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P Background

The Multilayer Thermal Rotating Shallow Water Equations are used to model weather and
climate on an ocean-atmosphere system.

- They model variables of velocities, thicknesses (heights), and temperature (or other
variables like buoyancy) of vertically “stacked” layers of fluids with varying densities.

« Thereis a large discontinuity in the densities at the ocean-atmosphere interface, so we use
the bulk condition, a homogenization of the boundary layer, to couple the models in an
accurate and stable manner [3,10].

« We implement a simplified ocean-atmosphere model, which we call Air-Sea Light, in
MATLAB to enable rapid testing and prototyping of various coupling methods for the
ocean-atmosphere system.

« This project has been done under the CANGA project at Sandia National Laboratories.




P Hamiltonian Framework

A Hamiltonian system requires variables, the total energy or Hamiltonian (H), and the Poisson
tensor ().

- Consider the total energy H(h,u,t) of a system as a function of fluid thickness, which we call
“height” h, velocity u, and time t [2,4].

 Letv=[hu]so that H(h,u,t) = H(vt).
« Then by the chain rule in the sense of the Gateaux derivative and by conservation of energy:

dH (v,t) (@ 8_H) L
dt N 81?? 31} LQ(Q) -

« The pair of h and u that satisfy this equation must also satisfy
3@_J8_H’ (3H’J8H) _0
ot ov v Ov L2(Q)
where J is a skew-symmetric matrix operator and must satisfy the Jacobi identity [2,4,6].

«  We will use this idea of the Hamiltonian framework to derive the Multilayer Thermal Rotating
Shallow Water Equations [2,4].




P Multilayer Thermal Rotating Shallow Water Equations

« The Hamiltonian for the MultllayerThermaI Rotating Shallow Water Equationsiis:
h; .
H(h,u,o,t) Z/ p332 + 0 b—b—_z hi+7j dz.
« where:

« Nisthe number of layers.

* hjisthe layer height at layer j.

* ujisthe velocity at layer j.

* 0;=gp;h;is the mass-weighted buoyancy at layer j [2].

« gisthe gravity constant.

*  p;isthe density at layer j.

* p;is the initial density at layer j as we are using the Boussinesq approximation.
« b isthe bathymetry which contains the bottom topography of the model.




P Multilayer Thermal Rotating Shallow Water Equations

Observe that (and these are functional derivatives)

j—1 N
OH ui oo X OH OH h;
I R | . — gihius. — =) h 4+ —L
8hj Pi 2 * 2 +ZGEJ 8Uj Pittitti: (‘)U'j _I__Z it 2
=1 1=7+1
* LetJ;be the Poisson tensor at layer j be defined as
0 -V -() 0\
1
Ti=5 =V  —q(hy,u)k x () —s;V()
J
0 —V-(s; ) 0 )

where:
q(h,u) = (k-V x u + f)/h is the potential vorticity.

s; = gp; is the buoyancy at layer j [2].
k is the unit normal vector in the Cartesian z direction.
fis the Coriolis parameter.

* LetJ=diag;_; nJ;whichisthe composite operator for the multilayer equations.
* It can be verified that each J;and J satisfy the Jacobi identity [2,6].




P Multilayer Thermal Rotating Shallow Water Equations

« Then we can derive the Multilayer Thermal Rotating SWE agfollows ;il \
K+ J—'L + T,
% (dh} 0 -V () 0 " i=1
Sl =i aw | = [ -YV0 —ahjukx () —5;¥0() hju;
do; OH 0 -V-(s; ) 0
ot 90; ) g b+ Z hy + h.r
7\ )
[ ~V - hju; \
h;
= | —q(hj,u;)k x hju; — VK; — V (%) - (Z G;) hm —=V [ b+ Z hi + E
i=j+1
\ —V - 0oju; )

« where Kj: uj2/2.




P Temperature Equations

We wish to express our g; variables in terms of temperature of each layer T;given in Kelvin

(K).

