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Verification and validation are essential to 
the quality of simulation.

*L.Alvarez, in D. Greenberg, The Politics of Pure Science, U. Chicago Press, 1967.

Verification ≈ Solving the equations correctly

• Calibration ≈ Adjusting (“tuning”) parameters

• Validation ≈ Solving the correct equations

– Mathematics/Computer Science issue
– Applies to both codes and calculations

– Physics/Engineering (i.e., modeling) issue
– Applies to both codes and calculations

• Benchmarking ≈ Comparing with other codes

– Parameters chosen for a specific class of problems

– “There is no democracy in physics.”*



For verification it is important to understand 
theoretical expectations.

Truncation or approximation error

Stability

Lax (Richtmyer) Equivalence Theorem
FEM: Strang & Fix, Ciarlet, Brezzi, Babuska

In hyperbolic PDEs

The Lax-Wendroff theorem

Godunov’s theorem

Entropy conditions

The LeFloch-Hou theorem
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Local truncation error is the most basic concept in numerical 
approximation

This can be estimated with the aid of a Taylor series expansion.

This measures the difference between the discrete and continuous versions of the 
equations.

When combined with stability it forms the foundation of numerical analysis.



Domain of dependence of a solution leads directly 
to the Courant or CFL number.

This is the region of space that can be physically effected by 
another space due to the finite speed of propogation.

The idea originated with Courant, Friedrichs and Lewy in 1928 
related to the analytic existence of solutions to PDEs 
(discretization was used as a device in the proofs).

∆tCFL



First a bit of history…

Von Neumann introduced the Fourier 
technique at Los Alamos in 1946 in a 
lecture.

It was originally classified.

Used to analyze parabolic PDE 
integrators in 1947 LA Report (LA-657)

Related to L2 norm,…
§ …Energy norm
§ We’ll do other norms, L1



We can examine the basic stability concepts with ODEs.

The forward Euler example.

Truncation error

Stability Plot

a∆t

b∆t



Quote by Peter Lax: The American Mathematical 
Monthly, February 1965:

“…who may regard using finite differences as the last 
resort of a scoundrel that the theory of difference 
equations is a rather sophisticated affair, more 
sophisticated than the corresponding theory of partial 
differential equations.”

He goes on to make two points:

1. The proofs that an approximation converges is 
analogous to the estimates of the soln’s to the PDEs, 
and

2. These proofs are harder to construct than for the 
PDEs themselves.



Lax’s contributions have recently received a great 
honor - the 2005 Abel Prize
The Abel prize was created to make up for the lack 
of a Nobel prize for mathematicians. 

Some of the work he was honored for started at Los 
Alamos and continued while at NYU’s Courant 
Institute. 
§ It forms much of the theoretical foundation for 

CFD.
§ Basic theory for the analytical and numerical 

solution of hyperbolic conservation laws.



The Lax-Richtmyer equivalence theorem 
provides the barest requirements on methods.

Putting numerical stability and truncation error together gets us to 
the basic requirement for linear methods for differential equations.

Theorem (Lax Equivalence): A numerical method for a linear 
differential equation will converge if that method is consistent and 
stable. 
Lax, Peter D., and Robert D. Richtmyer. "Survey of the stability of linear finite difference 
equations." Communications on pure and applied mathematics 9, no. 2 (1956): 267-293.

Consistency - means that the method is at least 1st order accurate –
means it approximates the correct PDE.
Stable - the method produces bounded approximations
Important to recognize for its relation to verification.



Let’s state this differently (Gil Strang, Introduction 
to Applied Mathematics)

The fundamental theorem of numerical analysis, the 
combination of consistency and stability is equivalent to 
convergence.



Godunov’s Theorem relating 
high-order and montonicity

Godunov’s theorem says that a high-order linear methods (2nd

order or higher) cannot be monotone for advection.

Restated: only 1st order linear methods are monotone

A linear method uses the same differencing stencil for all zones.

Godunov also developed a method that has been used extensively 
(mostly outside the hydrocode community)
He developed the method because of other methods available to him were 
inadequate, and he did not has access to the US literature (he commented 
that LxF would have been adequate).
Godunov, Sergei Konstantinovich. "A difference scheme for numerical solution of 
discontinuous solution of hydrodynamic equations." Math. Sbornik 47 (1959): 271-306.



