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< Lanthanide -motivation
< Experimental methods
*Laser shock, x-ray diffraction, Pyrometry (gas-gun)
< Results —XRD, Temperature measurements, Hugoniot data, DFT

“*Summary

S. Duwal, C. McCoy, C. Melton, M. Knudson, S. Root, C. Seagle, D. Dolan.R. Hacking. In Preparation. 2
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< Catalytic convertors: Sm, % Superconductors
Eu, Gd, Tb < La, Ce, Eu, Lu

Sfchronicle.com

R

*» Rare earth metals; technology metals

** Cell phones, color TVs

% A single iPhone contains eight different

rare-earth metals; Vibration: Nd, Dy < High-T,. superconductors,
LaH,,, CeH,
*» Batteries, lasers

Properties of lanthanides has brought attention to the physics of f-electron metals



Sandia

Nationa Lanthanides at high pressure: ideal for studying f-electron physics

Laboratories
il

2
E o= E E E E
= £ 2 2 |E |8 Z 2 g E g
= ° g S |2 |2 & E 2 5 £ 2 3
= £ ¢ 5 "L |E|R == =& & E = B =&
= 2 2 ® E|lg |l e B & E B = = §
S & s g So|8|rE @ =2 = & B &8 £
= 6, ° 0D = S s |BP 8 o 2 L2 = < - B
] % =4 O A~ Z4 A |lmlm O A T @ B > A3
g % La3* Ce3* Pr3+ Nd3* Pm3* Sm3{ Eu3* Gds+Tb3* Dy3* Ho3* Er3* Tm3+ Yb3* Lu3*
000 0006000060060 06 00
115 111 109 108 106|104 |103 102 100 99 97 96 95 94 93
. Ionic radius in pico-meter
5‘8 :l(g o a a o o :‘(8 o 0 N 0 0 © gg
@ £ L 08 & zlelz 2 B8 & 8 8 8 3
LD o & & &l lsE Bb&S E & E & & o b
< Bl < <r < < < & < <t < < < < &
s s EEEE|EZEEEEE 3
) ) Y )

% 4f shielding in lanthanides - decrease in radius 2 inertness from 4f characters
< Shielding or screening effect of f-orbital <s , p, d-orbital - lanthanide contraction

<+ High P phase transition sequence: hcp - Sm-Type - dhep = fee > dfcc. However, in Ce from fcc 2
fcc’ >bem - bet (4f electron hybridization)

% Systematic study of lanthanides to understand the effects of f-electrons
%+ Samarium —phase transitions at high pressure 4



Sm at high pressure: many phases and large uncertainties
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% DAC studies: Sm-type ->dhcp =2 fcc 2> dfcec >hP3
% Gas-gun studies below 100 GPa (1975)

% Very few DFT studies

“ Huge uncertainty in P-T Hugoniot space
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www.dcs-aps.wsu.edu
Instrumentation Room

Control Room

Beam

Directior ﬂ» ’

Impact Facilities

'ISpecial Purpose
Experiments

X-ray Optics

Laser Shock Facility

= Single- and two-stage gas guns, laser shock capability, multi-event hutch

= Time-resolved, in-situ measurements utilizing the tunable, high energy X-ray capabilities at
the Advanced Photon Source (APS)

= Focus on diffraction, imaging, and scattering measurements; simultaneous continuum
measurements
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“* Velocimetry measurements at Sm/LiF interface

< Impedance matching method to determine the in-material states




e Structural evolution at high pressure
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< Sm-type phase stable at ambient conditions
%+ A new solid-solid phase observed at 23 GPa
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) Structural evolution at high pressure
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%+ A new solid-solid phase observed at 23 GPa
“+ Onset of melting at 33 GPa

11
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< Rietveld refinement suggest dfcc phase 12
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* A new solid-solid phase observed at 23 GPa
%+ Onset of melting at 33 GPa
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< Early shock work indicated melting based on Ug-U,, discontinuity
<+ XRD results suggests melting occurs at a higher pressure along the Hugoniot

16
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DFT-MD, localized f-electrons
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% DFT+U using ELK; f-electrons

are localized, but no SOC

» Quality of results are highly sensitive to U/J/SOC treatment.
» Current DFT efforts struggle to reproduce cold curves near ambient

when f-electrons are treated as valence , which will bias Hugoniot
pressures and temperatures. More investigation is needed for
ab-initio Hugoniot for lanthanides

Cody Melton

DFT sparks insights into f-electron physics at play

DFT+U+SOC, “valence” f-electrons

—— U=1.0, J=0.6
—— U=2.0, J=0.6
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U=6.0, J=0.6
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Pressure (GPa)
DFT+U+SOC using ELK;
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Low pressure agreement still
poor

Cold curve needs to be
reproduced well before
moving to Hugoniot
f-electrons participate in
bonding at high pressure, but
not at low pressure

17
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Sm Sample
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< Temperature measurements made using multi-channel optical pyrometers
(Avalanche photo diodes, APDs) using 4 channel system

< Sample needs to be a great emitter
“* Well impedance matched with LiF (Z;s: 17.42; Zg,,:15.75)

18
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¢ Radiance detectors are calibrated by placing the radiance optical fiber into a

blackbody source, varying the blackbody temperature over the expected range

of experiment temperatures, and recording the signals, V¢, (T), at each
temperature.

¢ For each detector, these calibration temperatures and signal voltages were fit to

a numerical equation, to obtain smooth calibration interpolations at all relevant
Blackbody Source temperatures. 19
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PDV measurement
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Detector signals vs time, V(t), are recorded on
high-speed digital oscilloscopes.

20
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) e, Sm-Temperature calculations

Grayband model
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» 5 adjustable parameters to describe emissivity
within each spectral band

* One emissivity changed per iteration, randomly
alternating between spectral bands

D. H. Dolan 22
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Proposed phase diagram suggests melt occurs at much lower T
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Melting curves of some other metals
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% Structural study of Sm—type to dfcc to liquid

<+ DFT suggests f-electrons participate in bonding at higher pressure

*» Temperature measurements constraining Hugoniot in P-T-Rho space
< Melting reported at lower temperature than DAC experiments
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