» For the atmosphere, we use the Ideal Gas Law: p; = p;RT;, wherep; = >_i_ I_yoiand R =287 J/(kg
K) [8]. Then

I ": 1 7 ghj > i=1 O
/ Rpj Rpj. RG’j ‘

« For the ocean temperature, we use the linear equation of state [7]:
pi = po — Ty —To) + B(S; — So)

« wherewe let a=0.255 kg/(m3°C), B=0, T,=19 °C, and p, = 1026.5 kg/m3 [7,8]. Then (also
converting to Kelvin)

Tj:@+TU—p—f+2731_—+TU—

+ 273.1.
! ozth




P Modifying Thermal Variable

« The bulk condition (described later) is given in terms of temperatures and velocities
through the vertical diffusion terms.

« To account for this, we incorporate a temperature based tracer equation instead of a
buoyancy based one.

 This breaks the Hamiltonian structure, however we mainly used it for derivation purposes.
Additionally, various forcing terms we add in our model also break the Hamiltonian
structure, so this framework has served its purpose at this point and we now only focus on
the primitive equations as follows:

Oh;

ou 1 o 1 =1 o
J J J
L = —q(hy,up)k < hyu; = VG — —V (Z) = =9 Yoy ) - - b+ > b +—
ot 3o Uj 7 U j o) 9 3 ; J Pk, a;rl
O(T;h;)
(;t 47— -V - Tjhjuj




P Description of Test Data

Test model domain and data come from the SOMA test case [4,9].
« The horizontal domain is a circle on the sphere with diameter 1.25 x 10°m
« System has a flat bathymetry b.
«  We discretize each model in space using the TRiSK scheme [5].

« This uses centroidal voronoi tessellations as the mesh on the sphere where the cells are
on average 32 km in diameter on the quasi-uniform mesh.

 Grid for each layer has 8521 cells, 25898 edges, and 17378 vertices.
* h; 0, and T, are defined on the cells.

° uare deflned on the edges.

. q(h],uj) are defined on the vertices.
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Description of Model/Implementation
Parameter Value (Air) Value (Ocean) Unit Description
/ b 0 -2500 m Bottom topography (flat)
U 0 0 m/s Initial velocities for j =1,2,3
P 0.6599,0.9803,1.225] [1025;1027;1028] kg/m?” Initial densities
T} 283.1,293.1,303.1] From ocean temp eq K Initial temperatures
h; From T; and o, 250,450,1800] m Initial heights
0 gpih; gpih; kg/(ms?) For j =1,2,3
* We have developed a 3-layer air model and a 3-layer ocean model as described in the
table above.
« Observe that some of the variables are “forced” in order to satisfy the various equations of
state.

«  We couple via the bulk condition the 3 layer air model on to the 3 layer ocean model to
make the 6 layer model.

- We couE|Ie via the bulk condition layers 3 and 4 of the 6 layer model to create the 2 layer
model. However, we make the height of the ocean layer 2500 m instead of 250 m.

- We add wind forcing to the top ocean layer F, in both models [4].




P Description of Model/Implementation

Shallow Water Equations implemented using the time-stepping method Runge-Kutta 4

(RK4).
 We add a drag term F,in the ocean layers as seen in [4].
Fy = Mmﬂu:j, Cdrag = 1077
h;

. We also add horizontal smoothing and vertical mixing to the velocity and tracer equations,
Dyus- Quy D, T:hs;, and-07F:h; [4], defined as:

Dpuj = VUAh’HJ, Dyuj = K7 Ayu;
Dthhj = VTAth}Lj, DUTjhj = K‘;&UTJ}LJ

- forj={a,0}, where the various values are obtained from [7,9].




P Bulk Condition

« The so called bulk condition is a set of Robin boundary conditions [3,10] that account for a
large jump in the density between layers.

paKrTazuﬂf(é ’ ﬁ‘ﬂ) — pOK?azuo(é ' ﬁo) =T
paCﬁKéaz(T@hﬂ)(i ’ ﬁﬂ) — pochzaz(Toho)("%

on I' x [0, 7]
no) =0 on T x[0,7]

r = pCol|AU (10 — o), Q= puchCatl|AU||(Tuhs — Toh,)

