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Outline

vLanthanide -motivation
vExperimental methods

vLaser shock, x-ray diffraction, Pyrometry (gas-gun)
vResults –XRD, Temperature measurements, Hugoniot data, DFT
vSummary

S. Duwal, C. McCoy, C. Melton, M. Knudson, S. Root, C. Seagle, D. Dolan.R. Hacking. In Preparation. 2



Properties of Lanthanides matter to many applications

v Rare earth metals; technology metals

v Cell phones, color TVs

v A single iPhone contains eight different 
rare-earth metals; Vibration: Nd, Dy

v Batteries, lasers

Drozdov. Nature. 2019

Sfchronicle.com

v Catalytic convertors: Sm, 
Eu, Gd, Tb

v Superconductors

v La, Ce, Eu, Lu

v High-Tc superconductors, 
LaH10, CeH9

3
Properties of lanthanides has brought attention to the physics of f-electron metals



Lanthanides at high pressure: ideal for studying f-electron physics
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v 4f shielding in lanthanides à decrease in radius àinertness from 4f characters
v Shielding or screening effect of f-orbital <s , p, d-orbital à lanthanide contraction
v High P phase transition sequence: hcp à Sm-Type à dhcp à fcc à dfcc. However, in Ce from fcc à

fcc’ àbcm à bct (4f electron hybridization)
v Systematic study of lanthanides to understand the effects of f-electrons
v Samarium –phase transitions at high pressure
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Sm at high pressure: many phases and large uncertainties
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v DAC studies: Sm-type àdhcp à fcc à dfcc àhP3
v Gas-gun studies below 100 GPa (1975)
v Very few DFT studies
v Huge uncertainty in P-T Hugoniot space

Errandonea et al.

Cart
er 

et 
al.

Proposed 
melting?

Rambert et al, 1998
Husband et al, 2014
Finnegan, PRB, 2020

Errandonea et al, 2000

??
?



Unique measurements at DCS @ APS to reveal complex behavior of Sm

§ Single- and two-stage gas guns, laser shock capability, multi-event hutch
§ Time-resolved, in-situ measurements utilizing the tunable, high energy X-ray capabilities at 

the Advanced Photon Source (APS)
§ Focus on diffraction, imaging, and scattering measurements; simultaneous continuum 

measurements
6

www.dcs-aps.wsu.edu



Multi-probe experiments yield simultaneous phase, P, density state

VISAR

X-ray
23 keV

Laser, 351 nm
5 or 10 ns pulse
~100J
500 um spot size
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Peak energy = 23.54 keV

Laser interferometry to measure 
the surface velocity of solids 
moving at high speeds.
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Velocimetry to determine pressure
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vVelocimetry measurements at Sm/LiF interface
v Impedance matching method to determine the in-material states
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Structural evolution at high pressure
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v Sm-type phase stable at ambient conditions

Ambient



Structural evolution at high pressure
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v Sm-type phase stable at ambient conditions
v A new solid-solid phase observed at 23 GPa

23 GPaAmbient



Structural evolution at high pressure
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v Sm-type phase stable at ambient conditions
v A new solid-solid phase observed at 23 GPa
v Onset of melting at 33 GPa

35 GPa 75 GPa

23 GPaAmbient



Structural evolution at high pressure

12v Rietveld refinement suggest dfcc phase
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Structural evolution at high pressure
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v Sm-type phase stable at ambient conditions
v A new solid-solid phase observed at 23 GPa
v Onset of melting at 33 GPa
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Structural evolution at high pressure
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v Sm-type phase stable at ambient conditions
v A new solid-solid phase observed at 23 GPa
v Onset of melting at 33 GPa
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c/a ratio deviates from ideal fcc lattice
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Proposed melt by Carter et al

Current work disagrees with the previously proposed melting

v Early shock work indicated melting based on Us-Up discontinuity
v XRD results suggests melting occurs at a higher pressure along the Hugoniot

Proposed melting
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v Clear discrepancy in US-up v DFT+U using ELK; f-electrons 
are localized, but no SOC

v DFT+U+SOC using ELK; 
valence f-electrons

v Low pressure agreement still 
poor

v Cold curve needs to be 
reproduced well before 
moving to Hugoniot

v f-electrons participate in 
bonding at high pressure, but 
not at low pressure

v Quality of results  are highly sensitive to U/J/SOC treatment. 
v Current DFT efforts struggle to reproduce cold curves near ambient 

when f-electrons are treated as valence , which will bias Hugoniot 
pressures and temperatures. More investigation is needed for 
ab-initio Hugoniot for lanthanides
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DFT sparks insights into f-electron physics at play

VASP using f in core 
pseudopotential
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DFT-MD, localized f-electrons DFT+U, localized f-electrons DFT+U+SOC, “valence” f-electrons

Cody Melton



Temperature measurements using pyrometry to constrain the Hugoniot

vTemperature measurements made using multi-channel optical pyrometers 
(Avalanche photo diodes, APDs) using 4 channel system

vSample needs to be a great emitter
vWell impedance matched with LiF (ZLiF: 17.42; ZSm:15.75)
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Temperature calibration for high quality data
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v Radiance detectors are calibrated by placing the radiance optical fiber into a 
blackbody source, varying the blackbody temperature over the expected range 
of experiment temperatures, and recording the signals, VCal (T), at each 
temperature. 

v For each detector, these calibration temperatures and signal voltages were fit to 
a numerical equation, to obtain smooth calibration interpolations at all relevant 
temperatures. 
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Velocimetry and emission measurements follows the same trend
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high-speed digital oscilloscopes. 
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Four simultaneous velocimetry and temperature measurements

21

31 GPa 34 GPa

40 GPa 51 GPa



Sm-Temperature calculations
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Gray band model 
• 5 adjustable parameters to describe emissivity 

within each spectral band
• One emissivity changed per iteration, randomly 

alternating between spectral bands
e: emissivity (0< e<1); Lm: measured band radiance
c1, c2: radiation constants
l: wavelength

D. H. Dolan



Proposed phase diagram suggests melt occurs at much lower T
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Melting curves of some other metals
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Lithium

Jensen, JAP, 2021

Cerium

Guillaume et al, Nature Physics, 2011

Hugo
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Summary

25

v Structural study of Sm–type to dfcc to liquid
v DFT suggests f-electrons participate in bonding at higher pressure
v Temperature measurements constraining Hugoniot in P-T-Rho space
v Melting reported at lower temperature than DAC experiments
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