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» Code verification
« Solution verification

Outline @!I

- Foundation of verification

* Importance of theory in guiding verification |

« Examples from hyperbolic PDE's (compressible flow)



|
Verification and validation are essential to En!
the quality of simulation.

Verification = Solving the equations correctly

— Mathematics/Computer Science issue
— Applies to both codes and calculations

« Validation = Solving the correct equations
— Physics/Engineering (i.e., modeling) issue
— Applies to both codes and calculations |

c)omplemem;a r

« Calibration = Adjusting (“tuning”) parameters
— Parameters chosen for a specific class of problems

« Benchmarking = Comparing with other codes |
— “There is no democracy in physics.™

*L.Alvarez, in D. Greenberg, The Politics of Pure Science, U. Chicago Press, 1967. I



For verification it is important to understand
theoretical expectations.

Truncation or approximation error
Stability

Lax (Richtmyer) Equivalence Theorem
FEM: Strang & Fix, Ciarlet, Brezzi, Babuska
In hyperbolic PDEs

The Lax-Wendroff theorem

Godunov's theorem

Entropy conditions
The LeFloch-Hou theorem
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Local truncation error is the most basic concept in numerical
approximation

This can be estimated with the aid of a Taylor series expansion.
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This measures the difference between the discrete and continuous versions of the
equations.

truncation error ;Oexact— numerical

When combined with stability it forms the foundation of numerical analysis.
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‘ Domain of dependence of a solution leads directly @!I
to the Courant or CFL number.

This is the region of space that can be physically effected by ‘
another space due to the finite speed of propogation.

The idea originated with Courant, Friedrichs and Lewy in 1928
related to the analytic existence of solutions to PDEs
(discretization was used as a device in the proofs).




First a bit of history...

Von Neumann introduced the Fourier

technique at Los Alamos in 1946 in a
lecture.

It was originally classified.

Used to analyze parabolic PDE _ _ |
integrators in 1947 LA Report (LA-657)  »wme gL o e “'|
|

Related to L, norm,...
= ...Energy norm 5 -
= We'll do other norms, L; s om o o o o
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We can examine the basic stability concepts with ODEs.

The forward Euler example. ‘
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Quote by Peter Lax: The American Mathematical
Monthly, February 1965:

“...who may regard using finite differences as the last
resort of a scoundrel that the theory of difference
equations is a rather sophisticated affair, more
sophisticated than the corresponding theory of partial
differential equations.”

He goes on to make two points: |

1. The proofs that an approximation converges is
analogous to the estimates of the soln’s to the PDEs, |
and |

2. These proofs are harder to construct than for the
PDEs themselves. i



Lax’s contributions have recently received a great
honor - the 2005 Abel Prize

The Abel prize was created to make up for the lack
of a Nobel prize for mathematicians.

Some of the work he was honored for started at Los
Alamos and continued while at NYU’s Courant
Institute.

= |t forms much of the theoretical foundation for
CFD.

= Basic theory for the analytical and numerical
solution of hyperbolic conservation laws.




‘The Lax-Richtmyer equivalence theorem @!'

provides the barest requirements on methods.

Putting numerical stability and truncation error together gets us to ‘
the basic requirement for linear methods for differential equations.

Theorem (Lax Equivalence): A numerical method for a linear
differential equation will converge if that method is consistent and
stable.

Lax, Peter D., and Robert D. Richtmyer. "Survey of the stability of linear finite difference |
equations." Communications on pure and applied mathematics 9, no. 2 (1956). 267-293.

Consistency - means that the method is at least 1st order accurate - I
means it approximates the correct PDE.

Stable - the method produces bounded approximations
Important to recognize for its relation to verification. |



to Applied Mathematics)

The fundamental theorem of numerical analysis, the
combination of consistency and stability is equivalent to
convergence.

I
‘ Let’s state this differently (Gil Strang, Introduction @!



Godunov’'s Theorem relating
high-order and montonicity

Godunov's theorem says that a high-order linear methods (2"d
order or higher) cannot be monotone for advection.

o

Restated: only 1st order linear methods are monotone
A linear method uses the same differencing stencil for all zones.

Godunov also developed a method that has been used extensively |
(mostly outside the hydrocode community)

He developed the method because of other methods available to him were I
inadequate, and he did not has access to the US literature (he commented [
that LxF would have been adequate).

