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Background
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• The Multilayer Thermal Rotating Shallow Water Equations are used to model weather and 
climate on an ocean-atmosphere system.

• They model variables of velocities, thicknesses (heights), and temperature (or other 
variables like buoyancy) of vertically “stacked” layers of fluids with varying densities.

• There is a large discontinuity in the densities at the ocean-atmosphere interface, so we use 
the bulk condition, a homogenization of the boundary layer, to couple the models in an 
accurate and stable manner [3,10]. 

• We implement a simplified ocean-atmosphere model, which we call Air-Sea Light, in 
MATLAB to enable rapid testing and prototyping of various coupling methods for the 
ocean-atmosphere system.

• This project has been done under the CANGA project at Sandia National Laboratories.



Hamiltonian Framework
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• A Hamiltonian system requires variables, the total energy or Hamiltonian (H), and the Poisson 
tensor (J).

• Consider the total energy H(h,u,t) of a system as a function of fluid thickness, which we call 
“height” h, velocity u, and time t [2,4]. 

• Let v = [h,u] so that H(h,u,t) = H(v,t).
• Then by the chain rule in the sense of the Gateaux derivative and by conservation of energy:

• The pair of h and u that satisfy this equation must also satisfy

      where J is a skew-symmetric matrix operator and must satisfy the Jacobi identity [2,4,6].
• We will use this idea of the Hamiltonian framework to derive the Multilayer Thermal Rotating 

Shallow Water Equations [2,4].



Multilayer Thermal Rotating Shallow Water Equations
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Multilayer Thermal Rotating Shallow Water Equations 
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• Observe that (and these are functional derivatives)

• Let Jj be the Poisson tensor at layer j be defined as

• where:
• q(h,u) = (k∙∇ x u + f)/h is the potential vorticity.
• sj = gρj is the buoyancy at layer j [2].
• k is the unit normal vector in the Cartesian z direction.
• f is the Coriolis parameter.

• Let J = diag j = 1,...,N Jj which is the composite operator for the multilayer equations.
• It can be verified that each Jj and J satisfy the Jacobi identity [2,6].



Multilayer Thermal Rotating Shallow Water Equations
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• Then we can derive the Multilayer Thermal Rotating SWE as follows: 

• where Kj = uj
2/2.



Temperature Equations
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• We wish to express our σj variables in terms of temperature of each layer T­j given in Kelvin 
(K).

• For the atmosphere, we use the Ideal Gas Law: pj = ρjRT­j , where              and R = 287 J/(kg 
K) [8]. Then 

• For the ocean temperature, we use the linear equation of state [7]: 

• where we let α = 0.255 kg/(m3 °C), β = 0, T­0 = 19 °C, and ρ0 = 1026.5 kg/m3 [7,8]. Then (also 
converting to Kelvin)



Modifying Thermal Variable
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• The bulk condition (described later) is given in terms of temperatures and velocities 
through the vertical diffusion terms.

• To account for this, we incorporate a temperature based tracer equation instead of a 
buoyancy based one.

• This breaks the Hamiltonian structure, however we mainly used it for derivation purposes. 
Additionally, various forcing terms we add in our model also break the Hamiltonian 
structure, so this framework has served its purpose at this point and we now only focus on 
the primitive equations as follows:



Description of Test Data
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• Test model domain and data come from the SOMA test case [4,9].
• The horizontal domain is a circle on the sphere with diameter 1.25 x 106 m.
• System has a flat bathymetry b.
• We discretize each model in space using the TRiSK scheme [5].
• This uses centroidal voronoi tessellations as the mesh on the sphere where the cells are 

on average 32 km in diameter on the quasi-uniform mesh.
• Grid for each layer has 8521 cells, 25898 edges, and 17378 vertices.
• h­j, σj, and Tj are defined on the cells.
• uj are defined on the edges.
• q(h­j,uj) are defined on the vertices.



Description of Model/Implementation
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• We have developed a 3-layer air model and a 3-layer ocean model as described in the 
table above.

• Observe that some of the variables are “forced” in order to satisfy the various equations of 
state.

• We couple via the bulk condition the 3 layer air model on to the 3 layer ocean model to 
make the 6 layer model.

• We couple via the bulk condition layers 3 and 4 of the 6 layer model to create the 2 layer 
model. However, we make the height of the ocean layer 2500 m instead of 250 m.

• We add wind forcing to the top ocean layer Fw in both models [4].



Description of Model/Implementation
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• Shallow Water Equations implemented using the time-stepping method Runge-Kutta 4 
(RK4).

• We add a drag term Fd in the ocean layers as seen in [4]. 

• We also add horizontal smoothing and vertical mixing to the velocity and tracer equations, 
D­hu­j,­ Dvu­j, DhT­jh­j, and­ ­D­vT­jh­j [4], defined as:

• for j = {a,o}, where the various values are obtained from [7,9].



Bulk Condition
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• The so called bulk condition is a set of Robin boundary conditions [3,10] that account for a 
large jump in the density between layers.



Bulk Condition
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• For our example these four terms simplify to:

• Consider taking the discrete Laplacian over N layers of the same type of fluid. 
• We have N variables, one for each layer, and N+1 interfaces, where the top and bottom 

maybe contain boundary conditions.
• Boundary terms for vertical stress (Laplacian) at air-sea interface are modeled as forcing 

terms in the adjacent layers.



Bulk Condition
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• Consider Fi and h­j for i = 1,2,…,N, the functions and heights at the N layers, and consider 
the discrete partial derivatives:

• where i = 1/2,3/2,...,N+1/2 are the layer interfaces.
• The discrete Laplacians are:

• For the two values that do not exist:             and                 , we replace them with the bulk 
condition. 



Bulk Condition
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• The four terms are then simplified as follows:

• The additional 1/ha and 1/ho factors come from the vertical viscosity.
• Putting everything together we get:

• where δij is the Kronecker delta.



Results
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• We now show some plots of velocities, heights, and temperatures at each layer from the 2 
layer model and the 6 layer model.

• In both models, the atmosphere starts at rest and wind forcing Fw  is applied to the top 
ocean layer. The goal is for the ocean layers to create a double gyre in their velocities and 
induce a similar double gyre in the air layers as a result of the coupling via the bulk 
condition.

• Both models used a time step of 96 seconds for RK4.
• For the 2 layer model, we show the plots after 1 day.
• For the 6 layer model, we show the plots after 14 days, 270 days and 900 days.
• The parameters in the 6 layer model still need some fine tuning in order for it to work 

better in the long run.



Results: 2 Layers: 1 Day
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Results: 6 Layers: 14 Days
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Results: 6 Layers: 14 Days: Velocities Zoomed In
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Results: 6 Layers: 270 Days
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Results: 6 Layers: 270 Days: Velocities Zoomed In
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Results: 6 Layers: 900 Days
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Results: 6 Layers: 900 Days: Velocities Zoomed In
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Future Work
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• We intend to use this code to test new coupling algorithms such as in [1].
• We intend to use the linearized Ideal Gas Law for our air temperature equation of state.
• We wish to fine tune the 6 layer model.
• We intend to modify this code to be compatible with reduced order models (ROMs).
• That is, we can use the data from these tests as “snapshots” to create a ROM basis. 
• We wish to modify this code so it can take a ROM basis as an input.
• This will then (hopefully) increase efficiency.
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