Overcoming Godunov’s Theorem with nonlinear 
methods for advection
The key to overcoming Godunov’s theorem is using nonlinear 
methods – using different stencils dependent on the local 
solution.

Developed independently by four men in 1971-1972
§ Jay Boris (NRL)
§ Bram Van Leer (U. Leiden)
§ Vladimir Kolgan (USSR)
§ Ami Harten (Israel)

Bram van Leer

Jay Boris

Kolgan



Lax-Wendroff’s method was a major development 
in computations.

The method was a landmark and dominated the 
numerical methods for hyperbolic PDE’s in the 1960’s.
The paper that introduces the method is important 
theoretically (discussed later) for a theorem introduced. 
The method is second-order accurate, stable to a CFL 
number of one.
The method is derived by expanding the solution in a 
Taylor series and substituting second-order 
approximations.
P.D Lax; B. Wendroff (1960). “Systems of conservation laws”. Communications in 
Pure and Applied Mathematics. 13 (2): 217–237. doi:10.1002/cpa.3160130205

Lax & Wendroff
In Los Alamos at
Burt’s 70th

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1002%2Fcpa.3160130205


Lax-Wendroff Theorem is an essential motivator for 
many numerical methods for hyperbolic equations.

Most methods for hyperbolic PDEs are based on the discrete 
conservation form following the continuous conservation form because 
of this theorem.
Theorem (Lax and Wendroff): If a numerical method is in discrete 
conservation form, if a solution converges, it will converge to a weak 
solution of the PDE. A weak solution is not the weak solution.  There 
are infinitely many weak solutions.

Conservation form: the flux out of one cell is into another (telescoping)
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Here is an example of what happens without 
conservation form. Burgers’ equation.

Nonconservation form Conservation form
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∆ x
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Example from Randy Leveque



The Majda-Osher theorem establishes accuracy 
expectations for discontinuous flows.

Majda and Osher establish that the approximation of shocked or 
discontinuous flows will converge at be 1st order at best.

Theorem (Majda and Osher): A numerical solution will converge at 1st 
order at best for the region between any characteristics emanating 
from a discontinuity. Comm. Pure Appl. Math. 1977
Nonlinear discontinuties (self-steepening like shocks) converge at 1st order.
Majda, Andrew, and Stanley Osher. "Propagation of error into regions of smoothness for accurate 
difference approximations to hyperbolic equations." Communications on Pure and Applied Mathematics 30, 
no. 6 (1977): 671-705.

Linear discontinuties converge at less than 1st order (order 

m/(m+1) where m is the order of the method
Banks, Jeffrey W., T. Aslam, and William J. Rider. "On sub-linear convergence for linearly degenerate waves 
in capturing schemes." Journal of Computational Physics 227, no. 14 (2008): 6985-7002.



Entropy conditions are critical in determining 
physically meaningful results.

The problem with L-W is that there are an infinity of weak solutions, we 
need a mechanism to pick out the correct physical one.
The mechanism to do this entropy.  The entropy created through 
dissipation, numerical viscosity.

This is the connection to vanishing viscosity, more generally,

via Harten, Hyman and Lax, 1976
Harten, Amiram, James M. Hyman, Peter D. Lax, and Barbara Keyfitz. "On finite-difference 
approximations and entropy conditions for shocks." Communications on pure and applied 
mathematics 29, no. 3 (1976): 297-322.
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The Hou-LeFloch theorem has 
potentially profound consequences .

What happens when the method is not in conservation form?
The solution does not converge to a weak solution much less a correct 
one regardless of the dissipation.

Theorem (Hou-LeFloch): For a non-conservative method the solution 
differs from a weak solution by an amount proportional to the entropy 
produced in the solution. 

Hou, Thomas Y., and Philippe G. LeFloch. "Why nonconservative schemes converge to wrong 
solutions: error analysis." Mathematics of computation 62, no. 206 (1994): 497-530.



Summary

• It is essential to understand the theory related to both the 
method you are verifying and the problem being solved.

• The method’s analysis establishes the upper bound on 
expected convergence and error

• The problem being solved can lower the rate of 
convergence and increase error substantially

• For hyperbolic PDE’s many theorems exist defining 
expectations including when convergence should not be 
expected.
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