although the five simulation trajectories are still discernible (see Figure 11), they are now grouped according to whether or

not the punch actually makes it through the plate.

Together our metric, dimension reduction, and interactive interface
enable analysis of numerical simulation surface mesh data on a scale
previously unavailable.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

REFERENCES

[1] I. Abouelaziz, A. Chetouani, M. El Hassouni, and H. Cherifi. Mesh visual
quality assessment metrics: A comparison study. pp. 283-288, 12 2017.
doi: 10.1109/SITIS.2017.55

[2] O. S. Alabi, X. Wu, J. M. Harter, M. Phadke, L. Pinto, H. Petersen,

S. Bass, M. Keifer, S. Zhong, C. Healey, and R. M. T. II. Comparative

visualization of ensembles using ensemble surface slicing. In P. C. Wong,

D. L. Kao, M. C. Hao, C. Chen, R. Kosara, M. A. Livingston, J. Park, and

1. Roberts, eds., Visualization and Data Analysis 2012, vol. 8294, pp. 318

—329. International Society for Optics and Photonics, SPIE, 2012. doi: 10.

1117/12.908288

I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and

Applications. Springer, 2005.

P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplifi-

cation algorithms. Computers & Graphics, 22(1):37-54, 1998. doi: 10.

1016/S0097-8493(97)00082-4

P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on

simplified surfaces. Computer Graphics Forum, 17(2):167-174, 1998. doi:

10.1111/1467-8659.00236

P. Crossno. Challenges in visual analysis of ensembles. /EEE Computer

Graphics and Applications, 38(2):122-131, 2018. doi: 10.1109/MCG.

2018.021951640

[7]1 P.J. Crossno, T. M. Shead, M. A. Sielicki, W. L. Hunt, S. Martin, and

M.-Y. Hsieh. Slycat ensemble analysis of electrical circuit simulations. In

J. Bennett, F. Vivodtzev, and V. Pascucci, eds., Topological and Statistical

Methods for Complex Data, pp. 279-294. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2015.

D. Luebke. A developer’s survey of polygonal simplification algorithms.

IEEE Computer Graphics and Applications, 21(3):24-35, 2001. doi: 10.

1109/38.920624

[3

=

[4

=

[5

[t}

—
2

[8

[t}

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

H. Obermaier, K. Bensema, and K. I. Joy. Visual trends analysis in time-
varying ensembles. IEEE Transactions on Visualization and Computer
Graphics, 22:2331-2342, 2016.

H. Obermaier and K. Joy. Future challenges for ensemble visualization.
Computer Graphics and Applications, IEEE, 34:8—11, 05 2014. doi: 10.
1109/MCG.2014.52

M. Otto, T. Germer, H.-C. Hege, and H. Theisel. Uncertain 2d vector field
topology. Computer Graphics Forum, 29(2):347-356, 2010.

M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3d vector
fields. In Proceedings of the 2011 IEEE Pacific Visualization Symposium,
PACIFICVIS ’11, p. 67-74. IEEE Computer Society, USA, 2011.

H. Piringer, S. Pajer, W. Berger, and H. Teichmann. Comparative vi-
sual analysis of 2d function ensembles. Computer Graphics Forum,
31(3pt3):1195-1204, 2012. doi: 10.1111/7.1467-8659.2012.03112.x

M. Roy, S. Foufou, and F. Truchetet. Mesh comparison using attribute
deviation metric. Int. J. Image Graph., 4:127—, 2004.

A. Taime, A. Saaidi, and K. Satori. Comparative Study of Mesh Simplifi-
cation Algorithms, vol. 380, pp. 287-295. 01 2016. doi: 10.1007/978-3
-319-30301-7_30

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global ge-
ometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319-2323, 2000. doi: 10.1126/science.290.5500.2319

J. D. Thomas. Sierra/solid mechanics 4.22 user’s guide. 10 2011. doi: 10.
2172/1029807

L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579-2605, 2008.

	Introduction
	Algorithms
	Metro
	Metro with Field Data
	Multidimensional Scaling
	Computational Costs

	User Interface
	Example
	Toy Data
	Speed/Accuracy Trade-Offs
	Simulation Data
	Punch-Plate
	Canister-Plate
	Metric Comparisons

	Discussion
	Conclusion