Parameter(s) Value Units Description
z N/A m Positive Cartesian “upwards” direction
z 1 m/s Unit vector in the z direction
I N/A N/A Air-sea interface
My Ty 1, -1 m,'s Unit normal vectors w.r.t. 1" such that #i, = =i,
T N/A kg/(m?s) Surface wind stress
T N/A 8 Final time
Q N/A J/m? Heat flux
fas P N/A kg/m? Diensities
Uy, Uy N/A m,'s Horizontal velocities
T, T, N/A K Temperatures
ho. he leﬁi 1 Layer heights
[ 10-", 10-" m- s Eddy viscosities
K, H:; 10-1, 10" m? /s Eddy diffusivities
Py 5o 10" m* /s Scaling constant
T 10” m* /s Scaling constant
T 1000, 4190 | J/(kg K) Specific heats
O, Oy 10", 10~ N/A Friction parameters
|ALT ({1, — 1g)?)2 m/s Exponents are entry-wise operators




P Bulk Condition

For our example these four terms simplify to:
Wind forcing for air: K!"0,u, = —7/pa
Wind forcing for ocean: K)"0,u, = 7/p,
Thermal forcing for air: K. (Tyh,) = —Q/(pact)
Thermal forcing for ocean: K'0,(T,h,) = Q/(poct)

« Consider taking the discrete Laplacian over N layers of the same type of fluid.

- We have N variables, one for each layer, and N+1 interfaces, where the top and bottom
maybe contain boundary conditions.

- Boundary terms for vertical stress (Laplacian) at air-sea interface are modeled as forcing
terms in the adjacent layers.




P Bulk Condition

Consider f;and hyfori=1,2,..., N, the functions and heights at the N layers, and consider
the discrete partial derivatives:

Fi — Fiy
2(hi + hitr)
 wherei=1/2,3/2,..,N+1/2 are the layer interfaces.

(azF)z‘JrlfQ —

* The discrete Laplacians are:
0. F; 12— 0.Fi 112
h; '

(8zazF)t' —

- For the two values that do not exist: - F1/2 and - Fn 172, we replace them with the bulk
condition.




P Bulk Condition

The four terms are then S|mpI|f|ed as follows:

T 63'&“ — F t d (T -h.a) . CH T o Bl iy &l
ﬁ(}. hal —_— U,,f_,,} Kﬂh—m —_— _E“&b”(lallla - _Io.h-o:]
az Ug (jDﬂfL an{T h ) 2 C'DCTH
Km = .& a — Uo I{t - S = o a AU 'Ta T ITGI o+
o ho hopo || U”{u' H.) o ho pohocg || LH( h h’ )

The additional 7/h, and 1/h factors come from the vertical viscosity.
Putting everything together we get:

h.;
Au; } 1 F 1 -1
8—; = — q(hj.,’it.j)k X hrj'h'.j - VB? — EV ( 2 ) - EV (; Jj)
hj 0. & tto
gV bt Z hi+ 2 | + Datj + Doy = Fa+ 8oFu + 8a, }“ + ao‘j-—;*‘
=11 ta  |top Yo |bottom
NT:hs - 0(Tyh 0. (Tyh
% V. T}hjh‘,j n Dthh-j n DyTjh‘j + aa,j -u(fa 79) + 50}‘?_ «-(ho ?o)
t la top o bottom

where 5,j is the Kronecker delta.
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P Results

We now show some plots of velocities, heights, and temperatures at each layer from the 2
layer model and the 6 layer model.

* In both models, the atmosphere starts at rest and wind forcing F,, is applied to the top
ocean layer. The goal is for the ocean layers to create a double gyre in their velocities and
induce a similar double gyre in the air layers as a result of the coupling via the bulk
condition.

« Both models used a time step of 96 seconds for RK4.
- For the 2 layer model, we show the plots after 1 day.
* For the 6 layer model, we show the plots after 14 days, 270 days and 900 days.

« The parameters in the 6 layer model still need some fine tuning in order for it to work
better in the long run.
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P Future Work

We intend to use this code to test new coupling algorithms such as in [1].
« We intend to use the linearized Ideal Gas Law for our air temperature equation of state.
* We wish to fine tune the 6 layer model.
«  We intend to modify this code to be compatible with reduced order models (ROMs).
« That s, we can use the data from these tests as “snapshots” to create a ROM basis.
«  We wish to modify this code so it can take a ROM basis as an input.
«  This will then (hopefully) increase efficiency.
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