Godunoy, Sergei Konstantinovich. "A difference scheme for numerical solution of |
discontinuous solution of hydrodynamic equations." Math. Sbornik 47 (1959): 271-306. I



Overcoming Godunov’'s Theorem with nonlinear
methods for advection

The key to overcoming Godunov's theorem is using nonlinear
methods - using different stencils dependent on the local
solution.

Developed independently by four men in 1971-1972
= Jay Boris (NRL)
= Bram Van Leer (U. Leiden)
= Vladimir Kolgan (USSR)
= Ami Harten (Israel)
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‘ Lax-Wendroff's method was a major development
in computations.

The method was a landmark and dominated the
numerical methods for hyperbolic PDE's in the 1960's.

The paper that introduces the method is important B ss Adivos =
theoretically (discussed later) for a theorem introduced. s

The method is second-order accurate, stable to a CFL
number of one.

The method is derived by expanding the solution in a
Taylor series and substituting second-order
approximations.

P.D Lax; B. Wendroff (1960). “Systems of conservation laws". Communications in
Pure and Applied Mathematics. 13 (2): 217-237. doi:10.1002/cpa.3160130205



http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1002%2Fcpa.3160130205

Lax-Wendroff Theorem is an essential motivator for
many numerical methods for hyperbolic equations.

Most methods for hyperbolic PDEs are based on the discrete ‘
conservation form following the continuous conservation form because
of this theorem. |

Theorem (Lax and Wendroff): If a numerical method is in discrete
conservation form, if a solution converges, it will converge to a weak

solution of the PDE. A weak solution is not the weak solution. There

are infinitely many weak solutions. |

Conservation form: the flux out of one cell is into another (telescoping) |
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Here is an example of what happens without

conservation form.

Nonconservation form

ou  du
tu—=0
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Example from Randy Leveque

Burgers' equation.

Conservation form

du N a(%uz _0
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The Majda-Osher theorem establishes accuracy
expectations for discontinuous flows.

Majda and Osher establish that the approximation of shocked or
discontinuous flows will converge at be 1st order at best.

Theorem (Majda and Osher): A numerical solution will converge at 1st
order at best for the region between any characteristics emanating
from a discontinuity. Comm. Pure Appl. Math. 1977

Nonlinear discontinuties (self-steepening like shocks) converge at 1t order.

Majda, Andrew, and Stanley Osher. "Propagation of error into regions of smoothness for accurate
difference approximations to hyperbolic equations." Communications on Pure and Applied Mathematics 30,
no. 6 (1977). 671-705.

Linear discontinuties converge at less than 15t order (order
m/(m+1) where m is the order of the method

Banks, Jeffrey W., T. Aslam, and William J. Rider. "On sub-linear convergence for linearly degenerate waves
in capturing schemes." Journal of Computational Physics 227, no. 14 (2008). 6985-7002.

E



Entropy conditions are critical in determining
physically meaningful results.

The problem with L-W is that there are an infinity of weak solutions, we
need a mechanism to pick out the correct physical one.

The mechanism to do this entropy. The entropy created through
dissipation, numerical viscosity.

This is the connection to vanishing viscosity, more generally,

ou, (u)_n9%u
i Jof oJx ox?
via Harten, Hyman and Lax, 1976 A 0*

Harten, Amiram, James M. Hyman, Peter D. Lax, and Barbara Keyfitz. "On finite-difference
approximations and entropy conditions for shocks." Communications on pure and applied
mathematics 29, no. 3 (1976): 297-322.

o



The Hou-LeFloch theorem has
potentially profound consequences .

What happens when the method is not in conservation form?

The solution does not converge to a weak solution much less a correct
one regardless of the dissipation.

Theorem (Hou-LeFloch): For a non-conservative method the solution
differs from a weak solution by an amount proportional to the entropy |
produced in the solution.

Hou, Thomas Y., and Philippe G. LeFloch. "Why nonconservative schemes converge to wrong |
solutions: error analysis." Mathematics of computation 62, no. 206 (1994): 497-530.
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Summary

+ Itis essential to understand the theory related to both the
method you are verifying and the problem being solved.

- The method’s analysis establishes the upper bound on

expected convergence and error

* The problem being solved can lower the rate of

convergence and increase error substantial

*  For hyperbolic PDE's many theorems exist ©
expectations including when convergence s
expected.
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